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1. Introduction and probability review 1.1. What is ”Statistics”?

What is ”Statistics”?

There are many definitions: I will use

”A set of principle and procedures for gaining and processing quantitative
evidence in order to help us make judgements and decisions”

It can include

Design of experiments and studies

Exploring data using graphics

Informal interpretation of data

Formal statistical analysis

Clear communication of conclusions and uncertainty

It is NOT just data analysis!

In this course we shall focus on formal statistical inference: we assume

we have data generated from some unknown probability model

we aim to use the data to learn about certain properties of the underlying
probability model
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1. Introduction and probability review 1.2. Idea of parametric inference

Idea of parametric inference

Let X be a random variable (r.v.) taking values in X
Assume distribution of X belongs to a family of distributions indexed by a
scalar or vector parameter ✓, taking values in some parameter space ⇥

Call this a parametric family:

For example, we could have

X ⇠ Poisson(µ), ✓ = µ 2 ⇥ = (0,1)

X ⇠ N(µ,�2), ✓ = (µ,�2) 2 ⇥ = R⇥ (0,1).

BIG ASSUMPTION

For some results (bias, mean squared error, linear model) we do not need to
specify the precise parametric family.

But generally we assume that we know which family of distributions is involved,
but that the value of ✓ is unknown.
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1. Introduction and probability review 1.2. Idea of parametric inference

Let X
1

,X
2

, . . . ,X
n

be independent and identically distributed (iid) with the same
distribution as X , so that X = (X

1

,X
2

, . . . ,X
n

) is a simple random sample (our
data).

We use the observed X = x to make inferences about ✓, such as,

(a) giving an estimate ✓̂(x) of the true value of ✓ (point estimation);

(b) giving an interval estimate (✓̂
1

(x), (✓̂
2

(x)) for ✓;

(c) testing a hypothesis about ✓, eg testing the hypothesis H : ✓ = 0 means
determining whether or not the data provide evidence against H.

We shall be dealing with these aspects of statistical inference.

Other tasks (not covered in this course) include

Checking and selecting probability models

Producing predictive distributions for future random variables

Classifying units into pre-determined groups (’supervised learning’)

Finding clusters (’unsupervised learning’)
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1. Introduction and probability review 1.2. Idea of parametric inference

Statistical inference is needed to answer questions such as:

What are the voting intentions before an election? [Market research, opinion
polls, surveys]

What is the e↵ect of obesity on life expectancy? [Epidemiology]

What is the average benefit of a new cancer therapy? Clinical trials

What proportion of temperature change is due to man? Environmental
statistics

What is the benefit of speed cameras? Tra�c studies

What portfolio maximises expected return? Financial and actuarial
applications

How confident are we the Higgs Boson exists? Science

What are possible benefits and harms of genetically-modified plants?
Agricultural experiments

What proportion of the UK economy involves prostitution and illegal drugs?
O�cial statistics

What is the chance Liverpool will best Arsenal next week? Sport
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1. Introduction and probability review 1.3. Probability review

Probability review

Let ⌦ be the sample space of all possible outcomes of an experiment or some
other data-gathering process.

E.g when flipping two coins, ⌦ = {HH,HT ,TH,TT}.
’Nice’ (measurable) subsets of ⌦ are called events, and F is the set of all events -
when ⌦ is countable, F is just the power set (set of all subsets) of ⌦.

A function P : F ! [0,1] called a probability measure satisfies

P(�) = 0

P(⌦) = 1

P([1
n=1

A
n

) =
P1

n=1

P(A
n

), whenever {A
n

} is a disjoint sequence of events.

A random variable is a (measurable) function X : ⌦ ! R.
Thus for the two coins, we might set

X (HH) = 2,XX (HT ) = 1,X (TH) = 1,X (TT ) = 0,

so X is simply the number of heads.
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1. Introduction and probability review 1.3. Probability review

Our data are modelled by a vector X = (X
1

, . . . ,X
n

) of random variables – each
observation is a random variable.

The distribution function of a r.v. X is F
X

(x) = P(X  x), for all x 2 R. So F
X

is

non-decreasing,

0  F
X

(x)  1 for all x ,

F
X

(x) ! 1 as x ! 1,

F
X

(x) ! 0 as x ! �1.

A discrete random variable takes values only in some countable (or finite) set X ,
and has a probability mass function (pmf) f

X

(x) = P(X = x).

f
X

(x) is zero unless x is in X .

f
X

(x) � 0 for all x ,P
x2X f

X

(x) = 1

P(X 2 A) =
P

x2A

f
X

(x) for a set A.
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1. Introduction and probability review 1.3. Probability review

We say X has a continuous (or, more precisely, absolutely continuous) distribution
if it has a probability density function (pdf) f

X

such that

P(X 2 A) =
R
A

f
X

(t)dt for “nice” sets A.

Thus
R1
�1 f

X

(t)dt = 1

F
X

(x) =
R
x

�1 f
X

(t)dt

[Notation note: There will be inconsistent use of a subscript in mass, density and
distributions functions to denote the r.v. Also f will sometimes be p.]

Lecture 1. Introduction and probability review 8 (1–37)



1. Introduction and probability review 1.4. Expectation and variance

Expectation and variance

If X is discrete, the expectation of X is

E(X ) =
X

x2X
xP(X = x)

(exists when
P

|x |P(X = x) < 1).

If X is continuous, then

E(X ) =

Z 1

�1
xf

X

(x)dx

(exists when
R1
�1 |x |f

X

(x)dx < 1).

E(X ) is also called the expected value or the mean of X .

If g : R ! R then

E(g(X )) =

8
<

:

P
x2X g(x)P(X = x) if X is discrete

R
g(x)f

X

(x)dx if X is continuous.

The variance of X is var(X ) = E
⇣�

X � E(X )
�
2

⌘
= E

�
X 2

�
�
�
E(X )

�
2

.
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1. Introduction and probability review 1.5. Independence

Independence

The random variables X
1

, . . . ,X
n

are independent if for all x
1

, . . . , x
n

,

P(X
1

 x
1

, . . . ,X
n

 x
n

) = P(X
1

 x
1

) . . .P(X
n

 x
n

).

If the independent random variables X
1

, . . . ,X
n

have pdf’s or pmf’s f
X

1

, . . . , f
X

n

,
then the random vector X = (X

1

, . . . ,X
n

) has pdf or pmf

f
X

(x) =
Y

i

f
X

i

(x
i

).

Random variables that are independent and that all have the same distribution
(and hence the same mean and variance) are called independent and identically
distributed (iid) random variables.
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1. Introduction and probability review 1.6. Maxima of iid random variables

Maxima of iid random variables

Let X
1

, . . . ,X
n

be iid r.v.’s, and Y = max(X
1

, . . . ,X
n

).

Then
F
Y

(y) = P(Y  y) = P(max(X
1

, . . . ,X
n

)  y)

= P(X
1

 y , . . . ,X
n

 y) = P(X
i

 y)n = [F
X

(y)]n

The density for Y can then be obtained by di↵erentiation (if continuous), or
di↵erencing (if discrete).

Can do similar analysis for minima of iid r.v.’s.
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1. Introduction and probability review 1.7. Sums and linear transformations of random variables

Sums and linear transformations of random variables

For any random variables,

E(X
1

+ · · ·+ X
n

) = E(X
1

) + · · ·+ E(X
n

)

E(a
1

X
1

+ b
1

) = a
1

E(X
1

) + b
1

E(a
1

X
1

+ · · ·+ a
n

X
n

) = a
1

E(X
1

) + · · ·+ a
n

E(X
n

)

var(a
1

X
1

+ b
1

) = a2
1

var(X
1

)

For independent random variables,

E(X
1

⇥ . . .⇥ X
n

) = E(X
1

)⇥ . . .⇥ E(X
n

),

var(X
1

+ · · ·+ X
n

) = var(X
1

) + · · ·+ var(X
n

),

and
var(a

1

X
1

+ · · ·+ a
n

X
n

) = a2
1

var(X
1

) + · · ·+ a2
n

var(X
n

).
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1. Introduction and probability review 1.8. Standardised statistics

Standardised statistics

Suppose X
1

, . . . ,X
n

are iid with E(X
1

) = µ and var(X
1

) = �2.

Write their sum as

S
n

=
nX

i=1

X
i

From preceding slide, E(S
n

) = nµ and var(S
n

) = n�2.

Let X̄
n

= S
n

/n be the sample mean.

Then E(X̄
n

) = µ and var(X̄
n

) = �2/n.

Let

Z
n

=
S
n

� nµ

�
p
n

=

p
n(X̄

n

� µ)

�
.

Then E(Z
n

) = 0 and var(Z
n

) = 1.

Z
n

is known as a standardised statistic.
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1. Introduction and probability review 1.9. Moment generating functions

Moment generating functions

The moment generating function for a r.v. X is

M
X

(t) = E(etX ) =

8
<

:

P
x2X etxP(X = x) if X is discrete

R
etx f

X

(x)dx if X is continuous.

provided M exists for t in a neighbourhood of 0.

Can use this to obtain moments of X , since

E(X n) = M(n)

X

(0),

i.e. nth derivative of M evaluated at t = 0.

Under broad conditions, M
X

(t) = M
Y

(t) implies F
X

= F
Y

.
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1. Introduction and probability review 1.9. Moment generating functions

Mgf’s are useful for proving distributions of sums of r.v.’s since, if X
1

, ...,X
n

are
iid, M

S

n

(t) = Mn

X

(t).

Example: sum of Poissons

If X
i

⇠ Poisson(µ), then

M
X

i

(t) = E(etX ) =
1X

x=0

etxe�µµx/x! = e�µ(1�e

t

)

1X

x=0

e�µet (µet)x/x! = e�µ(1�e

t

).

And so M
S

n

(t) = e�nµ(1�e

t

), which we immediately recognise as the mgf of a
Poisson(nµ) distribution.

So sum of iid Poissons is Poisson. ⇤
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1. Introduction and probability review 1.10. Convergence

Convergence

The Weak Law of Large Numbers (WLLN) states that for all ✏ > 0,

P
���X̄

n

� µ
�� > ✏

�
! 0 as n ! 1.

The Strong Law of Large Numbers (SLLN) says that

P
�
X̄
n

! µ
�
= 1.

The Central Limit Theorem tells us that

Z
n

=
S
n

� nµ

�
p
n

=

p
n(X̄

n

� µ)

�
is approximately N(0, 1) for large n .
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1. Introduction and probability review 1.11. Conditioning

Conditioning

Let X and Y be discrete random variables with joint pmf

p
X ,Y (x , y)=P(X =x ,Y =y).

Then the marginal pmf of Y is

p
Y

(y) = P(Y =y) =
X

x

p
X ,Y (x , y).

The conditional pmf of X given Y =y is

p
X |Y (x | y) = P(X = x | Y = y) =

P(X = x ,Y = y)

P(Y = y)
=

p
X ,Y (x , y)

p
Y

(y)
,

if p
Y

(y) 6=0 (and is defined to be zero if p
Y

(y)=0)).
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1. Introduction and probability review 1.12. Conditioning

Conditioning

In the continuous case, suppose that X and Y have joint pdf f
X ,Y (x , y), so that

for example

P(X  x
1

,Y  y
1

) =

Z
y

1

�1

Z
x

1

�1
f
X ,Y (x , y)dxdy .

Then the marginal pdf of Y is

f
Y

(y) =

Z 1

�1
f
X ,Y (x , y)dx .

The conditional pdf of X given Y = y is

f
X |Y (x | y) = f

X ,Y (x , y)

f
Y

(y)
,

if f
Y

(y) 6=0 (and is defined to be zero if f
Y

(y)=0).
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1. Introduction and probability review 1.12. Conditioning

The conditional expectation of X given Y = y is

E(X | Y =y) =

8
<

:

P
xf

X |Y (x | y) pmf

R
xf

X |Y (x | y)dx pdf.

Thus E(X | Y =y) is a function of y , and E(X | Y ) is a function of Y and hence
a r.v..

The conditional expectation formula says

E[X ] = E [E(X | Y )] .

Proof [discrete case]:

E [E(X | Y )] =
X

Y
y

"
X

X
x f

X |Y (x | y)
#
f
Y

(y) =
X

X

X

Y
x y f

X ,Y (x , y)

=
X

X
x

"
X

Y
y f

Y |X (y | x)
#
f
X

(x) =
X

X
x f

X

(x).⇤

Lecture 1. Introduction and probability review 19 (1–37)



1. Introduction and probability review 1.12. Conditioning

The conditional variance of X given Y = y is defined by

var(X | Y =y) = E
h�
X � E(X | Y =y)

�
2 | Y = y

i
,

and this is equal to E(X 2 | Y =y)�
�
E(X | Y =y)

�
2

.

We also have the conditional variance formula:

var(X ) = E[var(X | Y )] + var[E(X | Y )].

Proof:

var(X ) = E(X 2)� [E(X )]2

= E
⇥
E(X 2 | Y )

⇤
�
h
E
⇥
E(X | Y )

⇤i2

= E
h
E(X 2 | Y )�

⇥
E(X | Y )

⇤
2

i
+ E

h⇥
E(X | Y )

⇤
2

i
�
h
E
⇥
E(X | Y )

⇤i2

= E
⇥
var(X | Y )

⇤
� var

⇥
E(X | Y )

⇤
.
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1. Introduction and probability review 1.13. Some important discrete distributions: Binomial

Some important discrete distributions: Binomial

X has a binomial distribution with parameters n and p (n 2 N, 0  p  1),
X ⇠ Bin(n, p), if

P(X = x) =

✓
n

x

◆
px(1� p)n�x , for x 2 {0, 1, . . . , n}

(zero otherwise).

We have E(X ) = np, var(X ) = np(1� p).

This is the distribution of the number of successes out of n independent Bernoulli
trials, each of which has success probability p.
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1. Introduction and probability review 1.13. Some important discrete distributions: Binomial

Example: throwing dice

let X = number of sixes when throw 10 fair dice, so X ⇠ Bin(10, 1

6

)

R code:

barplot( dbinom(0:10, 10, 1/6), names.arg=0:10,

xlab="Number of sixes in 10 throws" )
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1. Introduction and probability review 1.14. Some important discrete distributions: Poisson

Some important discrete distributions: Poisson

X has a Poisson distribution with parameter µ (µ > 0), X ⇠ Poisson(µ), if

P(X = x) = e�µµx/x!, for x 2 {0, 1, 2, . . .},

(zero otherwise).

Then E(X ) = µ and var(X ) = µ.

In a Poisson process the number of events X (t) in an interval of length t is
Poisson(µt), where µ is the rate per unit time.

The Poisson(µ) is the limit of the Bin(n,p) distribution as n ! 1, p ! 0, µ = np.
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1. Introduction and probability review 1.14. Some important discrete distributions: Poisson

Example: plane crashes. Assume scheduled plane crashes occur as a Poisson
process with a rate of 1 every 2 months. How many (X ) will occur in a year (12
months)?

Number in two months is Poisson(1), and so X ⇠ Poisson(6).

barplot( dpois(0:15, 6), names.arg=0:15,

xlab="Number of scheduled plane crashes in a year" )
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1. Introduction and probability review 1.15. Some important discrete distributions: Negative Binomial

Some important discrete distributions: Negative Binomial

X has a negative binomial distribution with parameters k and p (k 2 N,
0  p  1), if

P(X = x) =

✓
x � 1

k � 1

◆
(1� p)x�kpk , for x = k , k + 1, . . . ,

(zero otherwise). Then E(X ) = k/p, var(X ) = k(1� p)/p2. This is the
distribution of the number of trials up to and including the kth success, in a
sequence of independent Bernoulli trials each with success probability p.

The negative binomial distribution with k = 1 is called a geometric distribution
with parameter p.

The r.v Y = X � k has

P(Y = y) =

✓
y + k � 1

k � 1

◆
(1� p)ypk , for y = 0, 1, . . . .

This is the distribution of the number of failures before the kth success in a
sequence of independent Bernoulli trials each with success probability p. It is also
sometimes called the negative binomial distribution: be careful!
Lecture 1. Introduction and probability review 25 (1–37)



1. Introduction and probability review 1.15. Some important discrete distributions: Negative Binomial

Example: How many times do I have to flip a coin before I get 10 heads?

This is first (X ) definition of the Negative Binomial since it includes all the flips.

R uses second definition (Y ) of Negative Binomial, so need to add in the 10 heads:

barplot( dnbinom(0:30, 10, 1/2), names.arg=0:30 + 10,

xlab="Number of flips before 10 heads" )
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1. Introduction and probability review 1.16. Some important discrete distributions: Multinomial

Some important discrete distributions: Multinomial

Suppose we have a sequence of n independent trials where at each trial there are
k possible outcomes, and that at each trial the probability of outcome i is p

i

.

Let N
i

be the number of times outcome i occurs in the n trials and consider
N

1

, . . . ,N
k

. They are discrete random variables, taking values in {0, 1, . . . , n}.
This multinomial distribution with parameters n and p

1

, . . . , p
k

, n 2 N, p
i

� 0 for
all i and

P
i

p
i

= 1 has joint pmf

P(N
1

= n
1

, . . . ,N
k

= n
k

) =
n!

n
1

! . . . n
k

!
pn1
1

. . . pnk
k

, if
P

i

n
i

= n,

and is zero otherwise.

The rv’s N
1

, . . . ,N
k

are not independent, since
P

i

N
i

= n.

The marginal distribution of N
i

is Binomial(n,p
i

).

Example: I throw 6 dice: what is the probability that I get one of each face

1,2,3,4,5,6? Can calculate to be 6!

1!...1!

�
1

6

�
6

= 0.015

dmultinom( x=c(1,1,1,1,1,1), size=6, prob=rep(1/6,6))
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1. Introduction and probability review 1.17. Some important continuous distributions: Normal

Some important continuous distributions: Normal

X has a normal (Gaussian) distribution with mean µ and variance �2 (µ 2 R,
�2 > 0), X ⇠ N(µ,�2), if it has pdf

f
X

(x) =
1p
2⇡�2

exp

✓
� (x � µ)2

2�2

◆
, x 2 R.

We have E(X ) = µ, var(X ) = �2.

If µ = 0 and �2 = 1, then X has a standard normal distribution, X ⇠ N(0, 1).
We write � for the standard normal pdf, and � for the standard normal
distribution function, so that

�(x) =
1p
2⇡

exp
�
�x2/2

�
, �(x) =

Z
x

�1
�(t)dt.

The upper 100↵% point of the standard normal distribution is z↵ where

P(Z > z↵) = ↵, where Z ⇠ N(0, 1).

Values of � are tabulated in normal tables, as are percentage points z↵.
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1. Introduction and probability review 1.18. Some important continuous distributions: Uniform

Some important continuous distributions: Uniform

X has a uniform distribution on [a, b], X ⇠ U[a, b] (�1 < a < b < 1), if it has
pdf

f
X

(x) =
1

b � a
, x 2 [a, b].

Then E(X ) = a+b

2

and var(X ) = (b�a)

2

12

.

Lecture 1. Introduction and probability review 29 (1–37)



1. Introduction and probability review 1.19. Some important continuous distributions: Gamma

Some important continuous distributions: Gamma

X has a Gamma (↵,�) distribution (↵ > 0, � > 0) if it has pdf

f
X

(x) =
�↵x↵�1e��x

�(↵)
, x > 0,

where �(↵) is the gamma function defined by �(↵) =
R1
0

x↵�1e�xdx for ↵ > 0.
We have E(X ) = ↵

� and var(X ) = ↵
�2

.

The moment generating function M
X

(t) is

M
X

(t) = E
�
eXt

�
=

✓
�

�� t

◆↵

, for t < �.

Note the following two results for the gamma function:
(i) �(↵) = (↵� 1)�(↵� 1),
(ii) if n 2 N then �(n) = (n � 1)!.
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1. Introduction and probability review 1.20. Some important continuous distributions: Exponential

Some important continuous distributions: Exponential

X has an exponential distribution with parameter � (� > 0) if
X ⇠ Gamma(1,�), so that X has pdf

f
X

(x) = �e��x , x > 0.

Then E(X ) = 1

� and var(X ) = 1

�2

.

