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1. Introduction and probability review 1.1. What is “Statistics”?

What is “Statistics”?

There are many definitions: I will use

”A set of principles and procedures for gaining and processing quantitative
evidence in order to help us make judgements and decisions”

It can include

Design of experiments and studies

Exploring data using graphics

Informal interpretation of data

Formal statistical analysis

Clear communication of conclusions and uncertainty

It is NOT just data analysis!

In this course we shall focus on formal statistical inference: we assume

we have data generated from some unknown probability model

we aim to use the data to learn about certain properties of the underlying
probability model
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1. Introduction and probability review 1.2. Idea of parametric inference

Idea of parametric inference

Let X be a random variable (r.v.) taking values in X
Assume distribution of X belongs to a family of distributions indexed by a
scalar or vector parameter θ, taking values in some parameter space Θ

Call this a parametric family:

For example, we could have

X ∼ Poisson(µ), θ = µ ∈ Θ = (0,∞)

X ∼ N(µ, σ2), θ = (µ, σ2) ∈ Θ = R× (0,∞).

BIG ASSUMPTION

For some results (bias, mean squared error, linear model) we do not need to
specify the precise parametric family.

But generally we assume that we know which family of distributions is involved,
but that the value of θ is unknown.
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1. Introduction and probability review 1.2. Idea of parametric inference

Let X1,X2, . . . ,Xn be independent and identically distributed (iid) with the same
distribution as X , so that X = (X1,X2, . . . ,Xn) is a simple random sample (our
data).

We use the observed X = x to make inferences about θ, such as,

(a) giving an estimate θ̂(x) of the true value of θ (point estimation);

(b) giving an interval estimate (θ̂1(x), (θ̂2(x)) for θ;

(c) testing a hypothesis about θ, eg testing the hypothesis H : θ = 0 means
determining whether or not the data provide evidence against H.

We shall be dealing with these aspects of statistical inference.

Other tasks (not covered in this course) include

Checking and selecting probability models

Producing predictive distributions for future random variables

Classifying units into pre-determined groups (’supervised learning’)

Finding clusters (’unsupervised learning’)
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1. Introduction and probability review 1.2. Idea of parametric inference

Statistical inference is needed to answer questions such as:

What are the voting intentions before an election? [Market research, opinion
polls, surveys]

What is the effect of obesity on life expectancy? [Epidemiology]

What is the average benefit of a new cancer therapy? Clinical trials

What proportion of temperature change is due to man? Environmental
statistics

What is the benefit of speed cameras? Traffic studies

What portfolio maximises expected return? Financial and actuarial
applications

How confident are we the Higgs Boson exists? Science

What are possible benefits and harms of genetically-modified plants?
Agricultural experiments

What proportion of the UK economy involves prostitution and illegal drugs?
Official statistics

What is the chance Liverpool will best Arsenal next week? Sport
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1. Introduction and probability review 1.3. Probability review

Probability review

Let Ω be the sample space of all possible outcomes of an experiment or some
other data-gathering process.

E.g when flipping two coins, Ω = {HH,HT ,TH,TT}.
’Nice’ (measurable) subsets of Ω are called events, and F is the set of all events -
when Ω is countable, F is just the power set (set of all subsets) of Ω.

A function P : F → [0,1] called a probability measure satisfies

P(φ) = 0

P(Ω) = 1

P(∪∞n=1An) =
∑∞

n=1 P(An), whenever {An} is a disjoint sequence of events.

A random variable is a (measurable) function X : Ω→ R.

Thus for the two coins, we might set

X (HH) = 2,X (HT ) = 1,X (TH) = 1,X (TT ) = 0,

so X is simply the number of heads.
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1. Introduction and probability review 1.3. Probability review

Our data are modelled by a vector X = (X1, . . . ,Xn) of random variables – each
observation is a random variable.

