Lecture 3. Sufficiency
Sufficient statistics

The concept of sufficiency addresses the question

"Is there a statistic $T(X)$ that in some sense contains all the information about θ that is in the sample?"

Example 3.1

X_1, \ldots, X_n iid Bernoulli(θ), so that $P(X_i = 1) = 1 - P(X_i = 0) = \theta$ for some $0 < \theta < 1$.

So $f_X(x \mid \theta) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{\sum x_i} (1 - \theta)^{n-\sum x_i}$.

This depends on the data only through $T(x) = \sum x_i$, the total number of ones. Note that $T(X) \sim \text{Bin}(n, \theta)$.

If $T(x) = t$, then

$$f_{X \mid T=t}(x \mid T=t) = \frac{P_{\theta}(X=x, T=t)}{P_{\theta}(T=t)} = \frac{P_{\theta}(X=x)}{P_{\theta}(T=t)} = \frac{\theta^{\sum x_i} (1 - \theta)^{n-\sum x_i}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} = \left(\frac{n}{t}\right)^{-1},$$

ie the conditional distribution of X given $T=t$ does not depend on θ.

Thus if we know T, then additional knowledge of x (knowing the exact sequence of 0's and 1's) does not give extra information about θ. □
Definition 3.1

A statistic T is **sufficient** for θ if the conditional distribution of X given T does not depend on θ.

Note that T and/or θ may be vectors. In practice, the following theorem is used to find sufficient statistics.
Theorem 3.2

(The Factorisation criterion) \(T \) is sufficient for \(\theta \) iff \(f_X(x \mid \theta) = g(T(x), \theta)h(x) \) for suitable functions \(g \) and \(h \).

Proof (Discrete case only)

Suppose \(f_X(x \mid \theta) = g(T(x), \theta)h(x) \).

If \(T(x) = t \) then

\[
f_X(x \mid T = t) = \frac{\mathbb{P}_\theta(X = x, T(X) = t)}{\mathbb{P}_\theta(T = t)} = \frac{g(T(x), \theta)h(x)}{\sum_{x' : T(x') = t} g(t, \theta)h(x')}
\]

\[
= \frac{g(t, \theta)h(x)}{g(t, \theta) \sum_{x' : T(x') = t} h(x')} = \frac{h(x)}{\sum_{x' : T(x') = t} h(x')},
\]

which does not depend on \(\theta \), so \(T \) is sufficient.

Now suppose that \(T \) is sufficient so that the conditional distribution of \(X \mid T = t \) does not depend on \(\theta \). Then

\[
\mathbb{P}_\theta(X = x) = \mathbb{P}_\theta(X = x, T(X) = t(x)) = \mathbb{P}_\theta(X = x \mid T = t)\mathbb{P}_\theta(T = t).
\]

The first factor does not depend on \(\theta \) by assumption; call it \(h(x) \). Let the second factor be \(g(t, \theta) \), and so we have the required factorisation. \(\square \)
Example 3.1 continued

For Bernoulli trials, \(f_X(x | \theta) = \theta \sum x_i (1 - \theta)^{n - \sum x_i} \).

Take \(g(t, \theta) = \theta^t (1 - \theta)^{n - t} \) and \(h(x) = 1 \) to see that \(T(X) = \sum X_i \) is sufficient for \(\theta \). □

Example 3.2

Let \(X_1, \ldots, X_n \) be iid \(U[0, \theta] \).

Write \(1_A(x) \) for the indicator function, = 1 if \(x \in A \), = 0 otherwise.

We have

\[
fx(x | \theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1_{[0,\theta]}(x_i) = \frac{1}{\theta^n} 1_{\{\max_i x_i \leq \theta\}}(\max_i x_i) 1_{\{0 \leq \min_i x_i\}}(\min_i x_i).
\]

Then \(T(X) = \max_i X_i \) is sufficient for \(\theta \). □
Sufficient statistics are not unique. If T is sufficient for θ, then so is any (1-1) function of T.

X itself is always sufficient for θ; take $T(X) = X$, $g(t, \theta) = f_X(t | \theta)$ and $h(x) = 1$. But this is not much use.

The sample space \mathcal{X}^n is partitioned by T into sets $\{x \in \mathcal{X}^n : T(x) = t\}$.

If T is sufficient, then this data reduction does not lose any information on θ.

We seek a sufficient statistic that achieves the maximum-possible reduction.

Definition 3.3

A sufficient statistic $T(X)$ is *minimal sufficient* if it is a function of every other sufficient statistic:

i.e. if $T'(X)$ is also sufficient, then $T'(X) = T'(Y) \rightarrow T(X) = T(Y)$

i.e. the partition for T is coarser than that for T'.
Minimal sufficient statistics can be found using the following theorem.

