Lecture 8. Composite hypotheses

Composite hypotheses, types of error and power

- For composite hypotheses like \(H : \theta \geq 0 \), the error probabilities do not have a single value.
- Define the power function \(W(\theta) = P(X \in C | \theta) = P(\text{reject } H_0 | \theta) \).
- We want \(W(\theta) \) to be small on \(H_0 \) and large on \(H_1 \).
- Define the size of the test to be \(\alpha = \sup_{\theta \in \Theta_0} W(\theta) \).
- For \(\theta \in \Theta_1 \), \(1 - W(\theta) = P(\text{Type II error} | \theta) \).
- Sometimes the Neyman–Pearson theory can be extended to one-sided alternatives.
- For example, in Example 7.3 we have shown that the most powerful size \(\alpha \) test of \(H_0 : \mu = \mu_0 \) versus \(H_1 : \mu = \mu_1 \) (where \(\mu_1 > \mu_0 \)) is given by \(C = \{ x : \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 > z_\alpha \} \).
- This critical region depends on \(\mu_0, n, \sigma_0, \alpha \), on the fact that \(\mu_1 > \mu_0 \), but not on the particular value of \(\mu_1 \).

Example 8.2

Suppose \(X_1, \ldots, X_n \) are iid \(N(\mu_0, \sigma_0^2) \) where \(\sigma_0 \) is known, and we wish to test \(H_0 : \mu \leq \mu_0 \) against \(H_1 : \mu > \mu_0 \).

- First consider testing \(H_0' : \mu = \mu_0 \) against \(H_1' : \mu = \mu_1 \) where \(\mu_1 > \mu_0 \) (as in Example 7.3).
- As in Example 7.3, the Neyman-Pearson test of size \(\alpha \) of \(H_0' \) against \(H_1' \) has \(C = \{ x : \sqrt{n}(\bar{x} - \mu_0)/\sigma_0 > z_\alpha \} \).
- We will show that \(C \) is in fact UMP for the composite hypotheses \(H_0 \) against \(H_1 \).
- For \(\mu \in \mathbb{R} \), the power function is

\[
W(\mu) = P(\text{reject } H_0) = P_{\mu} \left(\frac{\sqrt{n}(\bar{x} - \mu_0)}{\sigma_0} > z_\alpha \right) \\
= P_{\mu} \left(\frac{\sqrt{n}(\bar{x} - \mu)}{\sigma_0} > z_\alpha + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} \right) \\
= 1 - \Phi \left(z_\alpha + \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma_0} \right).
\]
Generalised likelihood ratio tests

We now consider likelihood ratio tests for more general situations.

Define the likelihood of a composite hypothesis $H : \theta \in \Theta$ given data x to be

$$L_x(H) = \sup_{\theta \in \Theta} f(x|\theta).$$

So far we have considered disjoint hypotheses Θ_0, Θ_1, but often we are not interested in any specific alternative, and it is easier to take $\Theta_1 = \Theta$ rather than $\Theta_1 = \Theta \setminus \Theta_0$.

Then

$$\Lambda_x(H_0; H_1) = \frac{L_x(H_1)}{L_x(H_0)} = \sup_{\theta \in \Theta_1} \frac{f(x|\theta)}{\sup_{\theta \in \Theta_0} f(x|\theta)} \geq 1,$$

(1)

with large values of Λ_x indicating departure from H_0.

Notice that if $\Lambda_x^* = \sup_{\theta \in \Theta_1 \setminus \Theta_0} f(x|\theta) / \sup_{\theta \in \Theta_0} f(x|\theta)$, then $\Lambda_x = \max\{1, \Lambda_x^*\}$.

We know $W(\mu_0) = \alpha$ (just plug in)

$W(\mu)$ is an increasing function of μ.

So $\sup_{\mu \leq \mu_0} W(\mu) = \alpha$, and (i) is satisfied.

For (ii), observe that for any $\mu > \mu_0$, the Neyman Pearson size α test of H_0' vs H_1' has critical region C (the calculation in Example 7.3 depended only on the fact that $\mu > \mu_0$ and not on the particular value of μ_1).

