Lecture 6. Bayesian estimation
The parameter as a random variable

- So far we have seen the *frequentist* approach to statistical inference
 - i.e. inferential statements about θ are interpreted in terms of repeat sampling.
- In contrast, the Bayesian approach treats θ as a *random variable* taking values in Θ.
- The investigator’s information and beliefs about the possible values for θ, before any observation of data, are summarised by a *prior distribution* $\pi(\theta)$.
- When data $X = x$ are observed, the extra information about θ is combined with the prior to obtain the *posterior distribution* $\pi(\theta | x)$ for θ given $X = x$.
- There has been a long-running argument between proponents of these different approaches to statistical inference.
- Recently things have settled down, and Bayesian methods are seen to be appropriate in huge numbers of application where one seeks to assess a probability about a 'state of the world'.
- Examples are spam filters, text and speech recognition, machine learning, bioinformatics, health economics and (some) clinical trials.
Prior and posterior distributions

- By Bayes’ theorem,
 \[\pi(\theta | x) = \frac{f_X(x | \theta)\pi(\theta)}{f_X(x)} , \]
 where \(f_X(x) = \int f_X(x | \theta)\pi(\theta) d\theta \) for continuous \(\theta \), and \(f_X(x) = \sum f_X(x | \theta_i)\pi(\theta_i) \) in the discrete case.

- Thus
 \[\pi(\theta | x) \propto f_X(x | \theta)\pi(\theta) \]
 \[\text{posterior} \propto \text{likelihood} \times \text{prior}, \]
 where the constant of proportionality is chosen to make the total mass of the posterior distribution equal to one.

- In practice we use (1) and often we can recognise the family for \(\pi(\theta | x) \).

- It should be clear that the data enter through the likelihood, and so the inference is automatically based on any sufficient statistic.
Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

1. biased 3:1 in favour of tails
2. a fair coin,
3. biased 3:1 in favour of heads

I randomly select one coin and flip it once, observing a head. What is the probability that I have chosen coin 3?

- Let $X = 1$ denote the event that I observe a head, $X = 0$ if a tail
- θ denote the probability of a head: $\theta \in (0.25, 0.5, 0.75)$
- Prior: $p(\theta = 0.25) = p(\theta = 0.5) = p(\theta = 0.75) = 0.33$
- Probability mass function: $p(x|\theta) = \theta^x(1 - \theta)^{1-x}$
6. Bayesian estimation
6.2. Prior and posterior distributions

| Coin | θ | Prior $p(\theta)$ | Likelihood $p(x=1|\theta)$ | Un-normalised Posterior $p(x=1|\theta)p(\theta)$ | Normalised Posterior $\frac{p(x=1|\theta)p(\theta)}{p(x)}$ |
|------|----------|---------------------|-----------------------------|---|--|
| 1 | 0.25 | 0.33 | 0.25 | 0.0825 | 0.167 |
| 2 | 0.50 | 0.33 | 0.50 | 0.1650 | 0.333 |
| 3 | 0.75 | 0.33 | 0.75 | 0.2475 | 0.500 |
| **Sum** | | **1.00** | **1.50** | **0.495** | **1.000** |

† The normalising constant can be calculated as $p(x) = \sum_i p(x|\theta_i)p(\theta_i)$

So observing a head on a single toss of the coin means that there is now a 50% probability that the chance of heads is 0.75 and only a 16.7% probability that the chance of heads is 0.25.
Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

PROBLEM.

Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its happening in a single trial lies somewhere between any two degrees of probability that can be named.

In modern language, given $r \sim \text{Binomial}(\theta, n)$, what is $\mathbb{P}(\theta_1 < \theta < \theta_2 | r, n)$?
Example 6.1

Suppose we are interested in the true mortality risk θ in a hospital H which is about to try a new operation. On average in the country around 10% of people die, but mortality rates in different hospitals vary from around 3% to around 20%. Hospital H has no deaths in their first 10 operations. What should we believe about θ?

- Let $X_i = 1$ if the ith patient dies in H (zero otherwise), $i = 1, \ldots, n$.
- Then $f_X(x \mid \theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$.
- Suppose a priori that $\theta \sim \text{Beta}(a, b)$ for some known $a > 0, b > 0$, so that $\pi(\theta) \propto \theta^{a-1} (1 - \theta)^{b-1}$, $0 < \theta < 1$.
- Then the posterior is

$$
\pi(\theta \mid x) \propto f_X(x \mid \theta)\pi(\theta) \\
\propto \theta^{\sum x_i + a-1} (1 - \theta)^{n - \sum x_i + b-1}, 0 < \theta < 1.
$$

We recognise this as $\text{Beta}(\sum x_i + a, n - \sum x_i + b)$ and so

$$
\pi(\theta \mid x) = \frac{\theta^{\sum x_i + a-1} (1 - \theta)^{n - \sum x_i + b-1}}{B(\sum x_i + a, n - \sum x_i + b)} \quad \text{for } 0 < \theta < 1.
$$
In practice, we need to find a Beta prior distribution that matches our information from other hospitals.

It turns out that a Beta(a=3,b=27) prior distribution has mean 0.1 and $\mathbb{P}(0.03 < \theta < 0.20) = 0.9$.

The data is $\sum x_i = 0$, $n = 10$.

So the posterior is $\text{Beta}(\sum x_i + a, n - \sum x_i + b) = \text{Beta}(3, 37)$

This has mean $3/40 = 0.075$.