Theorem 3.4

Suppose $T = T(X)$ is a statistic such that $f_X(x; \theta)/f_X(y; \theta)$ is constant as a function of θ if and only if $T(x) = T(y)$. Then T is minimal sufficient for θ.

Sketch of proof: Non-examinable

First, we aim to use the Factorisation Criterion to show sufficiency. Define an equivalence relation \sim on \mathcal{X}^n by setting $x \sim y$ when $T(x) = T(y)$. (Check that this is indeed an equivalence relation.) Let $\mathcal{U} = \{T(x) : x \in \mathcal{X}^n\}$, and for each u in \mathcal{U}, choose a representative x_u from the equivalence class $\{x : T(x) = u\}$. Let x be in \mathcal{X}^n and suppose that $T(x) = t$. Then x is in the equivalence class $\{x' : T(x') = t\}$, which has representative x_t, and this representative may also be written $x_{T(x)}$. We have $x \sim x_t$, so that $T(x) = T(x_t)$, ie $T(x) = T(x_{T(x)})$. Hence, by hypothesis, the ratio $\frac{f_X(x; \theta)}{f_X(x_{T(x)}; \theta)}$ does not depend on θ, so let this be $h(x)$. Let $g(t, \theta) = f_X(x_t, \theta)$. Then

$$f_X(x; \theta) = f_X(x_{T(x)}; \theta) \frac{f_X(x; \theta)}{f_X(x_{T(x)}; \theta)} = g(T(x), \theta)h(x),$$

and so $T = T(X)$ is sufficient for θ by the Factorisation Criterion.
Next we aim to show that $T(\mathbf{X})$ is a function of every other sufficient statistic. Suppose that $S(\mathbf{X})$ is also sufficient for θ, so that, by the Factorisation Criterion, there exist functions g_S and h_S (we call them g_S and h_S to show that they belong to S and to distinguish them from g and h above) such that

$$f_X(x; \theta) = g_S(S(x), \theta) h_S(x).$$

Suppose that $S(x) = S(y)$. Then

$$\frac{f_X(x; \theta)}{f_X(y; \theta)} = \frac{g_S(S(x), \theta) h_S(x)}{g_S(S(y), \theta) h_S(y)} = \frac{h_S(x)}{h_S(y)},$$

because $S(x) = S(y)$. This means that the ratio $\frac{f_X(x; \theta)}{f_X(y; \theta)}$ does not depend on θ, and this implies that $T(x) = T(y)$ by hypothesis. So we have shown that $S(x) = S(y)$ implies that $T(x) = T(y)$, i.e. T is a function of S. Hence T is minimal sufficient. \square
Example 3.3

Suppose X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$.

Then

$$
\frac{f_X(x \mid \mu, \sigma^2)}{f_X(y \mid \mu, \sigma^2)} = \frac{(2\pi\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} \sum_i (x_i - \mu)^2 \right\}}{(2\pi\sigma^2)^{-n/2} \exp \left\{ -\frac{1}{2\sigma^2} \sum_i (y_i - \mu)^2 \right\}}
$$

$$
= \exp \left\{ -\frac{1}{2\sigma^2} \left(\sum_i x_i^2 - \sum_i y_i^2 \right) + \frac{\mu}{\sigma^2} \left(\sum_i x_i - \sum_i y_i \right) \right\}.
$$

This is constant as a function of (μ, σ^2) iff $\sum_i x_i^2 = \sum_i y_i^2$ and $\sum_i x_i = \sum_i y_i$. So $T(X) = (\sum_i X_i^2, \sum_i X_i)$ is minimal sufficient for (μ, σ^2). □

1-1 functions of minimal sufficient statistics are also minimal sufficient.

So $T'(X) = (\bar{X}, \sum(X_i - \bar{X})^2)$ is also sufficient for (μ, σ^2), where $\bar{X} = \sum_i X_i/n$. We write S_{XX} for $\sum(X_i - \bar{X})^2$.

Lecture 3. Sufficiency
Notes

- Example 3.3 has a vector T sufficient for a vector θ. Dimensions do not have to the same: e.g. for $N(\mu, \mu^2)$, $T(X) = (\sum_i X_i^2, \sum_i X_i)$ is minimal sufficient for μ [check]

- If the range of X depends on θ, then "$f_X(x; \theta) / f_X(y; \theta)$ is constant in θ" means "$f_X(x; \theta) = c(x, y) f_X(y; \theta)$"
The Rao–Blackwell Theorem

The Rao–Blackwell theorem gives a way to improve estimators in the mse sense.

Theorem 3.5

(The Rao–Blackwell theorem) Let T be a sufficient statistic for θ and let $\tilde{\theta}$ be an estimator for θ with $\mathbb{E}(\tilde{\theta}^2) < \infty$ for all θ. Let $\hat{\theta} = \mathbb{E}[\tilde{\theta} \mid T]$. Then for all θ,

$$\mathbb{E}[(\hat{\theta} - \theta)^2] \leq \mathbb{E}[(\tilde{\theta} - \theta)^2].$$

The inequality is strict unless $\tilde{\theta}$ is a function of T.