Note that if X
1

, . . . ,X
n

are iid Exponential(�) r.v’s then
P

n

i=1

X
i

⇠ Gamma(n,�).

Proof: mgf of X
i

is
⇣

�
��t

⌘
, and so mgf of

P
n

i=1

X
i

is
⇣

�
��t

⌘
n

, which we

recognise as the mgf of a Gamma(n,�).⇤
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1. Introduction and probability review 1.20. Some important continuous distributions: Exponential

Some Gamma distributions:

a<-c(1, 3, 10); b<-c(1, 3, 0.5)

for(i in 1:3){

y= dgamma(x, a[i],b[i])

plot(x,y,.......) }
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1. Introduction and probability review 1.21. Some important continuous distributions: Chi-squared

Some important continuous distributions: Chi-squared

If Z
1

, . . . ,Z
k

are iid N(0, 1) r.v.’s, then X =
P

k

i=1

Z 2

i

has a chi-squared

distribution on k degrees of freedom, X ⇠ �2

k

.

Since E(Z 2

i

) = 1 and E(Z 4

i

) = 3, we find that E(X ) = k and var(X ) = 2k .

Further, the moment generating function of Z 2

i

is

M
Z

2

i

(t) = E
⇣
eZ

2

i

t

⌘
=

Z 1

�1
ez

2

t

1p
2⇡

e�z

2/2dz = (1� 2t)�1/2 for t < 1/2

(check), so that the mgf of X =
P

k

i=1

Z 2

i

is M
X

(t) = (M
Z

2(t))k = (1� 2t)�k/2

for t < 1/2.

We recognise this as the mgf of a Gamma(k/2, 1/2), so that X has pdf

f
X

(x) =
1

�(k/2)

✓
1

2

◆
k/2

xk/2�1e�x/2, x > 0.
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1. Introduction and probability review 1.21. Some important continuous distributions: Chi-squared

Some chi-squared distributions: k= 1,2,10 :

k<-c(1,2,10)

for(i in 1:3){

y=dchisq(x, k[i])

plot(x,y,.......) }
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1. Introduction and probability review 1.21. Some important continuous distributions: Chi-squared

Note:
1 We have seen that if X ⇠ �2

k

then X ⇠ Gamma(k/2, 1/2).
2 If Y ⇠ Gamma(n,�) then 2�Y ⇠ �2

2n

(prove via mgf’s or density
transformation formula).

3 If X ⇠ �2

m

, Y ⇠ �2

n

and X and Y are independent, then X + Y ⇠ �2

m+n

(prove via mgf’s). This is called the additive property of �2.
4 We denote the upper 100↵% point of �2

k

by �2

k

(↵), so that, if X ⇠ �2

k

then
P(X > �2

k

(↵)) = ↵. These are tabulated. The above connections between
gamma and �2 means that sometimes we can use �2-tables to find
percentage points for gamma distributions.
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1. Introduction and probability review 1.22. Some important continuous distributions: Beta

Some important continuous distributions: Beta

X has a Beta(↵,�) distribution (↵ > 0, � > 0) if it has pdf

f
X

(x) =
x↵�1(1� x)��1

B(↵,�)
, 0 < x < 1,

where B(↵,�) is the beta function defined by

B(↵,�) = �(↵)�(�)/�(↵+ �).

Then E(X ) = ↵
↵+� and var(X ) = ↵�

(↵+�)2(↵+�+1)

.

The mode is (↵� 1)/(↵+ � � 2).

Note that Beta(1,1)⇠ U[0, 1].
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1. Introduction and probability review 1.22. Some important continuous distributions: Beta

Some beta distributions :

k<-c(1,2,10)

for(i in 1:3){

y=dbeta(x, a[i],b[i])

plot(x,y,.......) }

Lecture 1. Introduction and probability review 37 (1–37)



0.

Lecture 2. Estimation, bias, and mean squared error
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2. Estimation and bias 2.1. Estimators

Estimators

Suppose that X

1

, . . . ,X
n

are iid, each with pdf/pmf f

X

(x | ✓), ✓ unknown.

We aim to estimate ✓ by a statistic, ie by a function T of the data.

If X = x = (x

1

, . . . , x
n

) then our estimate is

ˆ✓ = T (x) (does not involve ✓).

Then T (X) is our estimator of ✓, and is a rv since it inherits random

fluctuations from those of X.

The distribution of T = T (X) is called its sampling distribution.

Example

Let X

1

, . . . ,X
n

be iid N(µ, 1).

A possible estimator for µ is T (X) =

1

n

P
X

i

.

For any particular observed sample x, our estimate is T (x) =

1

n

P
x

i

.

We have T (X) ⇠ N(µ, 1/n). ⇤
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2. Estimation and bias 2.2. Bias

Bias

If

ˆ✓ = T (X) is an estimator of ✓, then the bias of

ˆ✓ is the di↵erence between its

expectation and the ’true’ value: i.e.

bias(

ˆ✓) = E✓(
ˆ✓)� ✓.

An estimator T (X) is unbiased for ✓ if E✓T (X) = ✓ for all ✓, otherwise it is

biased.

In the above example, Eµ(T ) = µ so T is unbiased for µ.

[Notation note: when a parameter subscript is used with an expectation or

variance, it refers to the parameter that is being conditioned on. i.e. the

expectation or variance will be a function of the subscript]
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2. Estimation and bias 2.3. Mean squared error

Mean squared error

Recall that an estimator T is a function of the data, and hence is a random

quantity. Roughly, we prefer estimators whose sampling distributions “cluster

more closely” around the true value of ✓, whatever that value might be.

Definition 2.1

The mean squared error (mse) of an estimator

ˆ✓ is E✓

⇥
(

ˆ✓ � ✓)2
⇤
.

For an unbiased estimator, the mse is just the variance.

In general

E✓

⇥
(

ˆ✓ � ✓)2
⇤

= E✓

⇥
(

ˆ✓ � E✓
ˆ✓ + E✓

ˆ✓ � ✓)2
⇤

= E✓

⇥
(

ˆ✓ � E✓
ˆ✓)2

⇤
+

⇥
E✓(

ˆ✓)� ✓
⇤
2

+ 2

⇥
E✓(

ˆ✓)� ✓
⇤
E✓

⇥
ˆ✓ � E✓

ˆ✓
⇤

= var✓(
ˆ✓) + bias

2

(

ˆ✓),

where bias(

ˆ✓) = E✓(
ˆ✓)� ✓.

[NB: sometimes it can be preferable to have a biased estimator with a low

variance - this is sometimes known as the ’bias-variance tradeo↵’.]
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2. Estimation and bias 2.4. Example: Alternative estimators for Binomial mean

Example: Alternative estimators for Binomial mean

Suppose X ⇠ Binomial(n, ✓), and we want to estimate ✓.

The standard estimator is T

U

= X/n, which is Unbiassed since

E✓(TU

) = n✓/n = ✓.

T

U

has variance var✓(TU

) = var✓(X )/n2 = ✓(1� ✓)/n.

Consider an alternative estimator T

B

=

X+1

n+2

= w

X

n

+ (1� w)

1

2

, where

w = n/(n + 2).

(Note: T

B

is a weighted average of X/n and

1

2

. )

e.g. if X is 8 successes out of 10 trials, we would estimate the underlying

success probability as T (8) = 9/12 = 0.75, rather than 0.8.

Then E✓(TB

)� ✓ =

n✓+1

n+2

� ✓ = (1� w)

�
1

2

� ✓
�
, and so it is biased.

var✓(TB

) =

var✓(X )

(n+2)

2

= w

2✓(1� ✓)/n.

Now mse(T

U

) = var✓(TU

) + bias

2

(T

U

) = ✓(1� ✓)/n.

mse(T

B

) = var✓(TB

) + bias

2

(T

B

) = w

2✓(1� ✓)/n + (1� w)

2

�
1

2

� ✓
�
2
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2. Estimation and bias 2.4. Example: Alternative estimators for Binomial mean

So the biased estimator has smaller MSE in much of the range of ✓

T

B

may be preferable if we do not think ✓ is near 0 or 1.

So our prior judgement about ✓ might a↵ect our choice of estimator.

Will see more of this when we come to Bayesian methods,.
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2. Estimation and bias 2.5. Why unbiasedness is not necessarily so great

Why unbiasedness is not necessarily so great

Suppose X ⇠ Poisson(�), and for some reason (which escapes me for the

moment), you want to estimate ✓ = [P(X = 0)]

2

= e

�2�.

Then any unbiassed estimator T (X ) must satisfy E✓(T (X )) = ✓, or equivalently

E�(T (X )) = e

��
1X

x=0

T (x)

�x

x!

= e

�2�.

The only function T that can satisfy this equation is T (X ) = (�1)

X

[coe�cients

of polynomial must match].

Thus the only unbiassed estimator estimates e

�2�
to be 1 if X is even, -1 if X is

odd.

This is not sensible.
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3. Su�ciency 3.1. Su�cient statistics

Su�cient statistics

The concept of su�ciency addresses the question

“Is there a statistic T (X) that in some sense contains all the information about ✓
that is in the sample?”

Example 3.1

X

1

, . . . ,X
n

iid Bernoulli(✓), so that P(X
i

=1) = 1� P(X
i

=0) = ✓ for some
0 < ✓ < 1.

So f

X

(x | ✓) =
Q

n

i=1

✓xi (1� ✓)1�x

i = ✓
P

x

i (1� ✓)n�
P

x

i .

This depends on the data only through T (x) =
P

x

i

, the total number of ones.

Note that T (X) ⇠ Bin(n, ✓).

If T (x) = t, then

f

X|T=t

(x | T = t) =
P✓(X=x,T = t)

P✓(T = t)
=

P✓(X=x)

P✓(T = t)
=

✓
P

x

i (1� ✓)n�
P

x

i

�
n

t

�
✓t(1� ✓)n�t

=

✓
n

t

◆�1

,

ie the conditional distribution of X given T = t does not depend on ✓.

Thus if we know T , then additional knowledge of x (knowing the exact sequence
of 0’s and 1’s) does not give extra information about ✓. ⇤
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3. Su�ciency 3.1. Su�cient statistics

Definition 3.1

A statistic T is su�cient for ✓ if the conditional distribution of X given T does
not depend on ✓.

Note that T and/or ✓ may be vectors. In practice, the following theorem is used
to find su�cient statistics.
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3. Su�ciency 3.1. Su�cient statistics

Theorem 3.2

(The Factorisation criterion) T is su�cient for ✓ i↵ f

X

(x | ✓) = g(T (x), ✓)h(x) for
suitable functions g and h.

Proof (Discrete case only)

Suppose f

X

(x | ✓) = g(T (x), ✓)h(x).

If T (x)= t then

f

X|T=t

(x | T = t) =
P✓(X=x,T (X)= t)

P✓(T = t)
=

g(T (x), ✓)h(x)P
{x0:T (x

0
)=t} g(t, ✓)h(x

0)

=
g(t, ✓)h(x)

g(t, ✓)
P

{x0:T (x

0
)=t} h(x

0)
=

h(x)P
{x0:T (x

0
)=t} h(x

0)
,

which does not depend on ✓, so T is su�cient.

Now suppose that T is su�cient so that the conditional distribution of X | T = t

does not depend on ✓. Then

P✓(X = x) = P✓(X = x,T (X) = t(x)) = P✓(X = x | T = t)P✓(T = t).

The first factor does not depend on ✓ by assumption; call it h(x). Let the second
factor be g(t, ✓), and so we have the required factorisation. ⇤
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3. Su�ciency 3.1. Su�cient statistics

Example 3.1 continued

For Bernoulli trials, f
X

(x | ✓) = ✓
P

x

i (1� ✓)n�
P

x

i .

Take g(t, ✓) = ✓t(1� ✓)n�t and h(x) = 1 to see that T (X) =
P

X

i

is su�cient
for ✓. ⇤

Example 3.2

Let X
1

, . . . ,X
n

be iid U[0, ✓].

Write 1
[A]

for the indicator function of A.

We have

f

X

(x | ✓) =
nY

i=1

1

✓
1
[0x

i

✓] =
1

✓n
1
[max

i

x

i

✓]1[min

i

x

i

�0]

.

Then T (X) = max
i

X

i

is su�cient for ✓. ⇤
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3. Su�ciency 3.2. Minimal su�cient statistics

Minimal su�cient statistics

Su�cient statistics are not unique. If T is su�cient for ✓, then so is any (1-1)
function of T .

X itself is always su�cient for ✓; take T(X) = X, g(t, ✓) = f

X

(t | ✓) and h(x) = 1.
But this is not much use.

The sample space X n is partitioned by T into sets {x 2 X n : T (x) = t}.
If T is su�cient, then this data reduction does not lose any information on ✓.

We seek a su�cient statistic that achieves the maximum-possible reduction.

Definition 3.3

A su�cient statistic T (X) is minimal su�cient if it is a function of every other
su�cient statistic:
i.e. if T 0(X) is also su�cient, then T

0(X) = T

0(Y) ! T (X) = T (Y)
i.e. the partition for T is coarser than that for T 0.
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3. Su�ciency 3.2. Minimal su�cient statistics

Minimal su�cient statistics can be found using the following theorem.

Theorem 3.4

Suppose T = T (X) is a statistic such that f

X

(x; ✓)/f
X

(y; ✓) is constant as a
function of ✓ if and only if T (x) = T (y). Then T is minimal su�cient for ✓.

Sketch of proof : Non-examinable

First, we aim to use the Factorisation Criterion to show su�ciency. Define an
equivalence relation ⇠ on X n by setting x ⇠ y when T (x) = T (y). (Check that this is
indeed an equivalence relation.) Let U = {T (x) : x 2 X n}, and for each u in U , choose a
representative x

u

from the equivalence class {x : T (x) = u}. Let x be in X n and suppose
that T (x) = t. Then x is in the equivalence class {x0 : T (x0) = t}, which has
representative x

t

, and this representative may also be written x

T (x)

. We have x ⇠ x

t

, so

that T (x) = T (x
t

), ie T (x) = T (x
T (x)

). Hence, by hypothesis, the ratio f

X

(x;✓)
f

X

(x

T (x)

;✓) does

not depend on ✓, so let this be h(x). Let g(t, ✓) = f
X

(x
t

, ✓). Then

f
X

(x; ✓) = f
X

(x
T (x)

; ✓)
f
X

(x; ✓)
f
X

(x
T (x)

; ✓)
= g(T (x), ✓)h(x),

and so T = T (X) is su�cient for ✓ by the Factorisation Criterion.
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3. Su�ciency 3.2. Minimal su�cient statistics

Next we aim to show that T (X) is a function of every other su�cient statistic.

Suppose that S(X) is also su�cient for ✓, so that, by the Factorisation Criterion, there
exist functions g

S

and h
S

(we call them g
S

and h
S

to show that they belong to S and to
distinguish them from g and h above) such that

f
X

(x; ✓) = g
S

(S(x), ✓)h
S

(x).

Suppose that S(x) = S(y). Then

f
X

(x; ✓)
f
X

(y; ✓)
=

g
S

(S(x), ✓)h
S

(x)

g
S

(S(y), ✓)h
S

(y)
=

h
S

(x)

h
S

(y)
,

because S(x) = S(y). This means that the ratio f

X

(x;✓)
f

X

(y;✓) does not depend on ✓, and this

implies that T (x) = T (y) by hypothesis. So we have shown that S(x) = S(y) implies

that T (x) = T (y), i.e T is a function of S . Hence T is minimal su�cient. ⇤
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3. Su�ciency 3.2. Minimal su�cient statistics

Example 3.3

Suppose X

1

, . . . ,X
n

are iid N(µ,�2).

Then

f

X

(x | µ,�2)

f

X

(y | µ,�2)
=

(2⇡�2)�n/2 exp
�
� 1

2�2

P
i

(x
i

� µ)2
 

(2⇡�2)�n/2 exp
�
� 1

2�2

P
i

(y
i

� µ)2
 

= exp

(
� 1

2�2

 
X

i

x

2

i

�
X

i

y

2

i

!
+

µ

�2

 
X

i

x

i

�
X

i

y

i

!)
.

This is constant as a function of (µ,�2) i↵
P

i

x

2

i

=
P

i

y

2

i

and
P

i

x

i

=
P

i

y

i

.

So T (X) =
�P

i

X

2

i

,
P

i

X

i

�
is minimal su�cient for (µ,�2). ⇤

1-1 functions of minimal su�cient statistics are also minimal su�cient.

So T

0(X) == (X̄ ,
P

(X
i

� X̄ )2) is also su�cient for (µ,�2), where X̄ =
P

i

X

i

/n.

We write S

XX

for
P

(X
i

� X̄ )2.
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3. Su�ciency 3.2. Minimal su�cient statistics

Notes

Example 3.3 has a vector T su�cient for a vector ✓. Dimensions do not have
to the same: e.g. for N(µ, µ2), T (X) =

�P
i

X

2

i

,
P

i

X

i

�
is minimal su�cient

for µ [check]

If the range of X depends on ✓, then ”f
X

(x; ✓)/f
X

(y; ✓) is constant in ✓”
means ”f

X

(x; ✓) = c(x, y) f
X

(y; ✓)”
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

The Rao–Blackwell Theorem

The Rao–Blackwell theorem gives a way to improve estimators in the mse sense.

Theorem 3.5

(The Rao–Blackwell theorem)

Let T be a su�cient statistic for ✓ and let ✓̃ be an estimator for ✓ with

E(✓̃2) < 1 for all ✓. Let ✓̂ = E
⇥
✓̃ |T

⇤
. Then for all ✓,

E
⇥
(✓̂ � ✓)2

⇤
 E

⇥
(✓̃ � ✓)2

⇤
.

The inequality is strict unless ✓̃ is a function of T .

Proof By the conditional expectation formula we have E✓̂ = E
⇥
E(✓̃ |T )

⇤
= E✓̃, so

✓̂ and ✓̃ have the same bias. By the conditional variance formula,

var(✓̃) = E
⇥
var(✓̃ |T )

⇤
+ var

⇥
E(✓̃ |T )

⇤
= E

⇥
var(✓̃ |T )

⇤
+ var(✓̂).

Hence var(✓̃) � var(✓̂), and so mse(✓̃) � mse(✓̂), with equality only if
var(✓̃ |T ) = 0. ⇤
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

Notes

(i) Since T is su�cient for ✓, the conditional distribution of X given T = t does
not depend on ✓. Hence ✓̂ = E

⇥
✓̃(X) |T

⇤
does not depend on ✓, and so is a

bona fide estimator.

(ii) The theorem says that given any estimator, we can find one that is a function
of a su�cient statistic that is at least as good in terms of mean squared error
of estimation.

(iii) If ✓̃ is unbiased, then so is ✓̂.

(iv) If ✓̃ is already a function of T , then ✓̂ = ✓̃.
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

Example 3.4

Suppose X

1

, . . . ,X
n

are iid Poisson(�), and let ✓ = e

�� ( = P(X
1

=0)).

Then p

X

(x |�) =
�
e

�n��
P

x

i

�
/
Q

x

i

!, so that p
X

(x |✓) =
�
✓n(� log ✓)

P
x

i

�
/
Q

x

i

!.

We see that T =
P

X

i

is su�cient for ✓, and
P

X

i

⇠ Poisson(n�).

An easy estimator of ✓ is ✓̃ = 1
[X

1

=0]

(unbiased) [i.e. if do not observe any events
in first observation period, assume the event is impossible!]

Then

E
⇥
✓̃ |T = t

⇤
= P

�
X

1

=0 |
nX

1

X

i

= t

�

=
P(X

1

=0)P
�P

n

2

X

i

= t

�

P
�P

n

1

X

i

= t

�
✓
n � 1

n

◆
t

(check).

So ✓̂ = (1� 1

n

)
P

X

i . ⇤
[Common sense check: ✓̂ = (1� 1

n

)nX ⇡ e

�X = e

�ˆ�]
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

Example 3.5

Let X
1

, . . . ,X
n

be iid U[0, ✓], and suppose that we want to estimate ✓. From
Example 3.2, T = maxX

i

is su�cient for ✓. Let ✓̃ = 2X
1

, an unbiased estimator
for ✓ [check].

