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5. Confidence intervals

Example 5.2
Suppose Xi, ..., X, are iid N(6,1). Find a 95% confidence interval for 6.

We know X ~ N(6,10?), so that \/n(X —0) ~ N(0,1), no matter what ¢ is.
Let z1, z, be such that ®(z) — ®(z;) = 0.95, where @ is the standard
normal distribution function.

We have P[z; < \/n(X — 0) < 2| = 0.95, which can be rearranged to give
v, 22 g Z1
PIX—-—=<0<X—-—]|=0.95.
so that 2 - n
X——=X-—=
K- 252
is a 95% confidence interval for 6.

There are many possible choices for z; and z. Since the N(0, 1) density is
symmetric, the shortest such interval is obtained by z = zy. 925 = —z (where
recall that z, is the upper 100a% point of N(0,1)).

From tables, 7y 025 = 1.96 so a 95% confidence interval is
(X — 1% % 419

n
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5. Confidence intervals

We now consider interval estimation for 6.

Definition 5.1

A 1007% (0 < v < 1) confidence interval (Cl) for 6 is a random interval
(A(X), B(X)) such that P(A(X) < 6 < B(X)) =, no matter what the true
value of # may be.

Notice that it is the endpoints of the interval that are random quantities (not 6).

We can interpret this in terms of repeat sampling: if we calculate (A(x), B(x)) for

a large number of samples x, then approximately 100v% of them will cover the
true value of 6.

IMPORTANT: having observed some data x and calculated a 95% interval
(A(x), B(x)) we cannot say there is now a 95% probability that 6 lies in this
interval.
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5. Confidence intervals

The above example illustrates a common procedure for findings Cls.

@ Find a quantity R(X,0) such that the Py- distribution of R(X, #) does not
depend on 6. This is called a pivot.

In Example 5.2, R(X,0) = /n(X — 0).

@ Write down a probability statement of the form Py (c; < R(X,0) < &) = 7.

@ Rearrange the inequalities inside P(...) to find the interval.
Notes:

@ Usually ¢, ¢; are percentage points from a known standardised distribution,

often equitailed so that use, say, 2.5% and 97.5% points for a 95% CI. Could

use 0% and 95%, but interval would generally be wider.

@ Can have confidence intervals for vector parameters

o If (A(x), B(x)) is a 100v% Cl for 6, and T(6) is a monotone increasing
function of 6, then (T(A(x)), T(B(x))) is a 1007% Cl for T(6).

If T is monotone decreasing, then (T(B(x)), T(A(x))) is a 100y% CI for
T(9).
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5. Confidence intervals

Example 5.3
Suppose Xi, ..., Xso are iid N(0,02). Find a 99% confidence interval for .

e Thus X;/o ~ N(0,1). So, from the Probability review, % "7 | X? ~ x2,.
e So R(X,02) =37, X?/o? is a pivot.
@ Recall that x2(«) is the upper 100a% point of x2, i.e.

P(xs < xp(a)) =1-a
o From y*-tables, we can find ¢1, ¢ such that Fz (2) — Fyz (1) = 0.99.
@ An equi-tailed region is given by c; = x2,(0.995) = 27.99 and

e = x2(0.005) — 79.49.
e InR,

qchisq(0.005,50) = 27.99075, qchisq(0.995,50) = 79.48998

@ Then IF’Uz(cl < Zf’? < C2) =0.99, and so IP’Oz(Z—X"2 <o’ < ZX’Z) =0.99

g C Cc1

=X =X )
79.49° 27.99 /)

o Further, a 99% confidence interval for o is then (1/ %ﬁ A/ ;:)9(;) O
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which gives a confidence interval (

5. Confidence intervals
Example 5.5

Suppose an opinion poll says 20% are going to vote UKIP, based on a random
sample of 1,000 people. What might the true proportion be?

@ We assume we have an observation of x = 200 from a Binomial(n, p)
distribution with n = 1,000.

@ Then p = x/n= 0.2 is an unbiased estimate, also the mle.

o Now var (%) = P(l;p) ~ ’3(1;’3) = 0'120X0%'8 = 0.00016.

@ Soa95% Cl is
(ﬁ7196 BO=B) p+1.96 Eggﬂ)::0201196x0013:40175022®,
or around 17% to 23%.

@ Special case of common procedure for an unbiased estimator T:
05% Cl ~ T £2+/varT = T £ 2SE, where SE = ’'standard error' = v/varT

@ NB: Since p(1—p) < 1/4 for all 0 < p <1, then a conservative 95% interval
(i.e. might be a bit wide) is p+ 196,/ ~ p= /1

@ So whatever proportion is reported, it will be 'accurate’ to +1/4/n.

@ Opinion polls almost invariably use n = 1000, so they are assured of +3%
'accuracy’
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5. Confidence intervals
Example 5.4

Suppose Xi, ..., X, are iid Bernoulli(p). Find an approximate confidence interval
for p.

o Themleof pis p=>_ X;/n.
@ By the Central Limit Theorem, p is approximately N(p, p(1 — p)/n) for large

n.
So /n(p — p)/+/pP(1 — p) is approximately N(0,1) for large n.

@ So we have

R p(l—p N p(l—p
E%P—ahme‘L;42<P<P+4Lwnv‘L;42)“7

But p is unknown, so we approximate it by p, to get an approximate 100v%
confidence interval for p when n is large:

R [p(1—p) . /p(1—p
(P"41—7V2 ‘E““E»P‘qu—vvz ‘E““2>~
n n
O

NB. There are many possible approximate confidence intervals for a
Bernoulli/Binomial parameter.
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5. Confidence intervals  5.1. (Slightly contrived) confidence interval problem*

(Slightly contrived) confidence interval problem*

Example 5.6

Suppose X; and X; are iid from Uniform(6 — 1,6 + 1). What is a sensible 50% ClI
for 07

o Consider the probability of getting one observation each side of 6,
]P)g (min(Xl,Xz) S 0 S max(Xl,Xz)) = Pg(Xl S 0 S Xz) + PQ(XQ S 0 S X1:
2 2 2°2) 2

So (min(Xy, X3), max(Xi, X3)) is a 50% Cl for 6.

o But suppose | X; — X5 [> % e.g. x1 =0.2,x =0.9. Then we know that, in
this particular case, 8 must lie in (min(Xy, X2), max(X1, X2)).

@ So guaranteed sampling properties does not necessarily mean a sensible
conclusion in all cases.
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