Let C^* and W^* belong to any other test of H_0 vs H_1 of size $\leq \alpha$.

Then C^* can be regarded as a test of H_0 vs H_1 of size $\leq \alpha$, and NP-Lemma says that $W^*(\mu_1) \leq W(\mu_1)$.

This holds for all $\mu_1 > \mu_0$ and so (ii) is satisfied.

So C is UMP size α for H_0 vs H_1. □

Example 8.3

Single sample: testing a given mean, known variance (z-test). Suppose that X_1, \ldots, X_n are iid $N(\mu, \sigma_0^2)$, with σ_0^2 known, and we wish to test $H_0 : \mu = \mu_0$ against $H_1 : \mu \neq \mu_0$ (μ_0 is a given constant).

Here $\Theta_0 = \{\mu_0\}$ and $\Theta = \mathbb{R}$.

For the denominator in (1) we have $\sup_{\Theta_0} f(x|\mu) = f(x|\mu_0)$.

For the numerator, we have $\sup_{\Theta_0} f(x|\mu) = f(x|\hat{\mu})$, where $\hat{\mu}$ is the mle, so $\hat{\mu} = \bar{x}$ (check).

Hence

$$\Lambda_x = \frac{(2\pi\sigma_0^2)^{-n/2} \exp \left(-\frac{1}{2\sigma_0^2} \sum (x_i - \bar{x})^2 \right)}{(2\pi\sigma_0^2)^{-n/2} \exp \left(-\frac{1}{2\sigma_0^2} \sum (x_i - \mu_0)^2 \right)},$$

and we reject H_0 if Λ_x is 'large.'

We find that

$$2 \log \Lambda_x = \frac{1}{\sigma_0^2} \left[\sum (x_i - \mu_0)^2 - \sum (x_i - \bar{x})^2 \right] = \frac{n}{\sigma_0^2} (\bar{x} - \mu_0)^2.$$ (check)

Thus an equivalent test is to reject H_0 if $|\sqrt{n}(\bar{x} - \mu_0)/\sigma_0|$ is large.
8. Generalised likelihood ratio tests

8.3. The 'generalised likelihood ratio test'

The 'generalised likelihood ratio test'

If \(H_0 \) is true, then the test statistic is

\[
-2 \log \Lambda \sim \chi^2_p
\]

for large \(n \), as the Theorem shows. □

Notes:

- This is a ‘two-tailed’ test - i.e. reject \(H_0 \) both for high and low values of \(\bar{x} \).
- We reject \(H_0 \) if \(|\sqrt{n}(\bar{x} - \mu_0)/\sigma_0| > z_{\alpha/2} \). A symmetric \(100(1 - \alpha)\% \) confidence interval for \(\mu \) is \(\bar{x} \pm z_{\alpha/2} \sigma_0/\sqrt{n} \). Therefore we reject \(H_0 \) iff \(\mu_0 \) is not in this confidence interval (check).
- In later lectures the close connection between confidence intervals and hypothesis tests is explored further.

Theorem 8.4

(not proved)

Suppose \(\Theta_0 \subseteq \Theta_1, |\Theta_1| - |\Theta_0| = p \). Then under regularity conditions, as \(n \to \infty \), with \(X = (X_1, \ldots, X_n) \), \(X_i \)'s iid, we have, if \(H_0 \) is true,

\[
2 \log \Lambda_X(H_0; H_1) \sim \chi^2_p.
\]

If \(H_0 \) is not true, then \(2 \log \Lambda \) tends to be larger. We reject \(H_0 \) if \(2 \log \Lambda > c \) where

\[
c = \chi^2_p(\alpha)
\]

for a test of approximately size \(\alpha \).

In Example 8.3, \(|\Theta_1| - |\Theta_0| = 1 \), and in this case we saw that under \(H_0 \),

\[
2 \log \Lambda \sim \chi^2_1
\]

exactly for all \(n \) in that particular case, rather than just approximately for large \(n \) as the Theorem shows.

(Often the likelihood ratio is calculated with the null hypothesis in the numerator, and so the test statistic is \(-2 \log \Lambda_X(H_1; H_0) \).)