The distribution function of a r.v. X is FX (x) = P(X ≤ x), for all x ∈ R. So FX is

non-decreasing,

0 ≤ FX (x) ≤ 1 for all x ,

FX (x)→ 1 as x →∞,

FX (x)→ 0 as x → −∞.

A discrete random variable takes values only in some countable (or finite) set X ,
and has a probability mass function (pmf) fX (x) = P(X = x).

fX (x) is zero unless x is in X .

fX (x) ≥ 0 for all x ,∑
x∈X fX (x) = 1

P(X ∈ A) =
∑

x∈A fX (x) for a set A.
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1. Introduction and probability review 1.3. Probability review

We say X has a continuous (or, more precisely, absolutely continuous) distribution
if it has a probability density function (pdf) fX such that

P(X ∈ A) =
∫
A

fX (t)dt for “nice” sets A.

Thus∫∞
−∞ fX (t)dt = 1

FX (x) =
∫ x

−∞ fX (t)dt

[Notation note: There will be inconsistent use of a subscript in mass, density and
distributions functions to denote the r.v. Also f will sometimes be p.]
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1. Introduction and probability review 1.4. Expectation and variance

Expectation and variance

If X is discrete, the expectation of X is

E(X ) =
∑

x∈X
xP(X = x)

(exists when
∑ |x |P(X = x) <∞).

If X is continuous, then

E(X ) =

∫ ∞

−∞
xfX (x)dx

(exists when
∫∞
−∞ |x |fX (x)dx <∞).

E(X ) is also called the expected value or the mean of X .

If g : R→ R then

E(g(X )) =





∑
x∈X g(x)P(X = x) if X is discrete

∫
g(x)fX (x)dx if X is continuous.

The variance of X is var(X ) = E
((

X − E(X )
)2)

= E
(
X 2
)
−
(
E(X )

)2
.
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1. Introduction and probability review 1.5. Independence

Independence

The random variables X1, . . . ,Xn are independent if for all x1, . . . , xn,

P(X1 ≤ x1, . . . ,Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn).

If the independent random variables X1, . . . ,Xn have pdf’s or pmf’s fX1 , . . . , fXn ,
then the random vector X = (X1, . . . ,Xn) has pdf or pmf

fX(x) =
∏

i

fXi (xi ).

Random variables that are independent and that all have the same distribution
(and hence the same mean and variance) are called independent and identically
distributed (iid) random variables.

Lecture 1. Introduction and probability review 11 (1–1)

1. Introduction and probability review 1.6. Maxima of iid random variables

Maxima of iid random variables

Let X1, . . . ,Xn be iid r.v.’s, and Y = max(X1, . . . ,Xn).

Then
FY (y) = P(Y ≤ y) = P(max(X1, . . . ,Xn) ≤ y)

= P(X1 ≤ y , . . . ,Xn ≤ y) = P(Xi ≤ y)n = [FX (y)]n

The density for Y can then be obtained by differentiation (if continuous), or
differencing (if discrete).

Can do similar analysis for minima of iid r.v.’s.
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1. Introduction and probability review 1.7. Sums and linear transformations of random variables

Sums and linear transformations of random variables

For any random variables,

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

E(a1X1 + b1) = a1E(X1) + b1

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn)

var(a1X1 + b1) = a21var(X1)

For independent random variables,

E(X1 × . . .× Xn) = E(X1)× . . .× E(Xn),

var(X1 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn),

and
var(a1X1 + · · ·+ anXn) = a21var(X1) + · · ·+ a2nvar(Xn).
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1. Introduction and probability review 1.8. Standardised statistics

Standardised statistics

Suppose X1, . . . ,Xn are iid with E(X1) = µ and var(X1) = σ2.

Write their sum as

Sn =
n∑

i=1

Xi

From preceding slide, E(Sn) = nµ and var(Sn) = nσ2.

Let X̄n = Sn/n be the sample mean.

Then E(X̄n) = µ and var(X̄n) = σ2/n.

