Lecture 5. Confidence Intervals

We now consider interval estimation for θ .

Definition 5.1

A $100\gamma\%$ ($0 < \gamma < 1$) confidence interval (CI) for θ is a random interval $(A(\mathbf{X}), B(\mathbf{X}))$ such that $\mathbb{P}(A(\mathbf{X}) < \theta < B(\mathbf{X})) = \gamma$, no matter what the true value of θ may be.

Notice that it is the endpoints of the interval that are random quantities (not θ). We can interpret this in terms of repeat sampling: if we calculate $(A(\mathbf{x}), B(\mathbf{x}))$ for a large number of samples \mathbf{x} , then approximately $100\gamma\%$ of them will cover the true value of θ .

IMPORTANT: having observed some data **x** and calculated a 95% interval $(A(\mathbf{x}), B(\mathbf{x}))$ we *cannot* say there is now a 95% probability that θ lies in this interval.

Suppose X_1, \ldots, X_n are iid $N(\theta, 1)$. Find a 95% confidence interval for θ .

- We know $\bar{X} \sim N(\theta, \frac{1}{n}\sigma^2)$, so that $\sqrt{n}(\bar{X} \theta) \sim N(0, 1)$, no matter what θ is.
- Let z₁, z₂ be such that Φ(z₂) Φ(z₁) = 0.95, where Φ is the standard normal distribution function.
- We have $\mathbb{P}ig[z_1 < \sqrt{n}(ar{X} heta) < z_2ig] = 0.95$, which can be rearranged to give

$$\mathbb{P}\big[\bar{X} - \frac{z_2}{\sqrt{n}} < \theta < \bar{X} - \frac{z_1}{\sqrt{n}}\big] = 0.95$$

so that

$$(\bar{X} - \frac{z_2}{\sqrt{n}}, \bar{X} - \frac{z_1}{\sqrt{n}})$$

is a 95% confidence interval for θ .

- There are many possible choices for z_1 and z_2 . Since the N(0, 1) density is symmetric, the shortest such interval is obtained by $z_2 = z_{0.025} = -z_1$ (where recall that z_{α} is the upper 100 α % point of N(0, 1)).
- From tables, $z_{0.025} = 1.96$ so a 95% confidence interval is $(\bar{X} \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}})$. \Box

Lecture 5. Confidence Intervals

2 (1-55)

The above example illustrates a common procedure for findings CIs.

Find a quantity R(X, θ) such that the P_θ- distribution of R(X, θ) does not depend on θ. This is called a *pivot*.

In Example 5.2, $R(\mathbf{X}, \theta) = \sqrt{n}(\bar{X} - \theta)$.

- **③** Write down a probability statement of the form \mathbb{P}_{θ} ($c_1 < R(\mathbf{X}, \theta) < c_2$) = γ .
- **③** Rearrange the inequalities inside $\mathbb{P}(...)$ to find the interval.

Notes:

- Usually c_1 , c_2 are percentage points from a known standardised distribution, often equitailed so that use, say, 2.5% and 97.5% points for a 95% CI. Could use 0% and 95%, but interval would generally be wider.
- Can have confidence intervals for vector parameters
- If (A(x), B(x)) is a 100γ% CI for θ, and T(θ) is a monotone increasing function of θ, then (T(A(x)), T(B(x))) is a 100γ% CI for T(θ).

If T is monotone decreasing, then $(T(B(\mathbf{x})), T(A(\mathbf{x})))$ is a 100 γ % CI for $T(\theta)$.

5. Confidence intervals

Example 5.3

Suppose X_1, \ldots, X_{50} are iid $N(0, \sigma^2)$. Find a 99% confidence interval for σ^2 .

- Thus $X_i/\sigma \sim N(0,1)$. So, from the Probability review, $\frac{1}{\sigma^2} \sum_{i=1}^n X_i^2 \sim \chi_{50}^2$.
- So $R(\mathbf{X}, \sigma^2) = \sum_{i=1}^n X_i^2 / \sigma^2$ is a pivot.
- Recall that $\chi_n^2(\alpha)$ is the upper 100 α % point of χ_n^2 , i.e. $\mathbb{P}(\chi_n^2 \leq \chi_n^2(\alpha)) = 1 \alpha$.
- From χ^2 -tables, we can find c_1 , c_2 such that $F_{\chi^2_{50}}(c_2) F_{\chi^2_{50}}(c_1) = 0.99$.
- An equi-tailed region is given by $c_1 = \chi^2_{50}(0.995) = 27.99$ and $c_2 = \chi^2_{50}(0.005) = 79.49$.
- In R,
- qchisq(0.005,50) = 27.99075, qchisq(0.995,50) = 79.48998
- Then $\mathbb{P}_{\sigma^2}(c_1 < \frac{\sum X_i^2}{\sigma^2} < c_2) = 0.99$, and so $\mathbb{P}_{\sigma^2}(\frac{\sum X_i^2}{c_2} < \sigma^2 < \frac{\sum X_i^2}{c_1}) = 0.99$ which gives a confidence interval $(\frac{\sum X_i^2}{70.49}, \frac{\sum X_i^2}{27.99})$.
- Further, a 99% confidence interval for σ is then $\left(\sqrt{\frac{\sum X_i^2}{79.49}}, \sqrt{\frac{\sum X_i^2}{27.99}}\right)$. \Box
 - Lecture 5. Confidence Intervals