Then

E
⇥
✓̃ |T = t

⇤
= 2E

⇥
X

1

| maxX
i

= t

⇤

= 2
�
E
⇥
X

1

| maxX
i

= t,X
1

=maxX
i

⇤
P(X

1

=maxX
i

)

+E
⇥
X

1

| maxX
i

= t,X
1

6=maxX
i

⇤
P(X

1

6=maxX
i

)
�

= 2
�
t ⇥ 1

n

+
t

2

n � 1

n

�
=

n + 1

n

t,

so that ✓̂ = n+1

n

maxX
i

. ⇤
In Lecture 4 we show directly that this is unbiased.

N.B. Why is E
⇥
X

1

| maxX
i

= t,X
1

6=maxX
i

⇤
= t/2?

Because
f

X

1

(x
1

| X
1

< t) =
f

X

1

(x

1

,X
1

<t)

P(X
1

<t)

=
f

X

1

(x

1

)1

[0X

1

<t]

t/✓ =
1/✓⇥1

[0X

1

<t]

t/✓ = 1

t

1
[0X

1

<t]

, and so

X

1

| X
1

< t ⇠ U[0, t].
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4. Maximum likelihood estimation 4.1. Likelihood

Likelihood

Maximum likelihood estimation is one of the most important and widely used
methods for finding estimators. Let X

1

, . . . ,X
n

be rv’s with joint pdf/pmf
f

X

(x | ✓). We observe X = x.

Definition 4.1

The likelihood of ✓ is like(✓) = f

X

(x | ✓), regarded as a function of ✓. The
maximum likelihood estimator (mle) of ✓ is the value of ✓ that maximises
like(✓).

It is often easier to maximise the log-likelihood.

If X
1

, . . . ,X
n

are iid, each with pdf/pmf f
X

(x | ✓), then

like(✓) =
nY

i=1

f

X

(x
i

| ✓)

loglike(✓) =
nX

i=1

log f
X

(x
i

| ✓).
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.1

Let X
1

, . . . ,X
n

be iid Bernoulli(p).

Then l(p) = loglike(p) = (
P

x

i

) log p + (n �
P

x

i

) log(1� p).

Thus

dl/dp =

P
x

i

p

� n �
P

x

i

(1� p)
.

This is zero when p =
P

x

i

/n, and the mle of p is p̂ =
P

x

i

/n.

Since
P

X

i

⇠ Bin(n, p), we have E(p̂) = p so that p̂ is unbiased.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.2

Let X
1

, . . . ,X
n

be iid N(µ,�2), ✓ = (µ,�2). Then

l(µ,�2) = loglike(µ,�2) = �n

2
log(2⇡)� n

2
log(�2)� 1

2�2

X
(x

i

� µ)2.

This is maximised when @l
@µ = 0 and @l

@�2

= 0. We find

@l

@µ
= � 1

�2

X
(x

i

� µ),
@l

@�2

= � n

2�2

+
1

2�4

X
(x

i

� µ)2,

so the solution of the simultaneous equations is (µ̂, �̂2) = (x̄ , S
xx

/n).

(writing x̄ for 1

n

P
x

i

and S

xx

for
P

(x
i

� x̄)2)

Hence the maximum likelihood estimators are (µ̂, �̂2) = (X̄ , S
XX

/n).

We know µ̂ ⇠ N(µ,�2/n) so µ̂ is unbiased.

We shall see later that S

XX

�2

= n�̂2

�2

⇠ �2

n�1

, and so E(�̂2) = (n�1)�2

n

, ie �̂2 is biased.

However E(�̂2) ! �2 as n ! 1, so �̂2 is asymptotically unbiased.

[So sample variance estimator denominator: n � 1 is unbiased, n is mle.]
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.3

Let X
1

, . . . ,X
n

be iid U[0, ✓]. Then

like(✓) =
1

✓n
1
[max x

i

✓]1[min x

i

�0]

.

For ✓ � max x
i

, like(✓) = 1

✓n

> 0 and is decreasing as ✓ increases, while for
✓ < max x

i

, like(✓) = 0.

Hence the value ✓̂ = max x
i

maximises the likelihood.

Is ✓̂ unbiased? First we need to find the distribution of ✓̂. For 0  t  ✓, the
distribution function of ✓̂ is

F

ˆ✓(t) = P(✓̂  t) = P(X
i

 t, all i) = (P(X
i

 t))n =
⇣
t

✓

⌘
n

,

where we have used independence at the second step.

Di↵erentiating with respect to t, we find the pdf f
ˆ✓(t) =

nt

n�1

✓n

, 0  t  ✓. Hence

E(✓̂) =
Z ✓

0

t

nt

n�1

✓n
dt =

n✓

n + 1
,

so ✓̂ is biased, but asymptotically unbiased.
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4. Maximum likelihood estimation 4.1. Likelihood

Properties of mle’s

(i) If T is su�cient for ✓, then the likelihood is g(T (x), ✓)h(x), which depends
on ✓ only through T (x).

To maximise this as a function of ✓, we only need to maximise g , and so the
mle ✓̂ is a function of the su�cient statistic.

(ii) If � = h(✓) where h is injective (1� 1), then the mle of � is �̂ = h(✓̂). This
is called the invariance property of mle’s. IMPORTANT.

(iii) It can be shown that, under regularity conditions, that
p
n(✓̂ � ✓) is

asymptotically multivariate normal with mean 0 and ’smallest attainable
variance’ (see Part II Principles of Statistics).

(iv) Often there is no closed form for the mle, and then we need to find ✓̂
numerically.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.4

Smarties come in k equally frequent colours, but suppose we do not know k .

[Assume there is a vast bucket of Smarties, and so the proportion of each stays
constant as you sample. Alternatively, assume you sample with replacement,
although this is rather unhygienic]

Our first four Smarties are Red, Purple, Red, Yellow.

The likelihood for k is (considered sequentially)

like(k) = P
k

(1st is a new colour)P
k

(2nd is a new colour)

P
k

(3rd matches 1st)P
k

(4th is a new colour)

= 1⇥ k � 1

k

⇥ 1

k

⇥ k � 2

k

=
(k � 1)(k � 2)

k

3

(Alternatively, can think of Multinomial likelihood / 1

k

4

, but with
�
k

3

�
ways of

choosing those 3 colours.)

Can calculate this likelihood for di↵erent values of k :
like(3) = 2/27, like(4) = 3/32, like(5) = 12/25, like(6) = 5/54, maximised at
k̂ = 5.
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4. Maximum likelihood estimation 4.1. Likelihood

Fairly flat! Not a lot of information.
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5. Confidence intervals

We now consider interval estimation for ✓.

Definition 5.1

A 100�% (0 < � < 1) confidence interval (CI) for ✓ is a random interval�
A(X),B(X)

�
such that P

�
A(X) < ✓ < B(X)

�
= �, no matter what the true

value of ✓ may be.

Notice that it is the endpoints of the interval that are random quantities (not ✓).

We can interpret this in terms of repeat sampling: if we calculate
�
A(x),B(x)

�
for

a large number of samples x, then approximately 100�% of them will cover the
true value of ✓.

IMPORTANT: having observed some data x and calculated a 95% interval�
A(x),B(x)

�
we cannot say there is now a 95% probability that ✓ lies in this

interval.
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5. Confidence intervals

Example 5.2

Suppose X

1

, . . . ,Xn are iid N(✓, 1). Find a 95% confidence interval for ✓.

We know X̄ ⇠ N(✓, 1

n�
2), so that

p
n(X̄ � ✓) ⇠ N(0, 1), no matter what ✓ is.

Let z
1

, z
2

be such that �(z
2

)� �(z
1

) = 0.95, where � is the standard
normal distribution function.

We have P
⇥
z

1

<
p
n(X̄ � ✓) < z

2

⇤
= 0.95, which can be rearranged to give

P
⇥
X̄ � z

2p
n

< ✓ < X̄ � z

1p
n

⇤
= 0.95.

so that �
X̄ � z

2p
n

, X̄ � z

1p
n

)

is a 95% confidence interval for ✓.

There are many possible choices for z
1

and z

2

. Since the N(0, 1) density is
symmetric, the shortest such interval is obtained by z

2

= z

0.025 = �z

1

(where
recall that z↵ is the upper 100↵% point of N(0, 1)).

From tables, z
0.025 = 1.96 so a 95% confidence interval is�

X̄ � 1.96p
n
, X̄ + 1.96p

n
). ⇤
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5. Confidence intervals

The above example illustrates a common procedure for findings CIs.

1 Find a quantity R(X, ✓) such that the P✓- distribution of R(X, ✓) does not
depend on ✓. This is called a pivot.

In Example 5.2, R(X, ✓) =
p
n(X̄ � ✓).

2 Write down a probability statement of the form P✓ (c1 < R(X, ✓) < c

2

) = �.
3 Rearrange the inequalities inside P(...) to find the interval.

Notes:

Usually c

1

, c
2

are percentage points from a known standardised distribution,
often equitailed so that use, say, 2.5% and 97.5% points for a 95% CI. Could
use 0% and 95%, but interval would generally be wider.

Can have confidence intervals for vector parameters

If
�
A(x),B(x)

�
is a 100�% CI for ✓, and T (✓) is a monotone increasing

function of ✓, then
�
T (A(x)),T (B(x))

�
is a 100�% CI for T (✓).

If T is monotone decreasing, then
�
T (B(x)),T (A(x))

�
is a 100�% CI for

T (✓).
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5. Confidence intervals

Example 5.3

Suppose X

1

, . . . ,X
50

are iid N(0,�2). Find a 99% confidence interval for �2.

Thus Xi/� ⇠ N(0, 1). So, from the Probability review, 1

�2

Pn
i=1

X

2

i ⇠ �2

50

.

So R(X,�2) =
Pn

i=1

X

2

i /�
2 is a pivot.

Recall that �2

n(↵) is the upper 100↵% point of �2

n, i.e.
P(�2

n  �2

n(↵)) = 1� ↵.

From �2-tables, we can find c

1

, c
2

such that F�2

50

(c
2

)� F�2

50

(c
1

) = 0.99.

An equi-tailed region is given by c

1

= �2

50

(0.995) = 27.99 and
c

2

= �2

50

(0.005) = 79.49.

In R,
qchisq(0.005,50) = 27.99075, qchisq(0.995,50) = 79.48998

Then P�2

�
c

1

<
P

X 2

i
�2

< c

2

�
= 0.99, and so P�2

�P
X 2

i
c
2

< �2 <
P

X 2

i
c
1

�
= 0.99

which gives a confidence interval
�P

X 2

i
79.49 ,

P
X 2

i
27.99

�
.

Further, a 99% confidence interval for � is then
�qP

X 2

i
79.49 ,

qP
X 2

i
27.99

�
. ⇤
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5. Confidence intervals

Example 5.4

Suppose X

1

, . . . ,Xn are iid Bernoulli(p). Find an approximate confidence interval
for p.

The mle of p is p̂ =
P

Xi/n.

By the Central Limit Theorem, p̂ is approximately N(p, p(1� p)/n) for large
n.

So
p
n(p̂ � p)/

p
p(1� p) is approximately N(0, 1) for large n.

So we have

P
⇣
p̂ � z

(1��)/2

r
p(1� p)

n

< p < p̂ + z

(1��)/2

r
p(1� p)

n

⌘
⇡ �.

But p is unknown, so we approximate it by p̂, to get an approximate 100�%
confidence interval for p when n is large:

⇣
p̂ � z

(1��)/2

r
p̂(1� p̂)

n

, p̂ + z

(1��)/2

r
p̂(1� p̂)

n

⌘
.

⇤
NB. There are many possible approximate confidence intervals for a
Bernoulli/Binomial parameter.
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5. Confidence intervals

Example 5.5

Suppose an opinion poll says 20% are going to vote UKIP, based on a random
sample of 1,000 people. What might the true proportion be?

We assume we have an observation of x = 200 from a Binomial(n, p)
distribution with n = 1, 000.

Then p̂ = x/n = 0.2 is an unbiased estimate, also the mle.

Now var
�
X
n

�
= p(1�p)

n ⇡ p̂(1�p̂)
n = 0.2⇥0.8

1000

= 0.00016.

So a 95% CI is⇣
p̂�1.96

q
p̂(1�p̂)

n , p̂+1.96
q

p̂(1�p̂)
n

⌘
= 0.20±1.96⇥0.013 = (0.175, 0.225),

or around 17% to 23%.

Special case of common procedure for an unbiased estimator T :
95% CI ⇡ T ± 2

p
varT = T ± 2 SE, where SE = ’standard error’ =

p
varT

NB: Since p(1� p)  1/4 for all 0  p  1, then a conservative 95% interval

(i.e. might be a bit wide) is p̂ ± 1.96
q

1

4n ⇡ p̂ ±
q

1

n .

So whatever proportion is reported, it will be ’accurate’ to ±1/
p
n.

Opinion polls almost invariably use n = 1000, so they are assured of ±3%
’accuracy’
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5. Confidence intervals 5.1. (Slightly contrived) confidence interval problem*

(Slightly contrived) confidence interval problem*

Example 5.6

Suppose X

1

and X

2

are iid from Uniform(✓� 1

2

, ✓+ 1

2

). What is a sensible 50% CI
for ✓?

Consider the probability of getting one observation each side of ✓,

P✓ (min(X
1

,X
2

)  ✓  max(X
1

,X
2

)) = P✓(X1

 ✓  X

2

) + P✓(X2

 ✓  X

1

)

=

✓
1

2
⇥ 1

2

◆
+

✓
1

2
⇥ 1

2

◆
=

1

2
.

So (min(X
1

,X
2

),max(X
1

,X
2

)) is a 50% CI for ✓.

But suppose | X
1

� X

2

|� 1

2

, e.g. x
1

= 0.2, x
2

= 0.9. Then we know that, in
this particular case, ✓ must lie in (min(X

1

,X
2

),max(X
1

,X
2

)).

So guaranteed sampling properties does not necessarily mean a sensible
conclusion in all cases.
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6. Bayesian estimation 6.1. The parameter as a random variable

The parameter as a random variable

So far we have seen the frequentist approach to statistical inference

i.e. inferential statements about ✓ are interpreted in terms of repeat sampling.

In contrast, the Bayesian approach treats ✓ as a random variable taking
values in ⇥.

The investigator’s information and beliefs about the possible values for ✓,
before any observation of data, are summarised by a prior distribution ⇡(✓).

When data X=x are observed, the extra information about ✓ is combined
with the prior to obtain the posterior distribution ⇡(✓ |x) for ✓ given X=x.

There has been a long-running argument between proponents of these
di↵erent approaches to statistical inference

Recently things have settled down, and Bayesian methods are seen to be
appropriate in huge numbers of application where one seeks to assess a
probability about a ’state of the world’.

Examples are spam filters, text and speech recognition, machine learning,
bioinformatics, health economics and (some) clinical trials.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Prior and posterior distributions

By Bayes’ theorem,

⇡(✓ |x) = f
X

(x | ✓)⇡(✓)
f
X

(x)
,

where f
X

(x) =
R
f
X

(x |✓)⇡(✓)d✓ for continuous ✓, and
f
X

(x) =
P

f
X

(x |✓
i

)⇡(✓
i

) in the discrete case.

Thus

⇡(✓ |x) / f
X

(x |✓)⇡(✓) (1)

posterior / likelihood⇥ prior,

where the constant of proportionality is chosen to make the total mass of the
posterior distribution equal to one.

In practice we use (??) and often we can recognise the family for ⇡(✓ | x).
It should be clear that the data enter through the likelihood, and so the
inference is automatically based on any su�cient statistic.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

1 biased 3:1 in favour of tails
2 a fair coin,
3 biased 3:1 in favour of heads

I randomly select one coin and flip it once, observing a head. What is the
probability that I have chosen coin 3?

Let X = 1 denote the event that I observe a head, X = 0 if a tail

✓ denote the probability of a head: ✓ 2 (0.25, 0.5, 0.75)

Prior: p(✓ = 0.25) = p(✓ = 0.5) = p(✓ = 0.75) = 0.33

Probability mass function: p(x |✓) = ✓x(1� ✓)(1�x)
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6. Bayesian estimation 6.2. Prior and posterior distributions

Prior Likelihood Un-normalised Normalised

Posterior Posterior

Coin ✓ p(✓) p(x = 1|✓) p(x = 1|✓)p(✓) p(x=1|✓)p(✓)
p(x)

†

1 0.25 0.33 0.25 0.0825 0.167
2 0.50 0.33 0.50 0.1650 0.333
3 0.75 0.33 0.75 0.2475 0.500

Sum 1.00 1.50 0.495 1.000

† The normalising constant can be calculated as p(x) =

P
i

p(x |✓
i

)p(✓
i

)

So observing a head on a single toss of the coin means that there is now a 50%
probability that the chance of heads is 0.75 and only a 16.7% probability that the
chance of heads in 0.25.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

In modern language, given r ⇠ Binomial(✓, n), what is P(✓
1

< ✓ < ✓
2

|r , n)?
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6. Bayesian estimation 6.2. Prior and posterior distributions

Example 6.1

Suppose we are interested in the true mortality risk ✓ in a hospital H which is
about to try a new operation. On average in the country around 10% of people
die, but mortality rates in di↵erent hospitals vary from around 3% to around 20%.
Hospital H has no deaths in their first 10 operations. What should we believe
about ✓?

Let X
i

= 1 if the ith patient dies in H (zero otherwise), i = 1, . . . , n.

Then f
X

(x |✓) = ✓
P

x

i (1� ✓)n�
P

x

i .

Suppose a priori that ✓ ⇠ Beta(a, b) for some known a > 0, b > 0, so that
⇡(✓) / ✓a�1(1� ✓)b�1, 0 < ✓ < 1.

Then the posterior is

⇡(✓ |x) / f
X

(x |✓)⇡(✓)
/ ✓

P
x

i

+a�1(1� ✓)n�
P

x

i

+b�1, 0 < ✓ < 1.

We recognise this as Beta(
P

x
i

+ a, n �
P

x
i

+ b) and so

⇡(✓ |x) = ✓
P

x

i

+a�1(1� ✓)n�
P

x

i

+b�1

B(
P

x
i

+ a, n �
P

x
i

+ b)
for 0 < ✓ < 1.

⇤
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6. Bayesian estimation 6.2. Prior and posterior distributions

In practice, we need to find a Beta prior distribution that matches our
information from other hospitals.

It turns out that a Beta(a=3,b=27) prior distribution has mean 0.1 and
P(0.03 < ✓ < 0.20) = 0.9.

The data is
P

x
i

= 0, n = 10.

So the posterior is Beta(
P

x
i

+ a, n �
P

x
i

+ b) = Beta(3, 37)

This has mean 3/40 = 0.075.

NB Even though nobody has died so far, the mle ✓̂ =
P

x
i

/n = 0 (i.e. it is
impossible that any will ever die) does not seem plausible.

install.packages("LearnBayes")

library(LearnBayes)

prior = c( a= 3, b = 27 ) # beta prior

data = c( s = 0, f = 10 ) # s events out of f trials

triplot(prior,data)
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6. Bayesian estimation 6.2. Prior and posterior distributions
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6. Bayesian estimation 6.3. Conjugacy

Conjugacy

For this problem, a beta prior leads to a beta posterior. We say that the beta
family is a conjugate family of prior distributions for Bernoulli samples.

Suppose that a = b = 1 so that ⇡(✓) = 1, 0 < ✓ < 1 - the uniform
distribution (called the ”principle of insu�cient reason’ by Laplace, 1774) .

Then the posterior is Beta(
P

x
i

+ 1, n �
P

x
i

+ 1), with properties.

mean mode variance
prior 1/2 non-unique 1/12

posterior
P

x

i

+1

n+2

P
x

i

n

(

P
x

i

+1)(n�
P

x

i

+1)

(n+2)

2

(n+3)

Notice that the mode of the posterior is the mle.

The posterior mean estimator,
P

X

i

+1

n+2

is discussed in Lecture 2, where we
showed that this estimator had smaller mse than the mle for non-extreme
values of ✓. Known as Laplace’s estimator.

The posterior variance is bounded above by 1/(4(n + 3)), and this is smaller
than the prior variance, and is smaller for larger n.

Again, note the posterior automatically depends on the data through the
su�cient statistic.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Bayesian approach to point estimation

Let L(✓, a) be the loss incurred in estimating the value of a parameter to be a
when the true value is ✓.