Let

Zn =
Sn − nµ

σ
√

n
=

√
n(X̄n − µ)

σ
.

Then E(Zn) = 0 and var(Zn) = 1.

Zn is known as a standardised statistic.
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1. Introduction and probability review 1.9. Moment generating functions

Moment generating functions

The moment generating function for a r.v. X is

MX (t) = E(etX ) =





∑
x∈X etxP(X = x) if X is discrete

∫
etx fX (x)dx if X is continuous.

provided M exists for t in a neighbourhood of 0.

Can use this to obtain moments of X , since

E(X n) = M
(n)
X (0),

i.e. nth derivative of M evaluated at t = 0.

Under broad conditions, MX (t) = MY (t) implies FX = FY .
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1. Introduction and probability review 1.9. Moment generating functions

Mgf’s are useful for proving distributions of sums of r.v.’s since, if X1, ...,Xn are
iid, MSn(t) = Mn

X (t).

Example: sum of Poissons

If Xi ∼ Poisson(µ), then

MXi (t) = E(etX ) =
∞∑

x=0

etxe−µµx/x! = e−µ(1−e
t)
∞∑

x=0

e−µe
t

(µet)x/x! = e−µ(1−e
t).

And so MSn(t) = e−nµ(1−e
t), which we immediately recognise as the mgf of a

Poisson(nµ) distribution.

So sum of iid Poissons is Poisson. �
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1. Introduction and probability review 1.10. Convergence

Convergence

The Weak Law of Large Numbers (WLLN) states that for all ε > 0,

P
(∣∣X̄n − µ

∣∣ > ε
)
→ 0 as n→∞.

The Strong Law of Large Numbers (SLLN) says that

P
(
X̄n → µ

)
= 1.

The Central Limit Theorem tells us that

Zn =
Sn − nµ

σ
√

n
=

√
n(X̄n − µ)

σ
is approximately N(0, 1) for large n .
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1. Introduction and probability review 1.11. Conditioning

Conditioning

Let X and Y be discrete random variables with joint pmf

pX ,Y (x , y)=P(X =x ,Y =y).

Then the marginal pmf of Y is

pY (y) = P(Y =y) =
∑

x

pX ,Y (x , y).

The conditional pmf of X given Y =y is

pX |Y (x | y) = P(X = x | Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

pX ,Y (x , y)

pY (y)
,

if pY (y) 6=0 (and is defined to be zero if pY (y)=0)).
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1. Introduction and probability review 1.12. Conditioning

Conditioning

In the continuous case, suppose that X and Y have joint pdf fX ,Y (x , y), so that
for example

P(X ≤ x1,Y ≤ y1) =

∫ y1

−∞

∫ x1

−∞
fX ,Y (x , y)dxdy .

Then the marginal pdf of Y is

fY (y) =

∫ ∞

−∞
fX ,Y (x , y)dx .

The conditional pdf of X given Y = y is

fX |Y (x | y) =
fX ,Y (x , y)

fY (y)
,

if fY (y) 6=0 (and is defined to be zero if fY (y)=0).
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1. Introduction and probability review 1.12. Conditioning

The conditional expectation of X given Y = y is

E(X | Y =y) =





∑
xfX |Y (x | y) pmf

∫
xfX |Y (x | y)dx pdf.

Thus E(X | Y =y) is a function of y , and E(X | Y ) is a function of Y and hence
a r.v..

The conditional expectation formula says

E[X ] = E [E(X | Y )] .

Proof [discrete case]:

E [E(X | Y )] =
∑

Y

[∑

X
x fX |Y (x | y)

]
fY (y) =

∑

X

∑

Y
x fX ,Y (x , y)

=
∑

X
x

[∑

Y
fY |X (y | x)

]
fX (x) =

∑

X
x fX (x).�
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1. Introduction and probability review 1.12. Conditioning

The conditional variance of X given Y = y is defined by

var(X | Y =y) = E
[(

X − E(X | Y =y)
)2 | Y = y

]
,

and this is equal to E(X 2 | Y =y)−
(
E(X | Y =y)

)2
.