NB Even though nobody has died so far, the mle $\hat{\theta} = \sum x_i/n = 0$ (i.e. it is impossible that any will ever die) does not seem plausible.

```
install.packages("LearnBayes")
library(LearnBayes)
prior = c(a = 3, b = 27) # beta prior
data = c(s = 0, f = 10) # s events out of f trials
triplot(prior,data)
```
Bayes Triplot, beta(3, 27) prior, s = 0, f = 10
Conjugacy

- For this problem, a beta prior leads to a beta posterior. We say that the beta family is a **conjugate** family of prior distributions for Bernoulli samples.

- Suppose that \(a = b = 1 \) so that \(\pi(\theta) = 1, \ 0 < \theta < 1 \) - the uniform distribution (called the "principle of insufficient reason" by Laplace, 1774).

- Then the posterior is Beta\((\sum x_i + 1, \ n - \sum x_i + 1)\), with properties.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>mode</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>prior</td>
<td>(\frac{1}{2})</td>
<td>non-unique</td>
<td>(\frac{1}{12})</td>
</tr>
<tr>
<td>posterior</td>
<td>(\frac{\sum x_i + 1}{n+2})</td>
<td>(\frac{\sum x_i}{n})</td>
<td>(\frac{(\sum x_i + 1)(n-\sum x_i + 1)}{(n+2)^2(n+3)})</td>
</tr>
</tbody>
</table>

- Notice that the mode of the posterior is the mle.

- The posterior mean estimator, \(\frac{\sum x_i + 1}{n+2} \) is discussed in Lecture 2, where we showed that this estimator had smaller mse than the mle for non-extreme values of \(\theta \). Known as Laplace’s estimator.

- The posterior variance is bounded above by \(\frac{1}{4(n + 3)} \), and this is smaller than the prior variance, and is smaller for larger \(n \).

- Again, note the posterior automatically depends on the data through the sufficient statistic.
Bayesian approach to point estimation

- Let \(L(\theta, a) \) be the loss incurred in estimating the value of a parameter to be \(a \) when the true value is \(\theta \).
- Common loss functions are quadratic loss \(L(\theta, a) = (\theta - a)^2 \), absolute error loss \(L(\theta, a) = |\theta - a| \), but we can have others.
- When our estimate is \(a \), the expected posterior loss is
 \[
 h(a) = \int L(\theta, a) \pi(\theta | x) d\theta.
 \]
- The **Bayes estimator** \(\hat{\theta} \) minimises the expected posterior loss.
- For **quadratic loss**
 \[
 h(a) = \int (a - \theta)^2 \pi(\theta | x) d\theta.
 \]
- \(h'(a) = 0 \) if
 \[
 a \int \pi(\theta | x) d\theta = \int \theta \pi(\theta | x) d\theta.
 \]
- So \(\hat{\theta} = \int \theta \pi(\theta | x) d\theta \), the **posterior mean**, minimises \(h(a) \).
For absolute error loss,

\[
h(a) = \int |\theta - a| \pi(\theta | x) d\theta = \int_{-\infty}^{a} (a - \theta) \pi(\theta | x) d\theta + \int_{a}^{\infty} (\theta - a) \pi(\theta | x) d\theta
\]

\[
= a \int_{-\infty}^{a} \pi(\theta | x) d\theta - \int_{-\infty}^{a} \theta \pi(\theta | x) d\theta + \int_{a}^{\infty} \theta \pi(\theta | x) d\theta - a \int_{a}^{\infty} \pi(\theta | x) d\theta
\]

Now \(h'(a) = 0 \) if

\[
\int_{-\infty}^{a} \pi(\theta | x) d\theta = \int_{a}^{\infty} \pi(\theta | x) d\theta.
\]

This occurs when each side is \(1/2 \) (since the two integrals must sum to 1) so \(\hat{\theta} \) is the posterior median.
Example 6.2

Suppose that X_1, \ldots, X_n are iid $N(\mu, 1)$, and that a priori $\mu \sim N(0, \tau^{-2})$ for known τ^{-2}.

- The posterior is given by

$$
\pi(\mu \mid x) \propto f_X(x \mid \mu) \pi(\mu)
$$

$$
\propto \exp \left[-\frac{1}{2} \sum (x_i - \mu)^2 \right] \exp \left[-\frac{\mu^2 \tau^2}{2} \right]
$$

$$
\propto \exp \left[-\frac{1}{2} (n + \tau^2) \left\{ \mu - \frac{\sum x_i}{n + \tau^2} \right\}^2 \right] \quad \text{(check)}.
$$

- So the posterior distribution of μ given x is a Normal distribution with mean $\sum x_i/(n + \tau^2)$ and variance $1/(n + \tau^2)$.
- The normal density is symmetric, and so the posterior mean and the posterior median have the same value $\sum x_i/(n + \tau^2)$.
- This is the optimal Bayes estimate of μ under both quadratic and absolute error loss.
Example 6.3

Suppose that X_1, \ldots, X_n are iid Poisson(λ) rv's and that λ has an exponential distribution with mean 1, so that $\pi(\lambda) = e^{-\lambda}$, $\lambda > 0$.

- The posterior distribution is given by
 \[
 \pi(\lambda | x) \propto e^{-n\lambda} \lambda \sum x_i e^{-\lambda} = \lambda \sum x_i e^{-(n+1)\lambda}, \quad \lambda > 0,
 \]
 ie Gamma($\sum x_i + 1$, $n + 1$).
- Hence, under quadratic loss, $\hat{\lambda} = (\sum x_i + 1)/(n + 1)$, the posterior mean.
- Under absolute error loss, $\hat{\lambda}$ solves
 \[
 \int_0^\hat{\lambda} \frac{(n + 1) \sum x_i + 1 \lambda \sum x_i e^{-(n+1)\lambda}}{(\sum x_i)!} d\lambda = \frac{1}{2}.
 \]