Common loss functions are quadratic loss L(✓, a) = (✓ � a)2, absolute error
loss L(✓, a) = |✓ � a|, but we can have others.

When our estimate is a, the expected posterior loss is
h(a) =

R
L(✓, a)⇡(✓ |x)d✓.

The Bayes estimator ✓̂ minimises the expected posterior loss.

For quadratic loss

h(a) =

Z
(a� ✓)2⇡(✓ |x)d✓.

h0(a) = 0 if

a

Z
⇡(✓ |x)d✓ =

Z
✓⇡(✓ |x)d✓.

So ✓̂ =
R
✓⇡(✓ |x)d✓, the posterior mean, minimises h(a).
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

For absolute error loss,

h(a) =

Z
|✓ � a|⇡(✓ |x)d✓ =

Z
a

�1
(a� ✓)⇡(✓ |x)d✓ +

Z 1

a

(✓ � a)⇡(✓ |x)d✓

= a

Z
a

�1
⇡(✓ |x)d✓ �

Z
a

�1
✓⇡(✓ |x)d✓

+

Z 1

a

✓⇡(✓ |x)d✓ � a

Z 1

a

⇡(✓ |x)d✓

Now h0(a) = 0 if Z
a

�1
⇡(✓ |x)d✓ =

Z 1

a

⇡(✓ |x)d✓.

This occurs when each side is 1/2 (since the two integrals must sum to 1) so
✓̂ is the posterior median.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Example 6.2

Suppose that X
1

, . . . ,X
n

are iid N(µ, 1), and that a priori µ ⇠ N(0, ⌧�2) for
known ⌧�2.

The posterior is given by

⇡(µ |x) / f
X

(x |µ)⇡(µ)

/ exp


�1

2

X
(x

i

� µ)2
�
exp


�µ2⌧ 2

2

�

/ exp

"
�1

2

�
n + ⌧ 2

�⇢
µ�

P
x
i

n + ⌧ 2

�
2

#
(check).

So the posterior distribution of µ given x is a Normal distribution with meanP
x
i

/(n + ⌧ 2) and variance 1/(n + ⌧ 2).

The normal density is symmetric, and so the posterior mean and the posterior
median have the same value

P
x
i

/(n + ⌧ 2).

This is the optimal Bayes estimate of µ under both quadratic and absolute
error loss.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Example 6.3

Suppose that X
1

, . . . ,X
n

are iid Poisson(�) rv’s and that � has an exponential
distribution with mean 1, so that ⇡(�) = e��, � > 0.

The posterior distribution is given by

⇡(� |x) / e�n��
P

x

i e�� = �
P

x

i e�(n+1)�, � > 0,

ie Gamma(
P

x
i

+ 1, n + 1).

Hence, under quadratic loss, �̂ = (
P

x
i

+ 1)/(n + 1), the posterior mean.

Under absolute error loss, �̂ solves

Z
ˆ�

0

(n + 1)
P

x

i

+1�
P

x

i e�(n+1)�

(
P

x
i

)!
d� =

1

2
.
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7. Simple hypotheses 7.1. Introduction

Introduction

Let X1, . . . ,Xn

be iid, each taking values in X , each with unknown pdf/pmf f ,
and suppose that we have two hypotheses, H0 and H1, about f .

On the basis of data X=x, we make a choice between the two hypotheses.

Examples

(a) A coin has P(Heads) = ✓, and is thrown independently n times. We could
have H0 : ✓=1/2 versus H1 : ✓=3/4.

(b) As in (a), with H0 : ✓=1/2 as before, but with H1 : ✓ 6=1/2.

(c) Suppose X1, . . . ,Xn

are iid discrete rv’s. We could have H0 :the distribution is
Poisson with unknown mean, and H1 :the distribution is not Poisson. This is
a goodness-of-fit test.

(d) General parametric case: X1, . . . ,Xn

are iid with density f (x |✓), with
H0 :✓2⇥0 and H1 :✓2⇥1 where ⇥0 \⇥1=; ( we may or may not have
⇥0 [⇥1=⇥).

(e) We could have H0 : f = f0 and H1 : f = f1 where f0 and f1 are densities that are
completely specified but do not come from the same parametric family.
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7. Simple hypotheses 7.1. Introduction

A simple hypothesis H specifies f completely (eg H0 :✓=1/2 in (a)).

Otherwise H is a composite hypothesis (eg H1 :✓ 6=1/2 in (b)).

For testing H0 against an alternative hypothesis H1, a test procedure has to
partition X n into two disjoint and exhaustive regions C and C̄ , such that if x 2 C
then H0 is rejected and if x 2 C̄ then H0 is not rejected.

The critical region (or rejection region) C defines the test.

When performing a test we may (i) arrive at a correct conclusion, or (ii) make one
of two types of error:

(a) we may reject H0 when H0 is true ( a Type I error),

(b) we may not reject H0 when H0 is false (a Type II error).

NB: When Neyman and Pearson developed the theory in the 1930s, they spoke of
’accepting’ H0. Now we generally refer to ’not rejecting H0’.
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Testing a simple hypothesis against a simple alternative

When H0 and H1 are both simple, let

↵ = P(Type I error) = P(X2C |H0 is true)

� = P(Type II error) = P(X 62C |H1 is true).

We define the size of the test to be ↵.

1� � is also known as the power of the test to detect H1.

Ideally we would like ↵=�=0, but typically it is not possible to find a test that
makes both ↵ and � arbitrarily small.

Definition 7.1

The likelihood of a simple hypothesis H :✓=✓⇤ given data x is
L
x

(H) = f
X

(x |✓=✓⇤).
The likelihood ratio of two simple hypotheses H0, H1, given data x, is
⇤
x

(H0;H1) = L
x

(H1)/Lx(H0).
A likelihood ratio test (LR test) is one where the critical region C is of the
form C = {x : ⇤

x

(H0;H1) > k} for some k . ⇤
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Theorem 7.2

(The Neyman–Pearson Lemma) Suppose H0 : f = f0, H1 : f = f1, where f0 and f1
are continuous densities that are nonzero on the same regions. Then among all
tests of size less than or equal to ↵, the test with smallest probability of a Type II
error is given by C = {x : f1(x)/f0(x) > k} where k is chosen such that
↵ = P(reject H0 |H0) = P(X 2 C |H0) =

R
C

f0(x)dx.

Proof

The given C specifies a likelihood ratio test with size ↵.

Let � = P(X 62 C | f1) =
R
C̄

f1(x)dx.

Let C⇤ be the critical region of any other test with size less than or equal to ↵.

Let ↵⇤ = P(X 2 C⇤ | f0), �⇤ = P(X 62 C⇤ | f1).
We want to show �  �⇤.

We know ↵⇤  ↵, ie
R
C

⇤ f0(x)dx 
R
C

f0(x)dx.

Also, on C we have f1(x) > kf0(x), while on C̄ we have f1(x)  kf0(x).

ThusZ

C̄

⇤\C

f1(x)dx � k

Z

C̄

⇤\C

f0(x)dx,

Z

C̄\C

⇤
f1(x)dx  k

Z

C̄\C

⇤
f0(x)dx. (1)
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Hence

� � �⇤ =

Z

C̄

f1(x)dx�
Z

C̄

⇤
f1(x)dx

=

Z

C̄\C

⇤
f1(x)dx+

Z

C̄\C̄

⇤
f1(x)dx�

Z

C̄

⇤\C

f1(x)dx�
Z

C̄\C̄

⇤
f1(x)dx

 k

Z

C̄\C

⇤
f0(x)dx� k

Z

C̄

⇤\C

f0(x)dx by (??)

= k

⇢Z

C̄\C

⇤
f0(x)dx+

Z

C\C

⇤
f0(x)dx

�

�k

⇢Z

C̄

⇤\C

f0(x)dx+

Z

C\C

⇤
f0(x)dx

�

= k
�
↵⇤ � ↵)

 0.

⇤
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

We assume continuous densities to ensure that a LR test of exactly size ↵
exists.

The Neyman–Pearson Lemma shows that ↵ and � cannot both be arbitrarily
small.

It says that the most powerful test (ie the one with the smallest Type II error
probability), among tests with size smaller than or equal to ↵, is the size ↵
likelihood ratio test.

Thus we should fix P(Type I error) at some level ↵ and then use the
Neyman–Pearson Lemma to find the best test.

Here the hypotheses are not treated symmetrically; H0 has precedence over
H1 and a Type I error is treated as more serious than a Type II error.

H0 is called the null hypothesis and H1 is called the alternative hypothesis.

The null hypothesis is a conservative hypothesis, ie one of “no change,” “no
bias,” “no association,” and is only rejected if we have clear evidence against
it.

H1 represents the kind of departure from H0 that is of interest to us.
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Example 7.3

Suppose that X1, . . . ,Xn

are iid N(µ,�2
0), where �2

0 is known. We want to find
the best size ↵ test of H0 :µ=µ0 against H1 :µ=µ1, where µ0 and µ1 are known
fixed values with µ1 > µ0.

⇤
x

(H0;H1) =
(2⇡�2

0)
�n/2 exp

⇣
� 1

2�2
0

P
(x

i

� µ1)2
⌘

(2⇡�2
0)

�n/2 exp
⇣
� 1

2�2
0

P
(x

i

� µ0)2
⌘

= exp

✓
(µ1 � µ0)

�2
0

nx̄ +
n(µ2

0 � µ2
1)

2�2
0

◆
(check).

This is an increasing function of x̄ , so for any k ,

⇤
x

> k , x̄ > c for some c .

Hence we reject H0 if x̄ > c where c is chosen such that P(X̄ > c |H0) = ↵.

Under H0, X̄ ⇠ N(µ0,�2
0/n), so Z =

p
n(X̄ � µ0)/�0 ⇠ N(0, 1).

Since x̄ > c , z > c 0 for some c 0, the size ↵ test rejects H0 if
z =

p
n(x̄ � µ0)/�0 > z↵.
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7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Suppose µ0 = 5, µ1 = 6, �0 = 1, ↵ = 0.05, n = 4 and x = (5.1, 5.5, 4.9, 5.3),
so that x̄ = 5.2.

From tables, z0.05 = 1.645.

We have z =
p
n(x̄�µ0)
�0

= 0.4 and this is less than 1.645, so x is not in the
rejection region.

We do not reject H0 at the 5%- level; the data are consistent with H0.

This does not mean that H0 is ’true’, just that it cannot be ruled out.

This is called a z-test. ⇤
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7. Simple hypotheses 7.3. P-values

P-values

In this example, LR tests reject H0 if z > k for some constant k .

The size of such a test is ↵ = P(Z > k |H0) = 1��(k), and is decreasing as
k increases.

Our observed value z will be in the rejection region
, z > k , ↵ > p⇤ = P(Z > z |H0).

The quantity p⇤ is called the p-value of our observed data x.

For Example 7.3, z = 0.4 and so p⇤ = 1� �(0.4) = 0.3446.

In general, the p-value is sometimes called the ’observed significance level’ of
x and is the probability under H0 of seeing data that are ‘more extreme’ than
our observed data x.

Extreme observations are viewed as providing evidence againt H0.

* The p-value has a Uniform(0,1) pdf under the null hypothesis. To see this for a
z-test, note that

P(p⇤ < p | H0) = P ([1� �(Z )] < p | H0) = P(Z > ��1(1� p) | H0)

= 1� �
�
��1(1� p)

�
= 1� (1� p) = p.
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8. Composite hypotheses 8.1. Composite hypotheses, types of error and power

Composite hypotheses, types of error and power

For composite hypotheses like H :✓ � 0, the error probabilities do not have a
single value.

Define the power function W (✓) = P(X 2 C |✓) = P(reject H
0

|✓).
We want W (✓) to be small on H

0

and large on H
1

.

Define the size of the test to be ↵ = sup✓2⇥

0

W (✓).

For ✓ 2 ⇥
1

, 1�W (✓) = P(Type II error |✓).
Sometimes the Neyman–Pearson theory can be extended to one-sided
alternatives.

For example, in Example 7.3 we have shown that the most powerful size ↵
test of H

0

: µ = µ
0

versus H
1

: µ = µ
1

(where µ
1

> µ
0

) is given by
C = {x :

p
n(x̄ � µ

0

)/�
0

> z↵}.
This critical region depends on µ

0

, n, �
0

, ↵, on the fact that µ
1

> µ
0

, but
not on the particular value of µ

1

.
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8. Composite hypotheses 8.1. Composite hypotheses, types of error and power

Hence this C defines the most powerful size ↵ test of H
0

: µ = µ
0

against
any µ

1

that is larger than µ
0

.

This test is then uniformly most powerful size ↵ for testing H
0

: µ = µ
0

against H
1

: µ > µ
0

.

Definition 8.1

A test specified by a critical region C is uniformly most powerful (UMP) size ↵
test for testing H

0

: ✓ 2 ⇥
0

against H
1

: ✓ 2 ⇥
1

if
(i) sup✓2⇥

0

W (✓) = ↵;
(ii) for any other test C⇤ with size  ↵ and with power function W ⇤ we have

W (✓) � W ⇤(✓) for all ✓ 2 ⇥
1

.

UMP tests may not exist.

However likelihood ratio tests are often UMP.
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8. Composite hypotheses 8.1. Composite hypotheses, types of error and power

Example 8.2

Suppose X
1

, . . . ,Xn are iid N(µ
0

,�2

0

) where �
0

is known, and we wish to test
H

0

: µ  µ
0

against H
1

: µ > µ
0

.

First consider testing H 0
0

: µ = µ
0

against H 0
1

: µ = µ
1

where µ
1

> µ
0

(as in
Example 7.3)

As in Example 7.3, the Neyman-Pearson test of size ↵ of H 0
0

against H 0
1

has
C = {x :

p
n(x̄ � µ

0

)/�
0

> z↵}.
We will show that C is in fact UMP for the composite hypotheses H

0

against
H

1

For µ 2 R, the power function is

W (µ) = Pµ(reject H0

) = Pµ

✓p
n(X̄ � µ

0

)

�
0

> z↵

◆

= Pµ

✓p
n(X̄ � µ)

�
0

> z↵ +

p
n(µ

0

� µ)

�
0

◆

= 1� �

✓
z↵ +

p
n(µ

0

� µ)

�
0

◆
.
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8. Composite hypotheses 8.1. Composite hypotheses, types of error and power

power= 1 - pnorm( qnorm(0.95) + sqrt(n) * (mu0-x) / sigma0 )
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8. Composite hypotheses 8.1. Composite hypotheses, types of error and power

We know W (µ
0

) = ↵. (just plug in)

W (µ) is an increasing function of µ.

So supµµ
0

W (µ) = ↵, and (i) is satisfied.

For (ii), observe that for any µ > µ
0

, the Neyman Pearson size ↵ test of H 0
0

vs H 0
1

has critical region C (the calculation in Example 7.3 depended only on
the fact that µ > µ

0

and not on the particular value of µ
1

.)

Let C⇤ and W ⇤ belong to any other test of H
0

vs H
1

of size  ↵

Then C⇤ can be regarded as a test of H
0

vs H
1

of size  ↵, and NP-Lemma
says that W ⇤(µ

1

)  W (µ
1

)

This holds for all µ
1

> µ
0

and so (ii) is satisfied.

So C is UMP size ↵ for H
0

vs H
1

. ⇤
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8. Composite hypotheses 8.2. Generalised likelihood ratio tests

Generalised likelihood ratio tests

We now consider likelihood ratio tests for more general situations.

Define the likelihood of a composite hypothesis H : ✓ 2 ⇥ given data x to
be

L
x

(H) = sup
✓2⇥

f (x |✓).

So far we have considered disjoint hypotheses ⇥
0

, ⇥
1

, but often we are not
interested in any specific alternative, and it is easier to take ⇥

1

= ⇥ rather
than ⇥

1

= ⇥ \⇥
0

.

Then

⇤
x

(H
0

;H
1

) =
L
x

(H
1

)

L
x

(H
0

)
=

sup✓2⇥

1

f (x |✓)
sup✓2⇥

0

f (x |✓) (� 1), (1)

with large values of ⇤
x

indicating departure from H
0

.

Notice that if ⇤⇤
x

= sup✓2⇥\⇥
0

f (x |✓)/ sup✓2⇥

0

f (x |✓), then
⇤
x

= max{1,⇤⇤
x

}.
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8. Composite hypotheses 8.2. Generalised likelihood ratio tests

Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that
X
1

, . . . ,Xn are iid N(µ,�2

0

), with �2

0

known, and we wish to test H
0

: µ = µ
0

against H
1

: µ 6= µ
0

(µ
0

is a given constant).

Here ⇥
0

= {µ
0

} and ⇥ = R.
For the denominator in (1) we have sup

⇥

0

f (x |µ) = f (x |µ
0

).

For the numerator, we have sup
⇥

f (x |µ) = f (x | µ̂), where µ̂ is the mle, so
µ̂ = x̄ (check).

Hence

⇤
x

(H
0

;H
1

) =
(2⇡�2

0

)�n/2 exp
⇣
� 1

2�2

0

P
(xi � x̄)2

⌘

(2⇡�2

0

)�n/2 exp
⇣
� 1

2�2

0

P
(xi � µ

0

)2
⌘ ,

and we reject H
0

if ⇤
x

is ‘large.’

We find that

2 log⇤
x

(H
0

;H
1

) =
1

�2

0

hX
(xi � µ

0

)2 �
X

(xi � x̄)2
i
=

n

�2

0

(x̄�µ
0

)2. (check)

Thus an equivalent test is to reject H
0

if
��pn(x̄ � µ

0

)/�
0

�� is large.
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8. Composite hypotheses 8.2. Generalised likelihood ratio tests

Under H
0

, Z =
p
n(X̄ � µ

0

)/�
0

⇠ N(0, 1) so the size ↵ generalised likelihood
test rejects H

0

if
��pn(x̄ � µ

0

)/�
0

�� > z↵/2.

Since n(X̄ � µ
0

)2/�2

0

⇠ �2

1

if H
0

s true, this is equivalent to rejecting H
0

if
n(X̄ � µ

0

)2/�2

0

> �2

1

(↵) (check that z2↵/2 = �2

1

(↵)). ⇤
Notes:

This is a ’two-tailed’ test - i.e. reject H
0

both for high and low values of x̄ .

We reject H
0

if
��pn(x̄ � µ

0

)/�
0

�� > z↵/2. A symmetric 100(1� ↵)%
confidence interval for µ is x̄ ± z↵/2 �0

/
p
n. Therefore we reject H

0

i↵ µ
0

is
not in this confidence interval (check).

In later lectures the close connection between confidence intervals and
hypothesis tests is explored further.
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8. Composite hypotheses 8.3. The ’generalised likelihood ratio test’

The ’generalised likelihood ratio test’

The next theorem allows us to use likelihood ratio tests even when we cannot
find the exact relevant null distribution.

First consider the ‘size’ or ‘dimension’ of our hypotheses: suppose that H
0

imposes p independent restrictions on ⇥, so for example, if and we have

H
0

: ✓i
1

= a
1

, . . . , ✓ip = ap (a
1

, . . . , ap given numbers),

H
0

: A✓ = b (A p ⇥ k, b p ⇥ 1 given),

H
0

: ✓i = fi (�), i = 1, . . . , k, � = (�
1

, . . . ,�k�p).

Then ⇥ has ‘k free parameters’ and ⇥
0

has ‘k � p free parameters.’

We write |⇥
0

| = k � p and |⇥| = k .
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8. Composite hypotheses 8.3. The ’generalised likelihood ratio test’

Theorem 8.4

(not proved)
Suppose ⇥

0

✓ ⇥
1

, |⇥
1

|� |⇥
0

| = p. Then under regularity conditions, as n ! 1,
with X = (X

1

, . . . ,Xn), Xi ’s iid, we have, if H
0

is true,

2 log⇤
X

(H
0

;H
1

) ⇠ �2

p.

If H
0

is not true, then 2 log⇤ tends to be larger. We reject H
0

if 2 log⇤ > c where
c = �2

p(↵) for a test of approximately size ↵.