5. Confidence intervals

Example 5.5

Suppose an opinion poll says 20% are going to vote UKIP, based on a random sample of 1,000 people. What might the true proportion be?

- We assume we have an observation of x = 200 from a Binomial(n, p) distribution with n = 1,000.
- Then $\hat{p} = x/n = 0.2$ is an unbiased estimate, also the mle.
- Now var $\left(\frac{X}{n}\right) = \frac{p(1-p)}{n} \approx \frac{\hat{p}(1-\hat{p})}{n} = \frac{0.2 \times 0.8}{1000} = 0.00016.$
- So a 95% Cl is $\left(\hat{p} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \, \hat{p} + 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) = 0.20 \pm 1.96 \times 0.013 = (0.175, 0.225),$ or around 17% to 23%.
- Special case of common procedure for an unbiased estimator T: 95% CI $\approx T \pm 2\sqrt{\text{var}T} = T \pm 2\text{SE}$, where SE = 'standard error' = $\sqrt{\text{var}T}$
- NB: Since $p(1-p) \le 1/4$ for all $0 \le p \le 1$, then a conservative 95% interval (i.e. might be a bit wide) is $\hat{p} \pm 1.96\sqrt{\frac{1}{4n}} \approx \hat{p} \pm \sqrt{\frac{1}{n}}$.
- So whatever proportion is reported, it will be 'accurate' to $\pm 1/\sqrt{n}$.
- Opinion polls almost invariably use n = 1000, so they are assured of $\pm 3\%$ 'accuracy' Lecture 5. Confidence Intervals 7 (1–55)

5. Confidence intervals

Example 5.4

Suppose X_1, \ldots, X_n are iid Bernoulli(*p*). Find an approximate confidence interval for *p*.

- The mle of p is $\hat{p} = \sum X_i/n$.
- By the Central Limit Theorem, p̂ is approximately N(p, p(1 p)/n) for large n.
- So $\sqrt{n}(\hat{p}-p)/\sqrt{p(1-p)}$ is approximately N(0,1) for large n.
- So we have

$$\mathbb{P}\Big(\hat{p}-z_{(1-\gamma)/2}\sqrt{\frac{p(1-p)}{n}}$$

But p is unknown, so we approximate it by p̂, to get an approximate 100γ% confidence interval for p when n is large:

$$\left(\hat{p}-z_{(1-\gamma)/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\,\hat{p}+z_{(1-\gamma)/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right).$$

NB. There are many possible approximate confidence intervals for a Bernoulli/Binomial parameter.

Lecture 5. Confidence Intervals

6 (1-55)

5. Confidence intervals 5.1. (Slightly contrived) confidence interval problem

(Slightly contrived) confidence interval problem*

Example 5.6

5 (1-55)

Suppose X_1 and X_2 are iid from Uniform $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$. What is a sensible 50% CI for θ ?

• Consider the probability of getting one observation each side of θ ,

$$egin{aligned} \mathbb{P}_ heta\left(\min(X_1,X_2)\leq heta\leq\max(X_1,X_2)
ight)&=&\mathbb{P}_ heta(X_1\leq heta\leq X_2)+\mathbb{P}_ heta(X_2\leq heta\leq X_1)\ &=&\left(rac{1}{2} imesrac{1}{2}
ight)+\left(rac{1}{2} imesrac{1}{2}
ight)=rac{1}{2}. \end{aligned}$$

So $(\min(X_1, X_2), \max(X_1, X_2))$ is a 50% CI for θ .

- But suppose $|X_1 X_2| \ge \frac{1}{2}$, e.g. $x_1 = 0.2, x_2 = 0.9$. Then we know that, in this particular case, θ must lie in $(\min(X_1, X_2), \max(X_1, X_2))$.
- So guaranteed sampling properties does not necessarily mean a sensible conclusion in all cases.