5

Lecture 6. Bayesian estimation

The parameter as a random variable

- So far we have seen the *frequentist* approach to statistical inference
- i.e. inferential statements about θ are interpreted in terms of repeat sampling.
- In contrast, the Bayesian approach treats θ as a random variable taking values in Θ .
- The investigator's information and beliefs about the possible values for θ , before any observation of data, are summarised by a **prior distribution** $\pi(\theta)$.
- When data $\mathbf{X} = \mathbf{x}$ are observed, the extra information about θ is combined with the prior to obtain the **posterior distribution** $\pi(\theta | \mathbf{x})$ for θ given $\mathbf{X} = \mathbf{x}$.
- There has been a long-running argument between proponents of these different approaches to statistical inference
- Recently things have settled down, and Bayesian methods are seen to be appropriate in huge numbers of application where one seeks to assess a probability about a 'state of the world'.
- Examples are spam filters, text and speech recognition, machine learning, bioinformatics, health economics and (some) clinical trials.

Prior and posterior distributions

By Bayes' theorem,

$$\pi(\theta \mid \mathbf{x}) = \frac{f_{\mathbf{X}}(\mathbf{x} \mid \theta)\pi(\theta)}{f_{\mathbf{X}}(\mathbf{x})},$$

where $f_{\mathbf{X}}(\mathbf{x}) = \int f_{\mathbf{X}}(\mathbf{x}|\theta)\pi(\theta)d\theta$ for continuous θ , and $f_{\mathbf{X}}(\mathbf{x}) = \sum f_{\mathbf{X}}(\mathbf{x} | \theta_i) \pi(\theta_i)$ in the discrete case.

Thus

$$\pi(\theta | \mathbf{x}) \propto f_{\mathbf{X}}(\mathbf{x} | \theta) \pi(\theta)$$
 (1) posterior \propto likelihood \times prior,

where the constant of proportionality is chosen to make the total mass of the posterior distribution equal to one.

- In practice we use (1) and often we can recognise the family for $\pi(\theta \mid \mathbf{x})$.
- It should be clear that the data enter through the likelihood, and so the inference is automatically based on any sufficient statistic.

Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

- biased 3:1 in favour of tails
- a fair coin.
- biased 3:1 in favour of heads

I randomly select one coin and flip it once, observing a head. What is the probability that I have chosen coin 3?

- Let X=1 denote the event that I observe a head, X=0 if a tail
- θ denote the probability of a head: $\theta \in (0.25, 0.5, 0.75)$
- Prior: $p(\theta = 0.25) = p(\theta = 0.5) = p(\theta = 0.75) = 0.33$
- Probability mass function: $p(x|\theta) = \theta^x (1-\theta)^{(1-x)}$

		Prior	Likelihood	Un-normalised Posterior	Normalised Posterior
Coin	θ	$p(\theta)$	$p(x=1 \theta)$	$p(x=1 \theta)p(\theta)$	$\frac{p(x=1 \theta)p(\theta)}{p(x)^{\dagger}}$
1	0.25	0.33	0.25	0.0825	0.167
2	0.50	0.33	0.50	0.1650	0.333
3	0.75	0.33	0.75	0.2475	0.500
	Sum	1.00	1.50	0.495	1.000

† The normalising constant can be calculated as $p(x) = \sum_i p(x|\theta_i)p(\theta_i)$

So observing a head on a single toss of the coin means that there is now a 50% probability that the chance of heads is 0.75 and only a 16.7% probability that the chance of heads in 0.25.

Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

PROBLEM.

Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its happening in a fingle trial lies somewhere between any two degrees of probability that can be named.

In modern language, given $r \sim \text{Binomial}(\theta, n)$, what is $\mathbb{P}(\theta_1 < \theta < \theta_2 | r, n)$?

Example 6.1

Suppose we are interested in the true mortality risk θ in a hospital H which is about to try a new operation. On average in the country around 10% of people die, but mortality rates in different hospitals vary from around 3% to around 20%. Hospital H has no deaths in their first 10 operations. What should we believe about θ ?