Proof By the conditional expectation formula we have $\mathbb{E}\hat{\theta} = \mathbb{E}[\mathbb{E}(\tilde{\theta} \mid T)] = \mathbb{E}\tilde{\theta}$, so $\hat{\theta}$ and $\tilde{\theta}$ have the same bias. By the conditional variance formula,

$$\text{var}(\tilde{\theta}) = \mathbb{E}[\text{var}(\tilde{\theta} \mid T)] + \text{var}\left[\mathbb{E}(\tilde{\theta} \mid T)\right] = \mathbb{E}[\text{var}(\tilde{\theta} \mid T)] + \text{var}(\hat{\theta}).$$

Hence $\text{var}(\tilde{\theta}) \geq \text{var}(\hat{\theta})$, and so $\text{mse}(\tilde{\theta}) \geq \text{mse}(\hat{\theta})$, with equality only if $\text{var}(\tilde{\theta} \mid T) = 0$. □
Notes

(i) Since T is sufficient for θ, the conditional distribution of X given $T = t$ does not depend on θ. Hence $\hat{\theta} = \mathbb{E}[\tilde{\theta}(X) \mid T]$ does not depend on θ, and so is a bona fide estimator.

(ii) The theorem says that given any estimator, we can find one that is a function of a sufficient statistic that is at least as good in terms of mean squared error of estimation.

(iii) If $\tilde{\theta}$ is unbiased, then so is $\hat{\theta}$.

(iv) If $\tilde{\theta}$ is already a function of T, then $\hat{\theta} = \tilde{\theta}$.
Example 3.4

Suppose X_1, \ldots, X_n are iid Poisson(λ), and let $\theta = e^{-\lambda}$ ($= P(X_1 = 0)$).

Then $p_X(x | \lambda) = (e^{-n\lambda} \lambda \sum x_i) / \prod x_i!$, so that $p_X(x | \theta) = (\theta^n (- \log \theta) \sum x_i) / \prod x_i!$.

We see that $T = \sum X_i$ is sufficient for θ, and $\sum X_i \sim$ Poisson($n\lambda$).

An easy estimator of θ is $\tilde{\theta} = 1_{[X_1 = 0]}$ (unbiased) [i.e. if do not observe any events in first observation period, assume the event is impossible!]

Then

$$\mathbb{E}[\tilde{\theta} | T = t] = P(X_1 = 0 | \sum_{1}^{n} X_i = t)$$

$$= \frac{P(X_1 = 0)P(\sum_{2}^{n} X_i = t)}{P(\sum_{1}^{n} X_i = t)} \left(\frac{n - 1}{n}\right)^t \text{ (check).}$$

So $\hat{\theta} = (1 - \frac{1}{n}) \sum X_i$. □

[Common sense check: $\hat{\theta} = (1 - \frac{1}{n})^n \bar{X} \approx e^{-\bar{X}} = e^{-\hat{\lambda}}$]
Example 3.5
Let X_1, \ldots, X_n be iid $U[0, \theta]$, and suppose that we want to estimate θ. From Example 3.2, $T = \max X_i$ is sufficient for θ. Let $\tilde{\theta} = 2X_1$, an unbiased estimator for θ [check].

Then

$$E[\tilde{\theta} \mid T = t] = 2 \mathbb{E}[X_1 \mid \max X_i = t]$$

$$= 2(\mathbb{E}[X_1 \mid \max X_i = t, X_1 = \max X_i] \mathbb{P}(X_1 = \max X_i)$$

$$+ \mathbb{E}[X_1 \mid \max X_i = t, X_1 \neq \max X_i] \mathbb{P}(X_1 \neq \max X_i))$$

$$= 2(t \times \frac{1}{n} + \frac{t}{2} \frac{n - 1}{n}) = \frac{n + 1}{n} t,$$

so that $\hat{\theta} = \frac{n + 1}{n} \max X_i$. □

In Lecture 4 we show directly that this is unbiased.

N.B. Why is $\mathbb{E}[X_1 \mid \max X_i = t, X_1 \neq \max X_i] = t/2$?

Because

$$f_{X_1}(x_1 \mid X_1 < t) = \frac{f_{X_1}(x_1, X_1 < t)}{\mathbb{P}(X_1 < t)} = \frac{f_{X_1}(x_1)1_{[0 \leq x_1 < t]}}{t/\theta} = \frac{1/\theta \times 1_{[0 \leq x_1 < t]}}{t/\theta} = \frac{1}{t} 1_{[0 \leq x_1 < t]},$$

and so $X_1 \mid X_1 < t \sim U[0, t]$.