We also have the conditional variance formula:

var(X ) = E[var(X | Y )] + var[E(X | Y )].

Proof:

var(X ) = E(X 2)− [E(X )]2

= E
[
E(X 2 | Y )

]
−
[
E
[
E(X | Y )

]]2

= E
[
E(X 2 | Y )−

[
E(X | Y )

]2]
+ E

[[
E(X | Y )

]2]−
[
E
[
E(X | Y )

]]2

= E
[
var(X | Y )

]
+ var

[
E(X | Y )

]
.
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1. Introduction and probability review 1.13. Change of variable (illustrated in 2-d)

Change of variable (illustrated in 2-d)

Let the joint density of random variables (X ,Y ) be fX ,Y (x , y).

Consider a 1-1 (bijective) differentiable transformation to random variables
(U(X ,Y ),V (X ,Y )), with inverse (X (U,V ),Y (U,V )).

Then the joint density of (U,V ) is given by

fU,V (u, v) = fX ,Y (x(u, v), y(u, v))|J|,

where J is the Jacobian

J =
∂(x , y)

∂(u, v)
=

∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣
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1. Introduction and probability review 1.14. Some important discrete distributions: Binomial

Some important discrete distributions: Binomial

X has a binomial distribution with parameters n and p (n ∈ N, 0 ≤ p ≤ 1),
X ∼ Bin(n, p), if

P(X = x) =

(
n

x

)
px(1− p)n−x , for x ∈ {0, 1, . . . , n}

(zero otherwise).

We have E(X ) = np, var(X ) = np(1− p).

This is the distribution of the number of successes out of n independent Bernoulli
trials, each of which has success probability p.
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1. Introduction and probability review 1.14. Some important discrete distributions: Binomial

Example: throwing dice

let X = number of sixes when throw 10 fair dice, so X ∼ Bin(10, 16 )

R code:

barplot( dbinom(0:10, 10, 1/6), names.arg=0:10,

xlab="Number of sixes in 10 throws" )
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1. Introduction and probability review 1.15. Some important discrete distributions: Poisson

Some important discrete distributions: Poisson

X has a Poisson distribution with parameter µ (µ > 0), X ∼ Poisson(µ), if

P(X = x) = e−µµx/x!, for x ∈ {0, 1, 2, . . .},

(zero otherwise).

Then E(X ) = µ and var(X ) = µ.

In a Poisson process the number of events X (t) in an interval of length t is
Poisson(µt), where µ is the rate per unit time.

The Poisson(µ) is the limit of the Bin(n,p) distribution as n→∞, p → 0, µ = np.
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1. Introduction and probability review 1.15. Some important discrete distributions: Poisson

Example: plane crashes. Assume scheduled plane crashes occur as a Poisson
process with a rate of 1 every 2 months. How many (X ) will occur in a year (12
months)?

Number in two months is Poisson(1), and so X ∼ Poisson(6).

barplot( dpois(0:15, 6), names.arg=0:15,

xlab="Number of scheduled plane crashes in a year" )
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1. Introduction and probability review 1.16. Some important discrete distributions: Negative Binomial

Some important discrete distributions: Negative Binomial

X has a negative binomial distribution with parameters k and p (k ∈ N,
0 ≤ p ≤ 1), if

P(X = x) =

(
x − 1

k − 1

)
(1− p)x−kpk , for x = k, k + 1, . . . ,

(zero otherwise). Then E(X ) = k/p, var(X ) = k(1− p)/p2. This is the
distribution of the number of trials up to and including the kth success, in a
sequence of independent Bernoulli trials each with success probability p.

The negative binomial distribution with k = 1 is called a geometric distribution
with parameter p.