- Let $X_i = 1$ if the *i*th patient dies in H (zero otherwise), $i = 1, \ldots, n$.
- Then $f_{\mathbf{X}}(\mathbf{x} | \theta) = \theta^{\sum x_i} (1 \theta)^{n \sum x_i}$.
- Suppose a priori that $\theta \sim \text{Beta}(a,b)$ for some known a>0, b>0, so that $\pi(\theta) \propto \theta^{a-1}(1-\theta)^{b-1}, \ 0<\theta<1$.
- Then the posterior is

$$\begin{array}{lll} \pi(\theta \,|\, \mathbf{x}) & \propto & f_{\mathbf{X}}(\mathbf{x} \,|\, \theta) \pi(\theta) \\ & \propto & \theta^{\sum x_i + a - 1} (1 - \theta)^{n - \sum x_i + b - 1}, \ 0 < \theta < 1. \end{array}$$

We recognise this as $Beta(\sum x_i + a, n - \sum x_i + b)$ and so

$$\pi(\theta | \mathbf{x}) = \frac{\theta^{\sum x_i + a - 1} (1 - \theta)^{n - \sum x_i + b - 1}}{\mathsf{B}(\sum x_i + a, n - \sum x_i + b)} \qquad \text{for } 0 < \theta < 1.$$

- In practice, we need to find a Beta prior distribution that matches our information from other hospitals.
- It turns out that a Beta(a=3,b=27) prior distribution has mean 0.1 and $\mathbb{P}(0.03 < \theta < 0.20) = 0.9$.
- The data is $\sum x_i = 0, n = 10$.
- So the posterior is Beta $(\sum x_i + a, n \sum x_i + b) = \text{Beta}(3, 37)$
- This has mean 3/40 = 0.075.
- NB Even though nobody has died so far, the mle $\hat{\theta} = \sum x_i/n = 0$ (i.e. it is impossible that any will ever die) does not seem plausible.

```
install.packages("LearnBayes")
library(LearnBayes)
prior = c( a= 3, b = 27 )  # beta prior
data = c( s = 0, f = 10 ) # s events out of f trials
triplot(prior,data)
```

Bayes Triplot, beta(3, 27) prior, s= 0, f= 10

Conjugacy

- For this problem, a beta prior leads to a beta posterior. We say that the beta family is a **conjugate** family of prior distributions for Bernoulli samples.
- Suppose that a=b=1 so that $\pi(\theta)=1,\ 0<\theta<1$ the uniform distribution (called the "principle of insufficient reason" by Laplace, 1774) .
- Then the posterior is Beta($\sum x_i + 1, n \sum x_i + 1$), with properties.

	mean	mode	variance
prior	1/2	non-unique	1/12
posterior	$\frac{\sum x_i+1}{n+2}$	$\frac{\sum x_i}{n}$	$\frac{(\sum x_i+1)(n-\sum x_i+1)}{(n+2)^2(n+3)}$

- Notice that the mode of the posterior is the mle.
- The posterior mean estimator, $\frac{\sum X_i+1}{n+2}$ is discussed in Lecture 2, where we showed that this estimator had smaller mse than the mle for non-extreme values of θ . Known as Laplace's estimator.
- The posterior variance is bounded above by 1/(4(n+3)), and this is smaller than the prior variance, and is smaller for larger n.
- Again, note the posterior automatically depends on the data through the sufficient statistic.