In Example 8.3, |⇥
1

|� |⇥
0

| = 1, and in this case we saw that under H
0

,
2 log⇤ ⇠ �2

1

exactly for all n in that particular case, rather than just
approximately for large n as the Theorem shows.

(Often the likelihood ratio is calculated with the null hypothesis in the numerator,
and so the test statistic is �2 log⇤

X

(H
1

;H
0

).)
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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Goodness-of-fit of a fully-specified null distribution

Suppose the observation space X is partitioned into k sets, and let p
i

be the
probability that an observation is in set i , i = 1, . . . , k .

Consider testing H0 : the p
i

’s arise from a fully specified model against H1: the
p
i

’s are unrestricted (but we must still have p
i

� 0,
P

p
i

= 1).

This is a goodness-of-fit test.

Example 9.1

Birth month of admissions to Oxford and Cambridge in 2012

Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
n
i

470 515 470 457 473 381 466 457 437 396 384 394
Are these compatible with a uniform distribution over the year? ⇤
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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Out of n independent observations let N
i

be the number of observations in
the ith set.

So (N1, . . . ,Nk

) ⇠ Multinomial(n; p1, . . . , pk).

For a generalised likelihood ratio test of H0, we need to find the maximised
likelihood under H0 and H1.

Under H1: like(p1, . . . , pk) / pn11 . . . pnk
k

so the loglikelihood is
l = constant +

P
n
i

log p
i

.

We want to maximise this subject to
P

p
i

= 1.

By considering the Lagrangian L =
P

n
i

log p
i

� �(
P

p
i

� 1), we find mle’s
p̂
i

= n
i

/n. Also |⇥1| = k � 1.

Under H0: H0 specifies the values of the p
i

’s completely, p
i

= p̃
i

say, so
|⇥0| = 0.

Putting these two together, we find

2 log⇤ = 2 log

✓
p̂n11 . . . p̂nk

k

p̃n11 . . . p̃nk
k

◆
= 2

X
n
i

log

✓
n
i

np̃
i

◆
. (1)

Here |⇥1|� |⇥0| = k � 1, so we reject H0 if 2 log⇤ > �2
k�1(↵) for an

approximate size ↵ test.
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9. Tests of goodness-of-fit and independence 9.1. Goodness-of-fit of a fully-specified null distribution

Example 9.1 continued:

Under H0 (no e↵ect of month of birth), p̃
i

is the proportion of births in month i in
1993/1994 - this is not simply proportional to number of days in month, as there
is for example an excess of September births (the ’Christmas e↵ect’).

Month Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
n

i

470 515 470 457 473 381 466 457 437 396 384 394
100p̃

i

8.8 8.5 7.9 8.3 8.3 7.6 8.6 8.3 8.6 8.5 8.5 8.3
np̃

i

466.4 448.2 416.3 439.2 436.9 402.3 456.3 437.6 457.2 450.0 451.3 438.2

2 log⇤ = 2
P

n
i

log
⇣

n

i

np̃

i

⌘
= 44.9

P(�2
11 > 44.86) = 3x10�9, which is our p-value.

Since this is certainly less than 0.001, we can reject H0 at the 0.1% level, or
can say ’significant at the 0.1% level’.

NB The traditional levels for comparison are ↵ = 0.05, 0.01, 0.001, roughly
corresponding to ’evidence’, ’strong evidence’, and ’very strong evidence’.
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9. Tests of goodness-of-fit and independence 9.2. Likelihood ratio tests

Likelihood ratio tests

A similar common situation has H0 : pi = p
i

(✓) for some parameter ✓ and H1 as
before. Now |⇥0| is the number of independent parameters to be estimated under
H0.

Under H0: we find mle ✓̂ by maximising
P

n
i

log p
i

(✓), and then

2 log⇤ = 2 log

 
p̂n11 . . . p̂nk

k

p1(✓̂)n1 . . . pk(✓̂)nk

!
= 2

X
n
i

log

 
n
i

np
i

(✓̂)

!
. (2)

Now the degrees of freedom are k � 1� |⇥0|, and we reject H0 if
2 log⇤ > �2

k�1�|⇥0|(↵).
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Pearson’s Chi-squared tests

Notice that (??) and (??) are of the same form.

Let o
i

= n
i

(the observed number in ith set) and let e
i

be np̃
i

in (??) or np
i

(✓̂) in
(??). Let �

i

= o
i

� e
i

. Then

2 log⇤ = 2
X

o
i

log

✓
o
i

e
i

◆

= 2
X

(e
i

+ �
i

) log

✓
1 +

�
i

e
i

◆

⇡ 2
X✓

�
i

+
�2
i

e
i

� �2
i

2e
i

◆

=
X �2

i

e
i

=
X (o

i

� e
i

)2

e
i

,

where we have assumed log
⇣
1 + �

i

e

i

⌘
⇡ �

i

e

i

� �2
i

2e2
i

, ignored terms in �3
i

, and used

that
P

�
i

= 0 (check).

This is Pearson’s chi-squared statistic; we refer it to �2
k�1�|⇥0|.
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.1 continued using R:

chisq.test(n,p=ptilde)
data: n
X-squared = 44.6912, df = 11, p-value = 5.498e-06
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.2

Mendel crossed 556 smooth yellow male peas with wrinkled green female peas.
From the progeny let

N1 be the number of smooth yellow peas,
N2 be the number of smooth green peas,
N3 be the number of wrinkled yellow peas,
N4 be the number of wrinkled green peas.

We wish to test the goodness of fit of the model
H0 : (p1, p2, p3, p4) = (9/16, 3/16, 3/16, 1/16), the proportions predicted by
Mendel’s theory.

Suppose we observe (n1, n2, n3, n4) = (315, 108, 102, 31).

We find (e1, e2, e3, e4) = (312.75, 104.25, 104.25, 34.75), 2 log⇤ = 0.618 and
P (o

i

�e

i

)2

e

i

= 0.604.

Here |⇥0| = 0 and |⇥1| = 4� 1 = 3, so we refer our test statistics to �2
3.

Since �2
3(0.05) = 7.815 we see that neither value is significant at 5% level, so

there is no evidence against Mendel’s theory.

In fact the p-value is approximately P(�2
3 > 0.6) ⇡ 0.96. ⇤

NB So in fact could be considered as a suspiciously good fit
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9. Tests of goodness-of-fit and independence 9.3. Pearson’s Chi-squared tests

Example 9.3

In a genetics problem, each individual has one of three possible genotypes, with
probabilities p1, p2, p3. Suppose that we wish to test H0 : pi = p

i

(✓) i = 1, 2, 3,
where p1(✓) = ✓2, p2(✓) = 2✓(1� ✓), p3(✓) = (1� ✓)2, for some ✓ 2 (0, 1).

We observe N
i

= n
i

, i = 1, 2, 3 (
P

N
i

= n).

Under H0, the mle ✓̂ is found by maximising

X
n
i

log p
i

(✓) = 2n1 log ✓ + n2 log(2✓(1� ✓)) + 2n3 log(1� ✓).

We find that ✓̂ = (2n1 + n2)/(2n) (check).

Also |⇥0| = 1 and |⇥1| = 2.

Now substitute p
i

(✓̂) into (2), or find the corresponding Pearson’s chi-squared
statistic, and refer to �2

1. ⇤
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Testing independence in contingency tables

A table in which observations or individuals are classified according to two or more
criteria is called a contingency table.

Example 9.4

500 people with recent car changes were asked about their previous and new cars.
New car

Large Medium Small
Previous Large 56 52 42
car Medium 50 83 67

Small 18 51 81
This is a two-way contingency table: each person is classified according to
previous car size and new car size. ⇤
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Consider a two-way contingency table with r rows and c columns.

For i = 1, . . . , r and j = 1, . . . , c let p
ij

be the probability that an individual
selected at random from the population under consideration is classified in
row i and column j (ie in the (i , j) cell of the table).

Let p
i+ =

P
j

p
ij

= P(in row i), and p+j

=
P

i

p
ij

= P(in column j).

We must have p++ =
P

i

P
j

p
ij

= 1, ie
P

i

p
i+ =

P
j

p+j

= 1.

Suppose a random sample of n individuals is taken, and let n
ij

be the number
of these classified in the (i , j) cell of the table.

Let n
i+ =

P
j

n
ij

and n+j

=
P

i

n
ij

, so n++ = n.

We have

(N11,N12, . . . ,N1c ,N21, . . . ,Nrc

) ⇠ Multinomial(n; p11, p12, . . . , p1c , p21, . . . , prc).
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

We may be interested in testing the null hypothesis that the two
classifications are independent, so test

H0 : pij = p
i+p+j

, i = 1, . . . , r , j = 1, . . . , c (with
P

i

p
i+ = 1 =

P
j

p+j

,
p
i+, p+j

� 0),

H1 : pij ’s unrestricted (but as usual need p++ = 1, p
ij

� 0).

Under H1 the mle’s are p̂
ij

= n
ij

/n.

Under H0, using Lagrangian methods, the mle’s are p̂
i+ = n

i+/n and
p̂+j

= n+j

/n.

Write o
ij

for n
ij

and let e
ij

= np̂
i+p̂+j

= n
i+n+j

/n.

Then

2 log⇤ = 2
rX

i=1

cX

j=1

o
ij

log

✓
o
ij

e
ij

◆
⇡

rX

i=1

cX

j=1

(o
ij

� e
ij

)2

e
ij

using the same approximating steps as for Pearson’s Chi-squared test.

We have |⇥1| = rc � 1, because under H1 the p
ij

’s sum to one.

Further, |⇥0| = (r � 1) + (c � 1), because p1+, . . . , pr+ must satisfyP
i

p
i+ = 1 and p+1, . . . , p+c

must satisfy
P

j

p+j

= 1.

So |⇥1|� |⇥0| = rc � 1� (r � 1)� (c � 1) = (r � 1)(c � 1).
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Example 9.5

In Example 9.4, suppose we wish to test H0 : the new and previous car sizes are
independent.

We obtain:
New car

o
ij

Large Medium Small
Previous Large 56 52 42 150
car Medium 50 83 67 200

Small 18 51 81 150
124 186 190 500

New car
e
ij

Large Medium Small
Previous Large 37.2 55.8 57.0 150
car Medium 49.6 74.4 76.0 200

Small 37.2 55.8 57.0 150
124 186 190 500

Note the margins are the same.
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9. Tests of goodness-of-fit and independence 9.4. Testing independence in contingency tables

Then
PP (o

ij

�e

ij

)2

e

ij

= 36.20, and df = (3� 1)(3� 1) = 4.

From tables, �2
4(0.05) = 9.488 and �2

4(0.01) = 13.28.

So our observed value of 36.20 is significant at the 1% level, ie there is strong
evidence against H0, so we conclude that the new and present car sizes are not
independent.

It may be informative to look at the contributions of each cell to Pearson’s
chi-squared:

New car
Large Medium Small

Previous Large 9.50 0.26 3.95
car Medium 0.00 0.99 1.07

Small 9.91 0.41 10.11

It seems that more owners of large cars than expected under H0 bought another
large car, and more owners of small cars than expected under H0 bought another
small car.

Fewer than expected changed from a small to a large car. ⇤
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Lecture 10. Tests of homogeneity, and connections to

confidence intervals
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10. Tests of homogeneity, and connections to confidence intervals 10.1. Tests of homogeneity

Tests of homogeneity

Example 10.1

150 patients were randomly allocated to three groups of 50 patients each. Two
groups were given a new drug at di↵erent dosage levels, and the third group
received a placebo. The responses were as shown in the table below.

Improved No di↵erence Worse
Placebo 18 17 15 50
Half dose 20 10 20 50
Full dose 25 13 12 50

63 40 47 150

Here the row totals are fixed in advance, in contrast to Example 9.4 where the
row totals are random variables.

For the above table, we may be interested in testing H
0

: the probability of
“improved” is the same for each of the three treatment groups, and so are the
probabilities of “no di↵erence” and “worse,” ie H

0

says that we have homogeneity
down the rows. ⇤
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10. Tests of homogeneity, and connections to confidence intervals 10.1. Tests of homogeneity

In general, we have independent observations from r multinomial
distributions each of which has c categories,

ie we observe an r ⇥ c table (n
ij

), i = 1, . . . , r , j = 1, . . . , c , where
(N

i1

, . . . ,N
ic

) ⇠ Multinomial(n
i+

; p
i1

, . . . , p
ic

) independently for i = 1, . . . , r .

We test H
0

: p
1j

= p
2j

= . . . = p
rj

= p
j

say, j = 1, . . . , c where p
+

= 1, and
H

1

: p
ij

are unrestricted (but with p
ij

� 0 and p
i+

= 1, i = 1, . . . , r).

Under H1: like((pij)) =
Q

r

i=1

n

i+

!

n

i1

!...n
ic

!

pni1
i1

. . . pnic
ic

, and

loglike = constant +
P

r

i=1

P
c

j=1

n
ij

log p
ij

.

Using Lagrangian methods (with constraints p
i+

= 1, i = 1, . . . , r) we find
p̂
ij

= n
ij

/n
i+

.

Under H0:
loglike = constant +

P
r

i=1

P
c

j=1

n
ij

log p
j

= constant +
P

c

j=1

n
+j

log p
j

.

Lagrangian techniques here (with constraint
P

p
j

= 1) give p̂
j

= n
+j

/n
++

.
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10. Tests of homogeneity, and connections to confidence intervals 10.1. Tests of homogeneity

Hence

2 log⇤ = 2
rX

i=1

cX

j=1

n
ij

log

✓
p̂
ij

p̂
j

◆

= 2
rX

i=1

cX

j=1

n
ij

log

✓
n
ij

n
i+

n
+j

/n
++

◆
,

ie the same as in Example 9.5.

We have |⇥
1

| = r(c � 1) (because there are c � 1 free parameters for each of
r distributions).

Also |⇥
0

| = c � 1 (because H
0

has c parameters p
1

, . . . , p
c

with constraint
p
+

= 1).

So df = |⇥
1

|� |⇥
0

| = r(c � 1)� (c � 1) = (r � 1)(c � 1), and under H
0

,
2 log⇤ is approximately �2

(r�1)(c�1)

(ie same as in Example 9.5).

We reject H
0

if 2 log⇤ > �2

(r�1)(c�1)

(↵) for an approximate size ↵ test.

Let o
ij

= n
ij

, e
ij

= n
i+

n
+j

/n
++

�
ij

= o
ij

� e
ij

, and use the same approximating

steps as for Pearson’s Chi-squared to see that 2 log⇤ ⇡
P

i

P
j

(o

ij

�e

ij

)

2

e

ij

.
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10. Tests of homogeneity, and connections to confidence intervals 10.1. Tests of homogeneity

Example 10.2

Example 10.1 continued

o
ij

Improved No di↵erence Worse
Placebo 18 17 15 50
Half dose 20 10 20 50
Full dose 25 13 12 50

63 40 47 150

e
ij

Improved No di↵erence Worse
Placebo 21 13.3 15.7 50
Half dose 21 13.3 15.7 50
Full dose 21 13.3 15.7 50

We find 2 log⇤ = 5.129, and we refer this to �2

4

.

From tables, �2

4

(0.05) = 9.488, so our observed value is not significant at 5%
level, and the data are consistent with H

0

.

We conclude that there is no evidence for a di↵erence between the drug at the
given doses and the placebo.

For interest,
PP

(o
ij

� e
ij

)2/e
ij

= 5.173, leading to the same conclusion. ⇤
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10. Tests of homogeneity, and connections to confidence intervals 10.2. Confidence intervals and hypothesis tests

Confidence intervals and hypothesis tests

Confidence intervals or sets can be obtained by inverting hypothesis tests,
and vice versa.

Define the acceptance region A of a test to be the complement of the
critical region C .

NB By ’acceptance’, we really mean ’non-rejection’

Suppose X
1

, . . . ,X
n

have joint pdf fX(x |✓), ✓ 2 ⇥.

Theorem 10.3

(i) Suppose that for every ✓
0

2 ⇥ there is a size ↵ test of H
0

: ✓ = ✓
0

. Denote
the acceptance region by A(✓

0

). Then the set I (X) = {✓ : X 2 A(✓)} is a
100(1� ↵)% confidence set for ✓.

(ii) Suppose I (X) is a 100(1� ↵)% confidence set for ✓. Then
A(✓

0

) = {X : ✓
0

2 I (X)} is an acceptance region for a size ↵ test of
H

0

: ✓ = ✓
0

.
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10. Tests of homogeneity, and connections to confidence intervals 10.2. Confidence intervals and hypothesis tests

Proof:

First note that ✓
0

2 I (X) , X 2 A(✓
0

).

For (i), since the test is size ↵, we have
P(accept H

0

| H
0

is true) = P(X 2 A(✓
0

) |✓ = ✓
0

) = 1� ↵

And so P(I (X) 3 ✓
0

|✓ = ✓
0

) = P(X 2 A(✓
0

) |✓ = ✓
0

) = 1� ↵.

For (ii), since I (X) is a 100(1� ↵)% confidence set, we have
P(I (X) 3 ✓

0

|✓ = ✓
0

) = 1� ↵.

So P(X 2 A(✓
0

) |✓ = ✓
0

) = P(I (X) 3 ✓
0

|✓ = ✓
0

) = 1� ↵. ⇤
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10. Tests of homogeneity, and connections to confidence intervals 10.2. Confidence intervals and hypothesis tests

In words,

(i) says that a 100(1� ↵)% confidence set for ✓ consists of all those values of ✓
0

for which H
0

:✓ = ✓
0

is not rejected at level ↵ on the basis of X,

(ii) says that given a confidence set, we define the test by rejecting ✓
0

if it is not
in the confidence set.

Example 10.4

Suppose X
1

, . . . ,X
n

are iid N(µ, 1) random variables and we want a 95%
confidence set for µ.

One way is to use the above theorem and find the confidence set that
belongs to the hypothesis test that we found in Example 10.1.

Using Example 8.3 (with �2

0

= 1), we find a test of size 0.05 of H
0

:µ = µ
0

against H
1

:µ 6= µ
0

that rejects H
0

when |
p
n(x̄ � µ

0

)| > 1.96 (1.96 is the
upper 2.5% point of N(0, 1)).

Then I (X) = {µ :X 2 A(µ)} = {µ : |
p
n(X̄ � µ)| < 1.96} so a 95%

confidence set for µ is (X̄ � 1.96/
p
n, X̄ + 1.96/

p
n).

This is the same confidence interval we found in Example 5.2. ⇤
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10. Tests of homogeneity, and connections to confidence intervals 10.3. Simpson’s paradox*

Simpson’s paradox*

For five subjects in 1996, the admission statistics for Cambridge were as follows:

Women Men
Applied Accepted % Applied Accepted %

Total 1184 274 23 % 2470 584 24%

This looks like the acceptance rate is higher for men. But by subject...

Women Men
Applied Accepted % Applied Accepted %

Computer Science 26 7 27% 228 58 25%
Economics 240 63 26% 512 112 22%
Engineering 164 52 32% 972 252 26%
Medicine 416 99 24% 578 140 24%

Veterinary medicine 338 53 16% 180 22 12%
Total 1184 274 23 % 2470 584 24%

In all subjects, the acceptance rate was higher for women!

Explanation: women tend to apply for subjects with the lowest acceptance rates.

This shows the danger of pooling (or collapsing) contingency tables.
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11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors

Properties of means and covariances of vectors

A random (column) vector X = (X
1

, ..,X
n

)T has mean

µ = E(X) = (E(X
1

), ...,E(X
n

))T = (µ
1

, .., µ
n

)T

and covariance matrix

cov(X) = E[(X� µ)(X� µ)T ] = (cov(X
i

,X
j

))
i,j ,

provided the relevant expectations exist.

For m ⇥ n A,

E[AX] = Aµ,

and
cov(AX) = A cov(X)AT , (1)

since cov(AX) = E
⇥
(AX � E(AX ))(AX � E(AX ))T

�
] =

E
⇥
A(X � E(X ))(X � E(X ))TAT

⇤
.

Define cov(V ,W ) to be a matrix with (i , j) element cov(V
i

,W
j

).