The r.v Y = X − k has

P(Y = y) =

(
y + k − 1

k − 1

)
(1− p)ypk , for y = 0, 1, . . . .

This is the distribution of the number of failures before the kth success in a
sequence of independent Bernoulli trials each with success probability p. It is also
sometimes called the negative binomial distribution: be careful!
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1. Introduction and probability review 1.16. Some important discrete distributions: Negative Binomial

Example: How many times do I have to flip a coin before I get 10 heads?

This is first (X ) definition of the Negative Binomial since it includes all the flips.

R uses second definition (Y ) of Negative Binomial, so need to add in the 10 heads:

barplot( dnbinom(0:30, 10, 1/2), names.arg=0:30 + 10,

xlab="Number of flips before 10 heads" )
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1. Introduction and probability review 1.17. Some important discrete distributions: Multinomial

Some important discrete distributions: Multinomial

Suppose we have a sequence of n independent trials where at each trial there are
k possible outcomes, and that at each trial the probability of outcome i is pi .

Let Ni be the number of times outcome i occurs in the n trials and consider
N1, . . . ,Nk . They are discrete random variables, taking values in {0, 1, . . . , n}.
This multinomial distribution with parameters n and p1, . . . , pk , n ∈ N, pi ≥ 0 for
all i and

∑
i pi = 1 has joint pmf

P(N1 = n1, . . . ,Nk = nk) =
n!

n1! . . . nk !
pn1
1 . . . pnk

k , if
∑

i ni = n,

and is zero otherwise.

The rv’s N1, . . . ,Nk are not independent, since
∑

i Ni = n.

The marginal distribution of Ni is Binomial(n,pi ).

Example: I throw 6 dice: what is the probability that I get one of each face

1,2,3,4,5,6? Can calculate to be 6!
1!...1!

(
1
6

)6
= 0.015

dmultinom( x=c(1,1,1,1,1,1), size=6, prob=rep(1/6,6))
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1. Introduction and probability review 1.18. Some important continuous distributions: Normal

Some important continuous distributions: Normal

X has a normal (Gaussian) distribution with mean µ and variance σ2 (µ ∈ R,
σ2 > 0), X ∼ N(µ, σ2), if it has pdf

fX (x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
, x ∈ R.

We have E(X ) = µ, var(X ) = σ2.

If µ = 0 and σ2 = 1, then X has a standard normal distribution, X ∼ N(0, 1).
We write φ for the standard normal pdf, and Φ for the standard normal
distribution function, so that

φ(x) =
1√
2π

exp
(
−x2/2

)
, Φ(x) =

∫ x

−∞
φ(t)dt.

The upper 100α% point of the standard normal distribution is zα where

P(Z > zα) = α, where Z ∼ N(0, 1).

Values of Φ are tabulated in normal tables, as are percentage points zα.
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1. Introduction and probability review 1.19. Some important continuous distributions: Uniform

Some important continuous distributions: Uniform

X has a uniform distribution on [a, b], X ∼ U[a, b] (−∞ < a < b <∞), if it has
pdf

fX (x) =
1

b − a
, x ∈ [a, b].

Then E(X ) = a+b
2 and var(X ) = (b−a)2

12 .
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1. Introduction and probability review 1.20. Some important continuous distributions: Gamma

Some important continuous distributions: Gamma

X has a Gamma (α, λ) distribution (α > 0, λ > 0) if it has pdf

fX (x) =
λαxα−1e−λx

Γ(α)
, x > 0,

where Γ(α) is the gamma function defined by Γ(α) =
∫∞
0

xα−1e−xdx for α > 0.
We have E(X ) = α

λ and var(X ) = α
λ2 .

The moment generating function MX (t) is

MX (t) = E
(
eXt
)

=

(
λ

λ− t

)α
, for t < λ.