Bayesian approach to point estimation

- Let $L(\theta, a)$ be the loss incurred in estimating the value of a parameter to be a when the true value is θ .
- Common loss functions are quadratic loss $L(\theta, a) = (\theta a)^2$, absolute error loss $L(\theta, a) = |\theta - a|$, but we can have others.
- When our estimate is a, the expected posterior loss is $h(a) = \int L(\theta, a) \pi(\theta | \mathbf{x}) d\theta$.
- The Bayes estimator $\hat{\theta}$ minimises the expected posterior loss.
- For quadratic loss

$$h(a) = \int (a-\theta)^2 \pi(\theta \,|\, \mathbf{x}) d\theta.$$

• h'(a) = 0 if

$$a\int\pi(heta\!\mid\!\mathbf{x})d heta=\int heta\pi(heta\!\mid\!\mathbf{x})d heta.$$

• So $\hat{\theta} = \int \theta \pi(\theta | \mathbf{x}) d\theta$, the **posterior mean**, minimises h(a).

For absolute error loss,

$$h(a) = \int |\theta - a| \pi(\theta | \mathbf{x}) d\theta = \int_{-\infty}^{a} (a - \theta) \pi(\theta | \mathbf{x}) d\theta + \int_{a}^{\infty} (\theta - a) \pi(\theta | \mathbf{x}) d\theta$$
$$= a \int_{-\infty}^{a} \pi(\theta | \mathbf{x}) d\theta - \int_{-\infty}^{a} \theta \pi(\theta | \mathbf{x}) d\theta$$
$$+ \int_{a}^{\infty} \theta \pi(\theta | \mathbf{x}) d\theta - a \int_{a}^{\infty} \pi(\theta | \mathbf{x}) d\theta$$

Now
$$h'(a) = 0$$
 if
$$\int_{-\infty}^{a} \pi(\theta \,|\, \mathbf{x}) d\theta = \int_{a}^{\infty} \pi(\theta \,|\, \mathbf{x}) d\theta.$$

• This occurs when each side is 1/2 (since the two integrals must sum to 1) so $\hat{\theta}$ is the **posterior median**.

Example 6.2

Suppose that X_1, \ldots, X_n are iid $N(\mu, 1)$, and that a priori $\mu \sim N(0, \tau^{-2})$ for known τ^{-2} .

The posterior is given by

$$\pi(\mu \mid \mathbf{x}) \propto f_{\mathbf{X}}(\mathbf{x} \mid \mu)\pi(\mu)$$

$$\propto \exp\left[-\frac{1}{2}\sum_{i}(x_{i} - \mu)^{2}\right] \exp\left[-\frac{\mu^{2}\tau^{2}}{2}\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(n + \tau^{2}\right)\left\{\mu - \frac{\sum_{i}x_{i}}{n + \tau^{2}}\right\}^{2}\right] \qquad \text{(check)}.$$

- So the posterior distribution of μ given \mathbf{x} is a Normal distribution with mean $\sum x_i/(n+\tau^2)$ and variance $1/(n+\tau^2)$.
- The normal density is symmetric, and so the posterior mean and the posterior median have the same value $\sum x_i/(n+\tau^2)$.
- This is the optimal Bayes estimate of μ under both quadratic and absolute error loss.

Lecture 6. Bayesian estimation

Suppose that X_1,\ldots,X_n are iid Poisson(λ) rv's and that λ has an exponential distribution with mean 1, so that $\pi(\lambda)=e^{-\lambda}$, $\lambda>0$.

• The posterior distribution is given by

$$\pi(\lambda \,|\, \boldsymbol{x}) \propto e^{-n\lambda} \lambda^{\sum x_i} e^{-\lambda} = \lambda^{\sum x_i} e^{-(n+1)\lambda}, \quad \lambda > 0,$$

ie Gamma $(\sum x_i + 1, n + 1)$.

- Hence, under quadratic loss, $\hat{\lambda} = (\sum x_i + 1)/(n+1)$, the posterior mean.
- Under absolute error loss, $\hat{\lambda}$ solves

$$\int_0^{\hat{\lambda}} \frac{(n+1)^{\sum x_i+1} \lambda^{\sum x_i} e^{-(n+1)\lambda}}{(\sum x_i)!} d\lambda = \frac{1}{2}.$$