Then cov(AX,BX) = A cov(X)BT . (check. Important for later)
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Multivariate normal distribution

Recall that a univariate normal X ⇠ N(µ,�2) has density

f

X

(x ;µ,�2) = 1p
2⇡�

exp
⇣
� 1

2

(x�µ)2

�2

⌘
, x 2 R,

and mgf
M

X

(s) = E[esX ] = exp
�
µs + 1

2

�2

s

2

�
.

X has a multivariate normal distribution if, for every t 2 Rn, the rv t

T

X

has a normal distribution.

If E(X) = µ and cov(X) = ⌃, we write X ⇠ N
n

(µ,⌃).

Note ⌃ is symmetric and is non-negative definite because by (1),
t

T⌃t = var(tTX) � 0.

By (1), tTX ⇠ N(tTµ, tT⌃t) and so has mgf

M

t

T

X

(s) = E[est
T

X] = exp

✓
t

Tµs +
1

2
t

T⌃ts2
◆
.

Hence X has mgf

M

X

(t) == E[et
T

X] = M

t

T

X

(1) = exp
�
t

Tµ+ 1

2

t

T⌃t
�
. (2)

So distribution of X is determined by µ and ⌃.Lecture 11. Multivariate Normal theory 3 (1–12)



11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.1

(i) If X ⇠ N

n

(µ,⌃) and A is m ⇥ n, then AX ⇠ N

m

(Aµ,A⌃AT )
(ii) If X ⇠ N

n

(0,�2

I ) then

kXk2

�2

=
X

T

X

�2

=
X

X

2

i

�2

⇠ �2

n

.

Proof:

(i) from exercise sheet 3.

(ii) Immediate from definition of �2

n

. ⇤
Note that we often write ||X ||2 ⇠ �2�2

n

.
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11. Multivariate Normal theory 11.2. Multivariate normal distribution

Proposition 11.2

Let X ⇠ N

n

(µ,⌃), X =

✓
X

1

X

2

◆
, where X

i

is a n

i

⇥ 1 column vector, and

n

1

+ n

2

= n. Write similarly µ =

✓
µ

1

µ
2

◆
, and ⌃ =

✓
⌃

11

⌃
12

⌃
21

⌃
22

◆
, where ⌃

ij

is

n

i

⇥ n

j

. Then

(i) X

i

⇠ N

n

i

(µ
i

,⌃
ii

),
(ii) X

1

and X

2

are independent i↵ ⌃
12

= 0.

Proof:

(i) See Example sheet 3.

(ii) From (2), M
X

(t) = exp
�
t

Tµ+ 1

2

t

T⌃t
�
, t 2 Rn. Write

M

X

(t) = exp
�
t

1

Tµ
1

+ t

2

Tµ
2

+ 1

2

t

1

T⌃
11

t

1

+ 1

2

t

2

T⌃
22

t

2

+ 1

2

t

1

T⌃
12

t

2

+ 1

2

t

2

T⌃
21

t

1

�
.

From (i), M
X

i

(t
i

) = exp
�
t

i

Tµ
i

+ 1

2

t

T

i

⌃
ii

t

i

�
so M

X

(t) = M

X

1

(t
1

)M
X

2

(t
2

), for all

t =

✓
t

1

t

2

◆
i↵ ⌃

12

= 0.

⇤
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11. Multivariate Normal theory 11.3. Density for a multivariate normal

Density for a multivariate normal

When ⌃ is positive definite, then X has pdf

f

X

(x;µ,⌃) =
1

|⌃|
1

2

✓
1p
2⇡

◆
n

exp
⇥
� 1

2

(x� µ)T⌃�1(x� µ)
⇤
, x 2 Rn.
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11. Multivariate Normal theory 11.4. Normal random samples

Normal random samples

We now consider X̄ = 1

n

P
X

i

, and S

XX

=
P

(X
i

� X̄ )2 for univariate normal data.

Theorem 11.3

(Joint distribution of X̄ and S

XX

) Suppose X

1

, . . . ,X
n

are iid N(µ,�2),
X̄ = 1

n

P
X

i

, and S

XX

=
P

(X
i

� X̄ )2. Then

(i) X̄ ⇠ N(µ,�2/n);
(ii) S

XX

/�2 ⇠ �2

n�1

;

(iii) X̄ and S

XX

are independent.

Lecture 11. Multivariate Normal theory 7 (1–12)



11. Multivariate Normal theory 11.4. Normal random samples

Proof

We can write the joint density as X ⇠ N
n

(µ,�2

I ), where µ = µ1 ( 1 is a n ⇥ 1
column vector of 1’s).

Let A be the n ⇥ n orthogonal matrix

A =

2

66666664

1p
n

1p
n

1p
n

1p
n

. . . 1p
n

1p
2⇥1

�1p
2⇥1

0 0 . . . 0
1p
3⇥2

1p
3⇥2

�2p
3⇥2

0 . . . 0
...

...
...

...
...

1p
n(n�1)

1p
n(n�1)

1p
n(n�1)

1p
n(n�1)

. . . �(n�1)p
n(n�1)

3

77777775

.

So A

T

A = AA

T = I . (check)

(Note that the rows form an orthonormal basis of Rn.)

(Strictly, we just need an orthogonal matrix with the first row matching that of A
above.)

Lecture 11. Multivariate Normal theory 8 (1–12)



11. Multivariate Normal theory 11.4. Normal random samples

By Proposition 11.1(i), Y = AX ⇠ N
n

(Aµ,A�2

IA

T ) ⇠ N
n

(Aµ,�2

I ), since
AA

T = I .

We have Aµ =

0

BBBB@

p
nµ
0
.
.
0

1

CCCCA
, so Y

1

= 1p
n

P
n

i=1

X

i

=
p
nX̄ ⇠ N(

p
nµ,�2)

(Prop 11.1 (ii))

and Y

i

⇠ N(0,�2), i = 2, ..., n and Y

1

, ...,Y
n

are independent.

Note also that

Y

2

2

+ . . .+ Y

2

n

= Y

T

Y � Y

2

1

= X

T

A

T

AX� Y

2

1

= X

T

X� nX̄

2

=
nX

i=1

X

2

i

� nX̄

2 =
nX

i=1

(X
i

� X̄ )2 = S

XX

.

To prove (ii), note that S
XX

= Y

2

2

+ . . .+ Y

2

n

⇠ �2�2

n�1

(from definition of
�2

n�1

).

FInally, for (iii), since Y

1

and Y

2

, ...,Y
n

are independent (Prop 11.2 (ii)), so
are X̄ and S

XX

. ⇤
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11. Multivariate Normal theory 11.5. Student’s t-distribution

Student’s t-distribution

Suppose that Z and Y are independent, Z ⇠ N(0, 1) and Y ⇠ �2

k

.

Then T = Zp
Y/k

is said to have a t-distribution on k degrees of freedom,

and we write T ⇠ t

k

.

The density of t
k

turns out to be

f

T

(t) =
�((k + 1)/2)

�(k/2)

1p
⇡k

✓
1 +

t

2

k

◆�(k+1)/2

, t 2 R.

This density is symmetric, bell-shaped, and has a maximum at t = 0, rather
like the standard normal density.

However, it can be shown that P(T > t) > P(Z > t) for all t > 0, and that
the t

k

distribution approaches a normal distribution as k ! 1.

E
k

(T ) = 0 for k > 1, otherwise undefined.

var
k

(T ) = k

k�2

for k > 2, = 1 if k = 2, otherwise undefined.

k = 1 is known as the Cauchy distribution, and has an undefined mean and
variance.
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11. Multivariate Normal theory 11.5. Student’s t-distribution

Let t
k

(↵) be the upper 100↵% point of the t

k

- distribution, so that
P(T > t

k

(↵)) = ↵. There are tables of these percentage points.
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11. Multivariate Normal theory 11.6. Application of Student’s t-distribution to normal random samples

Application of Student’s t-distribution to normal random

samples

Let X
1

, . . . ,X
n

iid N(µ,�2).

From Theorem 11.3 X̄ ⇠ N(µ,�2/n) so Z =
p
n(X̄ � µ)/� ⇠ N(0, 1).

Also S

XX

/�2 ⇠ �2

n�1

independently of X̄ and hence of Z .

Hence p
n(X̄ � µ)/�p

S

XX

/((n � 1)�2)
⇠ t

n�1

, ie

p
n(X̄ � µ)p

S

XX

/(n � 1)
⇠ t

n�1

. (3)

Let �̃2 = S

XX

n�1

. Note this is an unbiased estimator, as E(S
XX

) = (n � 1)�2.

Then a 100(1� ↵)% CI for µ is found from

1� ↵ = P
✓
�t

n�1

(↵
2

) 
p
n(X̄ � µ)

�̃
 t

n�1

(↵
2

)

◆

and has endpoints

X̄ ± �̃p
n

t

n�1

(↵
2

).

See example sheet 3 for use of t distributions in hypothesis tests.
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12. The linear model 12.1. Introduction to linear models

Introduction to linear models

Linear models can be used to explain or model the relationship between a
response, or dependent, variable and one or more explanatory variables, or
covariates or predictors.

For example, how do motor insurance claims depend on the age and sex of
the driver, and where they live?

Here the claim rate is the response, and age, sex and region are explanatory
variables, assumed known.
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12. The linear model 12.1. Introduction to linear models

In the linear model, we assume our n observations (responses) are Y

1

, ..,Y
n

are modelled as

Y

i

= �
1

x

i1

+ . . .+ �
p

x

ip

+ "
i

, i = 1, . . . , n, (1)

where

�
1

, ..,�
p

are unknown parameters, n > p

x

i1

, .., x
ip

are the values of p covariates for the ith response (assumed known)

"
1

, .., "
n

are independent (or possible just uncorrelated) random variables with
mean 0 and variance �2.

From (1),

E(Y
i

) = �
1

x

i1

+ . . .+ �
p

x

ip

var(Y
i

) = var("
i

) = �2

Y

1

, ..,Y
n

are independent (or uncorrelated).

Note that (1) is linear in the parameters �
1

, ..,�
p

(there are a wide range of more
complex models which are non-linear in the parameters).
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12. The linear model 12.2. Simple linear regression

Example 12.1

For each of 24 males, the maximum volume of oxygen uptake in the blood and
the time taken to run 2 miles (in minutes) were measured. Interest lies on how
the time to run 2 miles depends on the oxygen uptake.

oxy=c(42.3,53.1,42.1,50.1,42.5,42.5,47.8,49.9,

36.2,49.7,41.5,46.2,48.2,43.2,51.8,53.3,

53.3,47.2,56.9,47.8,48.7,53.7,60.6,56.7)

time=c(918, 805, 892, 962, 968, 907, 770, 743,

1045, 810, 927, 813, 858, 860, 760, 747,

743, 803, 683, 844, 755, 700, 748, 775)

plot(oxy, time)
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12. The linear model 12.2. Simple linear regression

For individual i , let Y
i

be the time to run 2 miles, and x

i

be the maximum
volume of oxygen uptake, i = 1, ..., 24.

A possible model is

Y

i

= a+ �x
i

+ "
i

, i = 1, . . . , 24,

where "
i

are independent random variables with variance �2, and a and b are
constants.
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12. The linear model 12.3. Matrix formulation

Matrix formulation

The linear model may be written in matrix form. Let

Y

n⇥1

=

0

BB@

Y

1

.

.
Y

n

1

CCA , X

n⇥p

=

0

BB@

x

11

. . x

1p

. . . .

. . . .
x

n1

. . x

np

1

CCA , �
p⇥1

=

0

BB@

�
1

.

.
�
p

1

CCA , "
n⇥1

=

0

BB@

"
1

.

.
"
n

1

CCA ,

Then from (1),

Y = X� + " (2)

E(") = 0

cov(Y) = �2

I

We assume throughout that X has full rank p.

We also assume the error variance is the same for each observation: this is the
homoscedastic case (as opposed to heteroscedastic).
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12. The linear model 12.3. Matrix formulation

Example 12.1 continued

Recall Y
i

= a+ bx

i

+ "
i

, i = 1, .., 24.

In matrix form:

Y =

0

BB@

Y

1

.

.
Y

24

1

CCA , X =

0

BB@

1 x

1

. .

. .
1 x

24

1

CCA , � =

✓
a

b

◆
, " =

0

BB@

"
1

.

.
"
24

1

CCA ,

Then
Y = X� + "
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12. The linear model 12.4. Least squares estimation

Least squares estimation

In a linear model Y = X� + ", the least squares estimator �̂ of � minimises

S(�) = kY � X�k2 = (Y � X�)T (Y � X�)

=
nX

i=1

(Y
i

�
pX

j=1

x

ij

�
j

)2

So
@S

@�
k

����
�=

ˆ�
= 0, k = 1, .., p.

So �2
P

n

i=1

x

ik

(Y
i

�
P

p

j=1

x

ij

�̂
j

) = 0, k = 1, .., p.

i.e.
P

n

i=1

x

ik

P
p

j=1

x

ij

�̂
j

=
P

n

i=1

x

ik

Y

i

, k = 1, .., p.

In matrix form,
X

T

X �̂ = X

T

Y (3)

the least squares equation.
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12. The linear model 12.4. Least squares estimation

Recall we assume X is of full rank p.

This implies
t

T

X

T

X t = (X t)T (X t) = kX tk2 > 0

for t 6= 0 in Rp.

i.e. XT

X is positive definite, and hence has an inverse.

Hence
�̂ = (XT

X )�1

X

T

Y (4)

which is linear in the Y

i

’s.

We also have that

E(�̂) = (XT

X )�1

X

TE(Y) = (XT

X )�1

X

T

X� = �

so �̂ is unbiased for �.

And
cov(�̂) = (XT

X )�1

X

T cov(Y)X (XT

X )�1 = (XT

X )�1�2 (5)

since cov(Y) = �2

I .
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12. The linear model 12.5. Simple linear regression using standardised x ’s

Simple linear regression using standardised x ’s

The model
Y

i

= a+ bx

i

+ "
i

, i = 1, . . . , n,

can be reparametrised to

Y

i

= a

0 + b(x
i

� x̄) + "
i

, i = 1, . . . , n, (6)

where x̄ =
P

x

i

/n and a

0 = a+ bx̄ .

Since
P

i

(x
i

� x̄) = 0, this leads to simplified calculations.
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12. The linear model 12.5. Simple linear regression using standardised x ’s

In matrix form, X =

0

@
1 (x

1

� x̄)
. .
1 (x

24

� x̄)

1

A , so that XT

X =

✓
n 0
0 S

xx

◆
,

where S

xx

=
P

i

(x
i

� x̄)2.

Hence

(XT

X )�1 =

✓
1

n

0
0 1

S

xx

◆
,

so that

�̂ = (XT

X )�1

X

T

Y =

✓
Ȳ 0

0 S

xY

S

xx

◆
,

where S

xY

=
P

i

Y

i

(x
i

� x̄).
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12. The linear model 12.5. Simple linear regression using standardised x ’s

We note that the estimated intercept is â0 = ȳ , and the estimated gradient b̂
is

b̂ =
S

xy

S

xx

=

P
i

y

i

(x
i

� x̄)P
i

(x
i

� x̄)2
=

P
i

(y
i

� ȳ)(x
i

� x̄)pP
i

(x
i

� x̄)2
P

i

(y
i

� ȳ)2)
⇥
r

S

yy

S

xx

= r ⇥
r

S

yy

S

xx

Thus the gradient is the Pearson product-moment correlation coe�cient r ,
times the ratio of the empirical standard deviations of the y ’s and x ’s.

(Note this gradient is the same whether the x ’s are standardised to have
mean 0 or not.)

From (5), cov(�̂) = (XT

X )�1�2, and so

var(â0) = var(Ȳ ) =
�2

n

; var(b̂) =
�2

S

xx

;

These estimators are uncorrelated.

All these results are obtained without any explicit distributional assumptions.
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12. The linear model 12.5. Simple linear regression using standardised x ’s

Example 12.1 continued

n = 24, â0 = ȳ = 826.5.

S

xx

= 783.5 = 28.02, S
xy

= �10077, S
yy

= 4442, r = �0.81, b̂ = �12.9.

Line goes through (x̄ , ȳ).
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12. The linear model 12.6. ’Gauss Markov’ theorem

’Gauss Markov’ theorem

Theorem 12.2

In the full rank linear model, let �̂ be the least squares estimator of � and let �⇤

be any other unbiassed estimator for � which is linear in the Y

i

’s.

Then var(tT �̂)  var(tT�⇤) for all t 2 Rp.
We say that �̂ is the Best Linear Unbiased Estimator of � (BLUE).

Proof:

Since �⇤ is linear in the Y

i

’s, �⇤ = AY for some A

p⇥n

.

Since �⇤ is unbiased, we have that � = E(�⇤) = AX� for all � 2 Rp, and so
AX = I

p

.

Now

cov(�⇤) = E
�
�⇤ � �)(�⇤ � �)T

�

= E
�
AX� + A"� �)(AX� + A"� �)T

�

= E
�
A""TAT

�
since AX� = �

= A(�2

I )AT = �2

AA

T
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12. The linear model 12.6. ’Gauss Markov’ theorem

Now �⇤ � �̂ = (A� (XT

X )�1

X

T )Y = B

p⇥n

Y, say.

And BX = AX � (XT

X )�1

X

T

X = I

p

� I

p

= 0.

So

cov(�⇤) = �2(B + (XT

X )�1

X

T )(B + (XT

X )�1

X

T )T

= �2(BBT + (XT

X )�1)

= �2

BB

T + cov(�̂)

So for t 2 Rp,

var(tT�⇤) = t

T cov(�⇤)t = t

T cov(�)t+ t

T

BB

T

t �2

= var(tT �̂) + �2kBT

tk2

� var(tT �̂).

Taking t = (0, .., 1, 0, .., 0)T with a 1 in the ith position, gives

var(�̂
i

)  var(�⇤
i

).

⇤
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12. The linear model 12.7. Fitted values and residuals

Fitted values and residuals

Definition 12.3

Ŷ = X �̂ is the vector of fitted values.
R = Y � Ŷ is the vector of residuals.
The residual sum of squares is RSS = kRk2 = R

T

R = (Y � X �̂)T (Y � X �̂)

Note X

T

R = X

T (Y � Ŷ) = X

T

Y � X

T

X �̂ = 0 by (3).

So R is orthogonal to the column space of X .

Write Ŷ = X �̂ = X (XT

X )�1

X

T

Y = PY, where P = X (XT

X )�1

X

T .

P represents an orthogonal projection of Rn onto the space spanned by
columns of X . We have P

2 = P (P is idempotent) and P

T = P (symmetric).
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Lecture 13. Linear models with normal assumptions
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13. Linear models with normal assumptions 13.1. One way analysis of variance

One way analysis of variance

Example 13.1

Resistivity of silicon wafers was measured by five instruments.
Five wafers were measured by each instrument (25 wafers in all).
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13. Linear models with normal assumptions 13.1. One way analysis of variance

y=c(130.5,112.4,118.9,125.7,134.0,
130.4,138.2,116.7,132.6,104.2,
113.0,120.5,128.9,103.4,118.1,
128.0,117.5,114.9,114.9, 98.9,
121.2,110.5,118.5,100.5,120.9)

Let Yi,j be the resistivity of the jth wafer measured by instrument i , where
i , j = 1, .., 5.

A possible model is, for i , j = 1, .., 5.

Yi,j = µi + "i,j ,

where "i,j are independent N(0,�2) random variables, and the µi ’s are unknown
constants.

Lecture 13. Linear models with normal assumptions 3 (1–14)



13. Linear models with normal assumptions 13.1. One way analysis of variance

This can be written in matrix form: Let

Y

25⇥1
=

0

BBBBBBBBBBBBBBBBBBBBBB@

Y1,1

.

.
Y1,5

Y2,1

.

.
Y2,5

.

.
Y5,1

.

.
Y5,5

1

CCCCCCCCCCCCCCCCCCCCCCA

, X
25⇥5

=

0

BBBBBBBBBBBBBBBBBBBBBB@

1 0 ... 0
. . ... .
. . ... .
1 0 ... 0
0 1 ... 0
. . ... .
. . ... .
0 1 ... 0
. . ... .
. . ... .
0 0 ... 1
. . ... .
. . ... .
0 0 ... 1

1

CCCCCCCCCCCCCCCCCCCCCCA

, �
5⇥1

=

0

BBBB@

µ1

µ2

µ3

µ4

µ5

1

CCCCA
, "

25⇥1
=

0

BBBBBBBBBBBBBBBBBBBBBB@

"1,1
.
.