Note the following two results for the gamma function:
(i) Γ(α) = (α− 1)Γ(α− 1),
(ii) if n ∈ N then Γ(n) = (n − 1)!.
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1. Introduction and probability review 1.21. Some important continuous distributions: Exponential

Some important continuous distributions: Exponential

X has an exponential distribution with parameter λ (λ > 0) if
X ∼ Gamma(1, λ), so that X has pdf

fX (x) = λe−λx , x > 0.

Then E(X ) = 1
λ and var(X ) = 1

λ2 .

Note that if X1, . . . ,Xn are iid Exponential(λ) r.v’s then
∑n

i=1 Xi ∼ Gamma(n, λ).

Proof: mgf of Xi is
(

λ
λ−t

)
, and so mgf of

∑n
i=1 Xi is

(
λ
λ−t

)n
, which we

recognise as the mgf of a Gamma(n, λ).�
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1. Introduction and probability review 1.21. Some important continuous distributions: Exponential

Some Gamma distributions:

a<-c(1, 3, 10); b<-c(1, 3, 0.5)

for(i in 1:3){

y= dgamma(x, a[i],b[i])

plot(x,y,.......) }
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1. Introduction and probability review 1.22. Some important continuous distributions: Chi-squared

Some important continuous distributions: Chi-squared

If Z1, . . . ,Zk are iid N(0, 1) r.v.’s, then X =
∑k

i=1 Z 2
i has a chi-squared

distribution on k degrees of freedom, X ∼ χ2
k .

Since E(Z 2
i ) = 1 and E(Z 4

i ) = 3, we find that E(X ) = k and var(X ) = 2k.

Further, the moment generating function of Z 2
i is

MZ 2
i
(t) = E

(
eZ 2

i t
)

=

∫ ∞

−∞
ez2t 1√

2π
e−z

2/2dz = (1− 2t)−1/2 for t < 1/2

(check), so that the mgf of X =
∑k

i=1 Z 2
i is MX (t) = (MZ 2(t))k = (1− 2t)−k/2

for t < 1/2.

We recognise this as the mgf of a Gamma(k/2, 1/2), so that X has pdf

fX (x) =
1

Γ(k/2)

(
1

2

)k/2

xk/2−1e−x/2, x > 0.

Lecture 1. Introduction and probability review 35 (1–1)

1. Introduction and probability review 1.22. Some important continuous distributions: Chi-squared

Some chi-squared distributions: k= 1,2,10 :

k<-c(1,2,10)

for(i in 1:3){

y=dchisq(x, k[i])

plot(x,y,.......) }
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1. Introduction and probability review 1.22. Some important continuous distributions: Chi-squared

Note:

1 We have seen that if X ∼ χ2
k then X ∼ Gamma(k/2, 1/2).

2 If Y ∼ Gamma(n, λ) then 2λY ∼ χ2
2n (prove via mgf’s or density

transformation formula).
3 If X ∼ χ2

m, Y ∼ χ2
n and X and Y are independent, then X + Y ∼ χ2

m+n

(prove via mgf’s). This is called the additive property of χ2.
4 We denote the upper 100α% point of χ2

k by χ2
k(α), so that, if X ∼ χ2

k then
P(X > χ2

k(α)) = α. These are tabulated. The above connections between
gamma and χ2 means that sometimes we can use χ2-tables to find
percentage points for gamma distributions.
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1. Introduction and probability review 1.23. Some important continuous distributions: Beta

Some important continuous distributions: Beta

X has a Beta(α, β) distribution (α > 0, β > 0) if it has pdf

fX (x) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1,

where B(α, β) is the beta function defined by

B(α, β) = Γ(α)Γ(β)/Γ(α + β).

Then E(X ) = α
α+β and var(X ) = αβ

(α+β)2(α+β+1) .

The mode is (α− 1)/(α + β − 2).

Note that Beta(1,1)∼ U[0, 1].
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Some beta distributions :

k<-c(1,2,10)

for(i in 1:3){

y=dbeta(x, a[i],b[i])

plot(x,y,.......) }
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