"1,5
"2,1
.
.

"2,5
.
.

"5,1
.
.

"5,5

1

CCCCCCCCCCCCCCCCCCCCCCA

,

Then
Y = X� + ".

Lecture 13. Linear models with normal assumptions 4 (1–14)



13. Linear models with normal assumptions 13.1. One way analysis of variance

X

T
X =

0

BB@

5 0 ... 0
0 5 ... 0
. . ... .
0 0 .. 5

1

CCA .

Hence

(XT
X )�1 =

0

BB@

1
5 0 ... 0
0 1

5 ... 0
. . ... .
0 0 .. 1

5

1

CCA ,

so that

µ̂ = (XT
X )�1

X

T
Y =

0

@
Y1.

..
Y5.

1

A

RSS =
P5

i=1

P5
j=1(Yi,j � µ̂i )

2 =
P5

i=1

P5
j=1(Yi,j � Yi.)

2 on n � p = 25� 5 = 20
degrees of freedom.

For these data, �̃ =
p
RSS/(n � p) =

p
2170/20 = 10.4.
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13. Linear models with normal assumptions 13.2. Assuming normality

Assuming normality

We now make a Normal assumption

Y = X� + ", " ⇠ Nn(0,�
2
I ), rank (X ) = p(< n).

This is a special case of the linear model of Lecture 12, so all results hold.

Since Y ⇠ Nn(X�,�2
I ), the log-likelihood is

`(�,�2) = �n

2
log 2⇡ � n

2
log �2 � 1

2�2
S(�),

where S(�) = (Y � X�)T (Y � X�).

Maximising ` wrt � is equivalent to minimising S(�), so MLE is

�̂ = (XT
X )�1

X

T
Y,

the same as for least squares.
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13. Linear models with normal assumptions 13.2. Assuming normality

For the MLE of �2, we require

@`

@�2

���� ˆ�,�̂2

= 0,

i.e. � n

2�̂2
+

S(�̂)

2�̂4
= 0

. So

�̂2 =
1

n

S(�̂) =
1

n

(Y � X �̂)T (Y � X �̂) =
1

n

RSS,

where RSS is ’residual sum of squares’ - see last lecture.

See example sheet for �̂ and �̂2 for simple linear regression and one-way
analysis of variance.
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13. Linear models with normal assumptions 13.2. Assuming normality

Lemma 13.2

(i) If Z ⇠ Nn(0,�2
I ), and A is n ⇥ n, symmetric, idempotent with rank r , then

Z

T
AZ ⇠ �2�2

r .
(ii) For a symmetric idempotent matrix A, rank(A) = trace(A)

Proof:

(i) A2 = A since idempotent, and so eigenvalues of A are
�i 2 {0, 1}, i = 1, .., n, [�ix = Ax = A

2
x = �2

i x].

A is also symmetric, and so there exists an orthogonal Q such that

Q

T
AQ = diag (�1, ..,�n) = diag (1, .., 1,

r
0, ..., 0
n�r

) = ⇤ (say).

Let W = Q

T
Z, and so Z = QW. Then W ⇠ Nn(0,�2

I ) by Proposition
11.1(i). (since cov(W) = Q

T�2
IQ = �2

I ).

Then

Z

T
AZ = W

T
Q

T
AQW = W

T⇤W =
rX

i=1

w

2
i ⇠ �2

r ,

from the definition of �2.
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13. Linear models with normal assumptions 13.2. Assuming normality

(ii)

rank (A) = rank (QT
AQ) if Q orthogonal

= rank (⇤)

= trace (⇤)

= trace (QT
AQ)

= trace (AQT
Q) since tr(AB) = tr(BA)

= trace (A)

⇤
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13. Linear models with normal assumptions 13.2. Assuming normality

Theorem 13.3

For the normal linear model Y ⇠ Nn(X�,�2
I ),

(i) �̂ ⇠ Np(�,�2(XT
X )�1).

(ii) RSS ⇠ �2�2
n�p, and so �̂2 ⇠ �2

n �2
n�p.

(iii) �̂ and �̂2
are independent.

(also may be referred to as Theorem 3.6 in Example Sheets)

Proof:

(i) �̂ = (XT
X )�1

X

T
Y, say CY.

Then from Proposition 11.1(i), �̂ ⇠ Np(�,�2(XT
X )�1).
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13. Linear models with normal assumptions 13.2. Assuming normality

(ii) We can apply Lemma 13.2(i) with Z = Y � X� ⇠ Nn(0,�2
In) and

A = (In � P), where P = X (XT
X )�1

X

T is the projection matrix covered
after Definition 12.3.

(P is also known as the ’hat’ matrix since it projects from the observation Y

onto the fitted values Ŷ.)

P is symmetric and idempotent, so In � P is also symmetric and idempotent
(check).

By Lemma 13.2(ii),

rank(P) = trace(P) = trace(X (XT
X )�1

X

T ) = trace((XT
X )�1

X

T
X ) = p,

so rank(In � P) = trace(In � P) = n � p.

Note that (In � P)X = 0 (check) so that

Z

T
AZ = (Y � X�)T (In � P)(Y � X�) = Y

T (In � P)Y since (In � P)X = 0.

We know R = Y � Ŷ = (In � P)Y and (In � P) is symmetric and
idempotent, and so

RSS = R

T
R = Y

T (In � P)Y (= Z

T
AZ).

Hence by Lemma 13.2(i), RSS ⇠ �2�2
n�p and �̂2 = RSS

n ⇠ �2

n �2
n�p.
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13. Linear models with normal assumptions 13.2. Assuming normality

(iii) Let V

(p+n)⇥1
=

✓
�̂
R

◆
= DY, where D =

✓
C

In � P

◆
is a (p + n)⇥ n

matrix.

By Proposition 11.1(i), V is multivariate normal with

cov(V ) = �2
DD

T = �2

✓
CC

T
C (In � P)T

(In � P)CT (In � P)(In � P)T

◆

= �2

✓
CC

T
C (In � P)

(In � P)CT (In � P)

◆
.

We have C (In � P) = 0 (check) [(XT
X )�1

X

T (In � P) = 0 because
(In � P)X = 0].

Hence �̂ and R are independent by Proposition 11.2(ii).

Hence �̂ and RSS=R

T
R are independent, and so �̂ and �̂2 are independent.

⇤.

From (ii), E(RSS) = �2(n � p), and so �̃2 = RSS
n�p is an unbiased estimator of �2.

�̃ is often known as the residual standard error on n � p degrees of freedom.
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13. Linear models with normal assumptions 13.2. Assuming normality

Example 12.1 continued

The RSS = residual sum of squares is the sum of the squared vertical distances
from the data-points to the fitted straight line.

RSS =
P

i (yi � ŷi )
2 =

P
i (yi � â

0 � b̂(xi � x̄)2 = 67968.

So the estimate of

�̃2 =
RSS

n � p

=
67968

(24� 2)
= 3089.

Residual standard error is �̃ =
p
3089 = 55.6 on 22 degrees of freedom.
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13. Linear models with normal assumptions 13.3. The F distribution

The F distribution

Suppose that U and V are independent with U ⇠ �2
m and V ⇠ �2

n.

Then X = (U/m)/(V /n) is said to have an F distribution on m and n

degrees of freedom.

We write X ⇠ Fm,n.

Note that, if X ⇠ Fm,n then 1/X ⇠ Fn,m.

Let Fm,n(↵) be the upper 100↵% point for the Fm,n-distribution so that if
X ⇠ Fm,n then P(X > Fm,n(↵)) = ↵. These are tabulated.

If we need, say, the lower 5% point of Fm,n, then find the upper 5% point x
of Fn,m and use P(Fm,n < 1/x) = P(Fn,m > x).

Note further that it is immediate from the definitions of tn and F1,n that if
Y ⇠ tn then Y

2 ⇠ F1,n, since ratio of independent �2
1 and �2

n variables.
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Lecture 14. Applications of the distribution theory
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14. Applications of the distribution theory 14.1. Inference for �

Inference for �

We know that �̂ ⇠ N
p

(�,�2(XTX )�1), and so

�̂
j

⇠ N(�
j

,�2(XTX )�1

jj

).

The standard error of �̂
j

is

s.e.(�̂
j

) =
q
�̃2(XTX )�1

jj

,

where �̃2 = RSS/(n � p), as in Theorem 13.3.

Then

�̂
j

� �
j

s.e.(�̂
j

)
=

�̂
j

� �
jq

�̃2(XTX )�1

jj

=
(�̂

j

� �
j

)/
q
�2(XTX )�1

jj

p
RSS/((n � p)�2)

.

The numerator is a standard normal N(0, 1), the denominator is an independentq
�2

n�p

/(n � p), and so
ˆ�
j

��
j

s.e.( ˆ�
j

)

⇠ t
n�p

.
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14. Applications of the distribution theory 14.1. Inference for �

So a 100(1� ↵)% CI for �
j

has endpoints �̂
j

± s.e.(�̂
j

) t
n�p

(↵
2

).

To test H
0

: �
j

= 0, use the fact that, under H
0

,
ˆ�
j

s.e.( ˆ�
j

)

⇠ t
n�p

.
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14. Applications of the distribution theory 14.2. Simple linear regression

Simple linear regression

We assume that
Y
i

= a0 + b(x
i

� x̄) + "
i

, i = 1, . . . , n,

where x̄ =
P

x
i

/n, and "
i

, i = 1, ..., n are iid N(0,�2).

Then from Lecture 12 and Theorem 13.3 we have that

â0 = Y ⇠ N

✓
a0,

�2

n

◆
, b̂ =

S
xY

S
xx

⇠ N

✓
b,

�2

S
xx

◆
,

Ŷ
i

= â0 + b̂(x
i

� x̄), RSS =
X

i

(Y
i

� Ŷ
i

)2 ⇠ �2�2

n�2

,

and (â0, b̂) and �̂2 = RSS/n are independent.
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14. Applications of the distribution theory 14.2. Simple linear regression

Example 12.1 continued

We have seen that �̃2 = RSS
n�p

= 67968

(24�2)

= 3089 = 55.62.

So the standard error of b̂ is

s.e.(b̂) =
q
�̃2(XTX )�1

22

,=

r
3089

S
xx

=
55.6

28.0
= 1.99.

So a 95% interval for b has endpoints
b̂ ± s.e.(b̂)⇥ t

n�p

(0.025) = �12.9± 1.99 ⇤ t
22

(0.025) = (�17.0,�8.8),
where t

22

(0.025) = 2.07.

This does not contain 0. Hence if carry out a size 0.05 test of H
0

: b = 0 vs

H
1

: b 6= 0, the test statistic would be
ˆ

b

s.e.(ˆb) =
�12.9
1.99 = �6.48, and we would

reject H
0

since this is less than �t
22

(0.025) = �2.07.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 826.500 11.346 72.846 < 2e-16 ***

oxy.s -12.869 1.986 -6.479 1.62e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 55.58 on 22 degrees of freedom
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14. Applications of the distribution theory 14.3. Expected response at x⇤

Expected response at x⇤

Let x⇤ be a new vector of values for the explanatory variables

The expected response at x⇤ is E(Y |x⇤) = x⇤T�.

We estimate this by x⇤T �̂.

By Theorem 13.3 and Proposition 11.1(i),

x⇤T (�̂ � �) ⇠ N(0,�2 x⇤T (XTX )�1x⇤).

Let ⌧ 2 = x⇤T (XTX )�1x⇤.

Then
x⇤T (�̂ � �)

�̃⌧
⇠ t

n�p

.

A 100(1� ↵)% confidence interval for the expected response x⇤T� has
endpoints

x⇤T �̂ ± �̃⌧ t
n�p

(↵
2

).
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14. Applications of the distribution theory 14.3. Expected response at x⇤

Example 12.1 continued

Suppose we wish to estimate the time to run 2 miles for a man with an
oxygen take-up measurement of 50.

Here x⇤T = (1, (50� x̄)), where x̄ = 48.6.

The estimated expected response at x⇤T is

x⇤T �̂ = â0 + (50� 48.6)⇥ b̂ = 826.5� 1.4⇥ 12.9 = 808.5.

We find ⌧ 2 = x⇤T (XTX )�1x⇤ = 1

n

+ x⇤2

S

xx

= 1

24

+ 1.42

783.5 = 0.044 = 0.212.

So a 95% CI for E(Y |x⇤ = 50� x̄) is

x⇤T �̂ ± �̃⌧ t
n�p

(↵
2

) = 808.5± 55.6⇥ 0.21⇥ 2.07 = (783.6, 832.2).
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14. Applications of the distribution theory 14.3. Expected response at x⇤

oxy.s = oxy - mean(oxy)

fit=lm(time~ oxy.s )

pred=predict.lm(fit, interval="confidence")

plot(oxy, time,col="red", pch=19, xlab="Oxygen uptake",ylab="Time for 2 miles", main="96\% CI for fitted line")

lines(oxy, pred[, "fit"])

lines(oxy, pred[, "lwr"], lty = "dotted")

lines(oxy, pred[, "upr"], lty = "dotted")
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14. Applications of the distribution theory 14.4. Predicted response at x⇤

Predicted response at x⇤
The response at x⇤ is Y ⇤ = x⇤� + "⇤, where "⇤ ⇠ N(0,�2), and Y ⇤ is
independent of Y

1

, ..,Y
n

.

We predict Ŷ ⇤ by x⇤T �̂.

A 100(1� ↵)% prediction interval for Y ⇤ is an interval I (Y) such that
P(Y ⇤ 2 I (Y)) = 1� ↵, where the probability is over the joint distribution of
(Y ⇤,Y

1

, ...,Y
n

).

Observe that Ŷ ⇤ � Y ⇤ = x⇤T (�̂ � �)� "⇤.

So E(Ŷ ⇤ � Y ⇤) = x⇤T (� � �) = 0.

And

var(Ŷ ⇤ � Y ⇤) = var(x⇤T (�̂)) + var("⇤)

= �2x⇤T (XTX )�1x⇤ + �2

= �2(⌧ 2 + 1)

So
Ŷ ⇤ � Y ⇤ ⇠ N(0,�2(⌧ 2 + 1)).
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14. Applications of the distribution theory 14.4. Predicted response at x⇤

We therefore find that
Ŷ ⇤ � Y ⇤

�̃
p
(⌧ 2 + 1)

⇠ t
n�p

.

So the interval with endpoints

x⇤T �̂ ± �̃
p
(⌧ 2 + 1) t

n�p

(↵
2

).

is a 95% prediction interval for Y ⇤.

Example 12.1 continued

A 95% prediction interval for Y ⇤ at x⇤T = (1, (50� x̄)) is

x⇤T �̂ ± �̃
p
(⌧ 2 + 1) t

n�p

(↵
2

) = 808.5± 55.6⇥ 1.02⇥ 2.07 = (691.1, 925.8).
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14. Applications of the distribution theory 14.4. Predicted response at x⇤

pred=predict.lm(fit, interval="prediction")

Note wide prediction intervals for individual points, with the width of the interval
dominated by the residual error term �̃ rather than the uncertainty about the
fitted line.
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14. Applications of the distribution theory 14.4. Predicted response at x⇤

Example 13.1 continued. One-way analysis of variance

Suppose we wish to estimate the expected resistivity of a new wafer in the
first instrument.

Here x⇤T = (1, 0, .., 0).

The estimated expected response at x⇤T is

x⇤T µ̂ = µ̂
1

= Y
1. = 124.3

We find ⌧ 2 = x⇤T (XTX )�1x⇤ = 1

5

.

So a 95% CI for E(Y
1⇤) is x⇤T µ̂± �̃ ⌧ t

n�p

(↵
2

)

= 124.3± 10.4/
p
5⇥ 2.09 = 124.3± 4.66⇥ 2.09 = (114.6, 134.0).

Note that we are using an estimate of � obtained from all five instruments. If
we had only used the data from the first instrument, � would be estimated as

�̃
1

=
qP

5

j=1

(y
1,j � y

1.)2/(5� 1) = 8.74.

The observed 95% confidence interval for µ
1

would have been

y
1. ± �̃

1p
5

t
4

(↵
2

) = 124.3± 3.91⇥ 2.78 = (113.5, 135.1).

The ’pooled’ analysis gives a slightly narrower interval.
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14. Applications of the distribution theory 14.4. Predicted response at x⇤
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14. Applications of the distribution theory 14.4. Predicted response at x⇤

A 95% prediction interval for Y
1⇤ at x⇤T = (1, 0, ..., 0) is

x⇤T µ̂± �̃
p
(⌧ 2 + 1) t

n�p

(↵
2

) = 124.3± 10.42⇥ 1.1⇥ 2.07 = (100.5, 148.1).

Lecture 14. Applications of the distribution theory 14 (1–14)



14.

Lecture 15. Hypothesis testing in the linear model
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15. Hypothesis testing in the linear model 15.1. Preliminary lemma

Preliminary lemma

Lemma 15.1

Suppose Z ⇠ N
n

(0,�2I
n

) and A1 and A2 and symmetric, idempotent n ⇥ n
matrices with A1A2 = 0. Then Z

TA1Z and Z

TA2Z are independent.

Proof:

Let W
i

= A
i

Z, i = 1, 2 and W

2n⇥1
=

✓
W1

W2

◆
= AZ, where A

2n⇥n

=

✓
A1

A2

◆
.

By Proposition 11.1(i), W ⇠ N2n

✓✓
0

0

◆
,�2

✓
A1 0
0 A2

◆◆
check.

So W1 and W2 are independent, which implies W1
T

W1 = Z

TA1Z and
W2

T

W2 = Z

TA2Z are independent. ⇤.
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15. Hypothesis testing in the linear model 15.2. Hypothesis testing

Hypothesis testing

Suppose X
n⇥p

= ( X0
n⇥p0

X1
n⇥(p�p0)

) and � =

✓
�0

�1

◆
, where

rank(X ) = p, rank(X0) = p0.

We want to test H0 : �1 = 0 against H1 : �1 6= 0.

Under H0, Y = X0�0 + ".

Under H0, MLEs of �0 and �2 are

ˆ̂�0 = (X0
TX0)

�1X0
T

Y

ˆ̂�2 =
RSS0
n

=
1

n
(Y � X0

ˆ̂�0)
T (Y � X0

ˆ̂�0)

and these are independent, by Theorem 13.3.

So fitted values under H0 are

ˆ̂
Y = X0(X0

TX0)
�1X0

T

Y = P0Y,

where P0 = X0(X0
TX0)

�1X0
T .
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15. Hypothesis testing in the linear model 15.3. Geometric interpretation

Geometric interpretation
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15. Hypothesis testing in the linear model 15.4. Generalised likelihood ratio test

Generalised likelihood ratio test

The generalised likelihood ratio test of H0 against H1 is

⇤
Y

(H0,H1) =

⇣
1p
2⇡�̂2

⌘
n

exp
⇣
� 1

2�̂2 (Y � X �̂)T (Y � X �̂)
⌘

✓
1p
2⇡ ˆ̂�2

◆
n

exp
⇣
� 1

2ˆ̂�2
(Y � X ˆ̂�0)T (Y � X ˆ̂�0)

⌘

=

 
ˆ̂�2

�̂2

! n

2

=

✓
RSS0
RSS

◆ n

2

=

✓
1 +

RSS0 � RSS

RSS

◆ n

2

We reject H0 when 2 log⇤ is large, equivalently when (RSS0�RSS)
RSS is large.

Using the results in Lecture 8, under H0

2 log⇤ = n log

✓
1 +

RSS0 � RSS

RSS

◆

is approximately a �2
p1�p0

rv.

But we can get an exact null distribution.
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15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

Null distribution of test statistic

We have RSS = Y

T (I
n

� P)Y (see proof of Theorem 13.3 (ii)), and so

RSS0 � RSS = Y

T (I
n

� P0)Y � Y

T (I
n

� P)Y = Y

T (P � P0)Y.

Now I
n

� P and P � P0 are symmetric and idempotent, and therefore
rank(I

n

� P) = n � p, and

rank(P � P0) = tr(P � P0) = tr(P)� tr(P0) = rank(P)� rank(P0) = p � p0.

Also
(I
n

� P)(P � P0) = (I
n

� P)P � (I
n

� P)P0 = 0.

Finally,

Y

T (I
n

� P)Y = (Y � X0�0)
T (I

n

� P)(Y � X0�0) since (I
n

� P)X0 = 0,

Y

T (P � P0)Y = (Y � X0�0)
T (P � P0)(Y � X0�0) since (P � P0)X0 = 0,
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15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

Applying Lemmas 13.2 (ZTA
i

Z ⇠ �2�2
r

) and 15.1 to
Z = Y � X0�0,A1 = I

n

� P ,A2 = P � P0 to get that under H0,

RSS = Y

T (I
n

� P)Y ⇠ �2
n�p

RSS0 � RSS = Y

T (P � P0)Y ⇠ �2
p�p0

and these rvs are independent.

So under H0,

F =
Y

T (P � P0)Y/(p � p0)

Y

T (I
n

� P)Y/(n � p)
=

(RSS0 � RSS)/(p � p0)

RSS/(n � p)
⇠ F

p�p0,n�p

.

Hence we reject H0 if F > F
p�p0,n�p

(↵).

RSS0 - RSS is the ’reduction in the sum of squares due to fitting �1.
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15. Hypothesis testing in the linear model 15.6. Arrangement as an ’analysis of variance’ table

Arrangement as an ’analysis of variance’ table

Source of degrees of sum of squares mean square F statistic
variation freedom (df)

Fitted model p � p0 RSS0 - RSS (RSS0�RSS)
(p�p0)

(RSS0�RSS)/(p�p0)

RSS/(n�p)

Residual n � p RSS RSS
(n�p)

n � p0 RSS0

The ratio (RSS0�RSS)
RSS0

is sometimes known as the proportion of variance

explained by �1, and denoted R2.
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Simple linear regression

We assume that

Y
i

= a0 + b(x
i

� x̄) + "
i

, i = 1, . . . , n,

where x̄ =
P

x
i

/n, and "
i

, i = 1, ..., n are iid N(0,�2).

Suppose we want to test the hypothesis H0 : b = 0, i.e. no linear relationship.
From Lecture 14 we have seen how to construct a confidence interval, and so
could simply see if it included 0.

Alternatively , under H0, the model is Y
i

⇠ N(a0,�2), and so â0 = Y , and the
fitted values are Ŷ

i

= Y .

The observed RSS0 is therefore

RSS0 =
X

i

(y
i

� y)2 = S
yy

.

The fitted sum of squares is therefore

RSS0�RSS =
X

i

⇣
(y

i

� y)2 � (y
i

� y � b̂(x
i

� x̄))2
⌘
= b̂2(x

i

�x̄)2 = b̂2S
xx

.
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Source of d.f. sum of squares mean square F statistic
variation

Fitted model 1 RSS0 � RSS = b̂2S
xx

b̂2S
xx

F = b̂2S
xx

/�̃2

Residual n � 2 RSS =
P

i

(y
i

� ŷ)2 �̃2

n � 1 RSS0 =
P

i

(y
i

� y)2

Note that the proportion of variance explained is b̂2S
xx

/S
yy

=
S

2
xy

S

xx

S

yy

= r2,

where r is Pearson’s Product Moment Correlation coe�cient
r = S

xy

/
p
S
xx

S
yy

.

From lecture 14, slide 5, we see that under H0,
b̂

s.e.(b̂) ⇠ t
n�2, where

s.e.(b̂) = �̃/
p
S
xx

.

So b̂

s.e.(b̂) =
b̂

p
S

xx

�̃ = t.

Checking whether |t| > t
n�2(

↵
2 ) is precisely the same as checking whether

t2 = F > F1,n�2(↵), since a F1,n�2 variable is t2
n�2.

Hence the same conclusion is reached, whether based on a t-distribution or
the F statistic derived from an analysis-of-variance table.
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Example 12.1 continued

As R code

> fit=lm(time~ oxy.s )

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F)

oxy.s 1 129690 129690 41.98 1.62e-06 ***

Residuals 22 67968 3089

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note that the F statistic, 41.98, is �6.482, the square of the t statistic on Slide 5
in Lecture 14.
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

One way analysis of variance with equal numbers in each
group

Assume J measurements taken in each of I groups, and that

Y
i,j = µ

i

+ "
i,j ,

where "
i,j are independent N(0,�2) random variables, and the µ

i

’s are
unknown constants.

Fitting this model gives
RSS =

P
I

i=1

P
J

j=1(Yi,j � µ̂
i

)2 =
P

I

i=1

P
J

j=1(Yi,j � Y
i.)

2 on n � I degrees of
freedom.

Suppose we want to test the hypothesis H0 : µi

= µ, i.e. no di↵erence
between groups.

Under H0, the model is Y
i,j ⇠ N(µ,�2), and so µ̂ = Y .., and the fitted values

are Ŷ
i,j = Y ...

The observed RSS0 is therefore

RSS0 =
X

i

X

j

(y
i,j � y ..)

2.
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

The fitted sum of squares is therefore

RSS0 � RSS =
X

i

X

j

�
(y

i,j � y ..)
2 � (y

i,j � y
i.)

2
�
= J

X

i

(y
i. � y ..)

2.

Source of d.f. sum of squares mean square F statistic
variation

Fitted model I � 1 J
P

i

(y
i. � y ..)

2 J

P
i

(y
i.�y ..)

2

(I�1) F =
J

P
i

(y
i.�y ..)

2

(I�1)�̃2

Residual n � I
P

i

P
j

(y
i,j � y

i.)
2 �̃2

n � 1
P

i

P
j

(y
i,j � y ..)

2
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

Example 13.1

As R code

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F)

x 4 507.9 127.0 1.17 0.354

Residuals 20 2170.1 108.5

The p-value is 0.35, and so there is no evidence for a di↵erence between the
instruments.
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16. Linear model examples 16.1. Two samples: testing equality of means, unknown common variance.

Two samples: testing equality of means, unknown common

variance.

Suppose we have two independent samples,

X
1

, . . . ,X
m

iid N(µ
X

,�2), and Y
1

, . . .Y
n

iid N(µ
Y

,�2),

with �2 unknown.

We wish to test H
0

: µ
X

= µ
Y

= µ against H
1

: µ
X

6= µ
Y

.

Using the generalised likelihood ratio test

L
x,y(H0

) = supµ,�2

f
X

(x |µ,�2)f
Y

(y |µ,�2).

Under H
0

the mle’s are

µ̂ = (mx̄ + nȳ)/(m + n)

�̂2

0

= 1

m+n

⇣X
(x

i

� µ̂)2 +
X

(y
i

� µ̂)2
⌘
= 1

m+n

⇣
S
xx

+ S
yy

+ mn

m+n

(x̄ � ȳ)2
⌘
,

so

L
x,y(H0

) = (2⇡�̂2

0

)�(m+n)/2e
� 1

2�̂2

0

(
P

(x

i

�µ̂)2+
P

(y

i

�µ̂)2)

= (2⇡�̂2

0

)�(m+n)/2e�
m+n

2 .
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16. Linear model examples 16.1. Two samples: testing equality of means, unknown common variance.

Similarly

L
x,y(H1

) = sup
µ
X

,µ
Y

,�2

f
X

(x |µ
X

,�2)f
Y

(y |µ
Y

,�2) = (2⇡�̂2

1

)�(m+n)/2e�
m+n

2 ,

achieved by µ̂
X

= x̄ , µ̂
Y

= ȳ and �̂2

1

= (S
xx

+ S
yy

)/(m + n).

Hence

⇤
x,y(H0

;H
1

) =

✓
�̂2

0

�̂2

1

◆
(m+n)/2

=

✓
1 +

mn(x̄ � ȳ)2

(m + n)(S
xx

+ S
yy

)

◆
(m+n)/2

.

We reject H
0

if mn(x̄ � ȳ)2/
�
(S

xx

+ S
yy

)(m + n)
�
is large, or equivalently if

|t| = |x̄ � ȳ |q
S

xx

+S

yy

n+m�2

�
1

m

+ 1

n

�

is large.
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16. Linear model examples 16.1. Two samples: testing equality of means, unknown common variance.

Under H
0

, X̄ ⇠ N(µ, �2

m

), Ȳ ⇠ N(µ, �2

n

) and so

(X̄ � Ȳ )/

✓
�
q

1

m

+ 1

n

◆
⇠ N(0, 1).

From Theorem 16.3 we know S
XX

/�2 ⇠ �2

m�1

independently of X̄ and
S
YY

/�2 ⇠ �2

n�1

independently of Ȳ .

Hence (S
XX

+ S
YY

)/�2 ⇠ �2

n+m�2

, from additivity of independent �2

distributions.

Since our two random samples are independent, we have X̄ � Ȳ and
S
XX

+ S
YY

are independent.

This means that under H
0

,

X̄ � Ȳq
S

XX

+S

YY

n+m�2

�
1

m

+ 1

n

� ⇠ t
n+m�2

.

A size ↵ test is to reject H
0

if |t| > t
n+m�2

(↵/2).
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16. Linear model examples 16.1. Two samples: testing equality of means, unknown common variance.

Example 16.1

Seeds of a particular variety of plant were randomly assigned either to a
nutritionally rich environment (the treatment) or to the standard conditions (the
control). After a predetermined period, all plants were harvested, dried and
weighed, with weights as shown below in grams.

Control 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14
Treatment 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69

Control observations are realisations of X
1

, . . . ,X
10

iid N(µ
X

,�2), and for the
treatment we have Y

1

, . . . ,Y
10

iid N(µ
Y

,�2).

We test H
0

: µ
X

= µ
Y

vs H
1

: µ
X

6= µ
Y

.

Here m = n = 10, x̄ = 5.032, S
xx

= 3.060, ȳ = 4.661 and S
yy

= 5.669, so
�̃2 = (S

xx

+ S
yy

)/(m + n � 2) = 0.485.

Then |t| = |x̄ � ȳ |/
q
�̃2( 1

m

+ 1

n

) = 1.19.

From tables t
18

(0.025) = 2.101, so we do not reject H
0

. We conclude that
there is no evidence for a di↵erence between the mean weights due to the
environmental conditions.
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16. Linear model examples 16.1. Two samples: testing equality of means, unknown common variance.

Arranged as analysis of variance:

Source of d.f. sum of squares mean square F statistic
variation

Fitted model 1 mn

m+n

(x̄ � ȳ)2 mn

m+n

(x̄ � ȳ)2 F = mn

m+n

(x̄ � ȳ)2/�̃2

Residual m + n � 2 S
xx

+ S
yy

�̃2

m + n � 1

Seeing if F > F
1,m+n�2

(↵) is exactly the same as checking if |t| > t
n+m�2

(↵/2).

Notice that although we have equal size samples here, they are not paired; there is
nothing to connect the first plant in the control sample with the first plant in the
treatment sample.
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16. Linear model examples 16.2. Paired observations

Paired observations

Suppose the observations were paired: say because pairs of plants were
randomised.

We can introduce a parameter �
i

for the ith pair, where
P

i

�
i

= 0, so that
we assume

X
i

⇠ N(µ
X

+ �
i

,�2), Y
i

⇠ N(µ
Y

+ �
i

,�2), i = 1, .., n,

and all independent.

Working through the generalised likelihood ratio test, or expressing in matrix
form, leads to the intuitive conclusion that we should work with the
di↵erences D

i

= X
i

� Y
i

, i = 1, .., n, where

D
i

⇠ N(µ
X

� µ
Y

,�2), where �2 = 2�2.

Thus D ⇠ N(µ
X

� µ
Y

, �2

n

),, and we test H
0

: µ
X

� µ
Y

= 0 by the t statistic

t =
D

�̃/
p
n
,

where �̃2 = S
DD

/(n � 1) =
P

i

(D
i

� D)2/(n � 1), and t ⇠ t
n�1

distribution
under H

0

.
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16. Linear model examples 16.2. Paired observations

Example 16.2

Pairs of seeds of a particular variety of plant were sampled, and then one of each
pair randomly assigned either to a nutritionally rich environment (the treatment)
or to the standard conditions (the control).

Pair 1 2 3 4 5 6 7 8 9 10

Control 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14

Treatment 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69

Di↵erence - 0.64 1.41 0.77 2.52 -1.37 0.78 -0.86 -0.36 1.01 0.45

Observed statistics are d = 0.37, S
dd

= 12.54, n = 10, so that
�̃ =

p
S
dd

/(n � 1) =
p
2.33/9 = 1.18.

Thus t = d

˜�/
p
n

= 0.37
1.18/

p
10

= 0.99.

This can be compared to t
18

(0.025) = 2.262 to show that we cannot reject
H

0

: E(D) = 0, i.e. that there is no e↵ect of the treatment.

Alternatively, we see that the observed p-value is the probability of getting
such an extreme result, under H

0

, i.e.

P(|t
9

| > |t||H
0

) = 2P(t
9

> |t|) = 2⇥ 0.17 = 0.34.

Lecture 16. Linear model examples, and ’rules of thumb’ 8 (1–105)



16. Linear model examples 16.2. Paired observations

In R code:

> t.test(x,y,paired=T)

t = 0.9938, df = 9, p-value = 0.3463

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.4734609 1.2154609

sample estimates:

mean of the differences

0.371
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16. Linear model examples 16.3. Rules of thumb: the ’rule of three’*

Rules of thumb: the ’rule of three’*

Rules of Thumb 16.3

If there have been n opportunities for an event to occur, and yet it has not
occurred yet, then we can be 95% confident that the chance of it occurring at the
next opportunity is less than 3/n.

Let p be the chance of it occurring at each opportunity. Assume these are
independent Bernoulli trials, so essentially we have X ⇠ Binom(n, p), we
have observed X = 0, and want a one-sided 95% CI for p.

Base this on the set of values that cannot be rejected at the 5% level in a
one-sided test.

i.e. the 95% interval is (0, p0) where the one-sided p-value for p0 is 0.05, so

0.05 = P(X = 0|p0) = (1� p0)n.

Hence

p0 = 1� e log(0.05)/n ⇡ � log(0.05)

n
⇡ 3

n
,

since log(0.05) = �2.9957.
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16. Linear model examples 16.3. Rules of thumb: the ’rule of three’*

For example, suppose we have given a drug to 100 people and none of them
have had a serious adverse reaction.

Then we can be 95% confident that the chance the next person has a serious
reaction is less than 3%.

The exact p0 is 1� e log(0.05)/100 = 0.0295.
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16. Linear model examples 16.4. Rules of thumb: the ’rule of root n’*

Rules of thumb: the ’rule of root n’*

Rules of Thumb 16.4

After n observations, if the number of events di↵ers from that expected under a
null hypothesis H

0

by more than
p
n, reject H

0

.

We assume X ⇠ Binom(n, p), and H
0

: p = p
0

, so the expected number of
events is E(X |H

0

) = np
0

.

Then the probability of the di↵erence between observed and expected
exceeding

p
n, given H

0

is true, is

P(|X � np
0

| >
p
n|H

0

) = P
 

|X � np
0

|p
np

0

(1� p
0

)

>
1p

p
0

(1� p
0

)

���H
0

!

< P
 

|X � np
0

|p
np

0

(1� p
0

)

> 2

���H
0

!
since

1p
p
0

(1� p
0

)

> 2

⇡ P(|Z | > 2)

⇡ 0.05
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16. Linear model examples 16.4. Rules of thumb: the ’rule of root n’*

For example, suppose we flip a coin 1000 times and it comes up heads 550
times, do we think the coin is odd?

We expect 500 heads, and observe 50 more.
p
n =

p
1000 ⇡ 32, which is less

than 50, so this suggests the coin is odd.

The 2-sided p-value is actually 2⇥ P(X � 550) = 2⇥ (1� P(X  549)),
where X ⇠ Binom(1000, 0.5), which according to R is

> 2 * (1 - pbinom(549,1000,0.5))

0.001730536
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16. Linear model examples 16.5. Rules of thumb: the ’rule of root 4 ⇥ expected’*

Rules of thumb: the ’rule of root 4 ⇥ expected’*

The ’rule of root n’ is fine for chances around 0.5, but is too lenient for rarer
events, in which case the following can be used.

Rules of Thumb 16.5

After n observations, if the number of rare events di↵ers from that expected under
a null hypothesis H

0

by more than ’4⇥ expected’, reject H
0

.

We assume X ⇠ Binom(n, p), and H
0

: p = p
0

, so the expected number of
events is E(X |H

0

) = np
0

.

Under H
0

, the critical di↵erence is ⇡ 2⇥ s.e.(X � np
0

) =
p
4np

0

(1� p
0

),
which is less than

p
n: this is the rule of root n.

But
p
4np

0

(1� p
0

) <
p
4np

0

, which will be less than
p
n if p

0

< 0.25.

So for smaller p
0

, a more powerful rule is to reject H
0

if the di↵erence
between observed and expected is greater than

p
4 ⇥ expected.

This is essentially a Poisson approximation.
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16. Linear model examples 16.5. Rules of thumb: the ’rule of root 4 ⇥ expected’*

For example, suppose we throw a die 120 times and it comes up ’six’ 30
times; is this ’significant’?

We expect 20 sixes, and so the di↵erence between observed and expected is
10.

Since
p
n =

p
120 ⇡ 11, which is more than 10, the ’rule of root n’ does not

suggest a significant di↵erence.

But since
p
4⇥ expected =

p
80 ⇡ 9, the second rule does suggest

significance.

The 2-sided p-value is actually 2⇥ P(X � 30) = 2⇥ (1� P(X  29)), where
X ⇠ Binom(120, 1

6

), which according to R is

> 2 * (1 - pbinom(29,120, 1/6 ))

0.02576321
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16. Linear model examples 16.6. Rules of thumb: non-overlapping confidence intervals*

Rules of thumb: non-overlapping confidence intervals*

Rules of Thumb 16.6

Suppose we have 95% confidence intervals for µ
1

and µ
2

based on independent
estimates y

1

and y
2

. Let H
0

: µ
1

= µ
2

.
(1) If the confidence intervals do not overlap, then we can reject H

0

at p < 0.05.
(2) If the confidence intervals do overlap, then this does not necessarily imply

that we cannot reject H
0

at p < 0.05.

Assume for simplicity that the confidence intervals are based on assuming
Y

1

⇠ N(µ
1

, s2
1

),Y
2

⇠ N(µ
2

, s2
2

), where s
1

and s
2

are known standard errors.

Suppose wlg that y
1

> y
2

. Then since Y
1

� Y
2

⇠ N(µ
1

� µ
2

, s2
1

+ s2
2

), we
can reject H

0

at ↵ = 0.05 if

y
1

� y
2

> 1.96
q
s2
1

+ s2
2

.

The two CIs will not overlap if

y
1

� 1.96s
1

> y
2

+ 1.96s
2

, i.e. y
1

� y
2

> 1.96(s
1

+ s
2

).

But since s
1

+ s
2

>
p
s2
1

+ s2
2

for positive s
1

, s
2

, we have the ’rule of thumb’.
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16. Linear model examples 16.6. Rules of thumb: non-overlapping confidence intervals*

Non-overlapping CIs is a more stringent criterion: we cannot conclude ’not
significantly di↵erent’ just because CIs overlap.

So, if 95% CIs just touch, what is the p-value?

Suppose s
1

= s
2

= s. Then CIs just touch if |y
1

� y
2

| = 1.96⇥ 2s = 3.92⇥ s.

So p-value =

P(|Y
1

� Y
2

| > 3.92s) = P
✓����

Y
1

� Y
2p

2s

���� >
3.92p

2

◆

= P(|Z | > 2.77) = 2⇥ P(Z > 2.77) = 0.0055.

And if ’just not touching’ 100(1� ↵)% CIs were to be equivalent to ’just
rejecting H

0

’, then we would need to set ↵ so that the critical di↵erence
between y

1

� y
2

was exactly the width of each of the CIs, and so

1.96⇥
p
2⇥ s = s ⇥ ��1(1� ↵

2

).

Which means ↵ = 2⇥ �(�1.96/
p
2) = 0.16.

So in these specific circumstances, we would need to use 84% intervals in
order to make non-overlapping CIs the same as rejecting H

0

at the 5% level.
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