5 6. Bayesian estimation 6.1. The parameter as a random variable

The parameter as a random variable

@ So far we have seen the frequentist approach to statistical inference
@ i.e. inferential statements about € are interpreted in terms of repeat sampling.

) ) ) @ In contrast, the Bayesian approach treats 6 as a random variable taking
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@ The investigator's information and beliefs about the possible values for 6,
before any observation of data, are summarised by a prior distribution 7(0).

@ When data X=x are observed, the extra information about # is combined
with the prior to obtain the posterior distribution 7(0|x) for 6 given X=x.

@ There has been a long-running argument between proponents of these
different approaches to statistical inference

@ Recently things have settled down, and Bayesian methods are seen to be
appropriate in huge numbers of application where one seeks to assess a
probability about a 'state of the world'.

@ Examples are spam filters, text and speech recognition, machine learning,
bioinformatics, health economics and (some) clinical trials.
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Prior and posterior distributions Inference about a discrete parameter

@ By Bayes' theorem,
fx(x | 0)m(0)

fx(x) ’ Suppose | have 3 coins in my pocket,
@ biased 3:1 in favour of tails

7(0]x) =

where fx(x) = [ fx(x|68)m(0)d0 for continuous ¢, and o
fx(x) = > x(x|6;)m(0;) in the discrete case. Q a fair coin,
o Thus @ biased 3:1 in favour of heads
I randomly select one coin and flip it once, observing a head. What is the
m(0]x) o< fx(x[0)m(0) (1) probability that | have chosen coin 3?
posterior o< likelihood x prior, @ Let X =1 denote the event that | observe a head, X = 0 if a tail

0 denote the probability of a head: # € (0.25,0.5,0.75)
Prior: p(6 = 0.25) = p(6 = 0.5) = p(# = 0.75) = 0.33
Probability mass function: p(x|6) = (1 — §)(1=%)

where the constant of proportionality is chosen to make the total mass of the
posterior distribution equal to one.

@ In practice we use (1) and often we can recognise the family for 7(6 | x).

@ It should be clear that the data enter through the likelihood, and so the
inference is automatically based on any sufficient statistic.
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Prior Likelihood Un-normalised Normalised

Posterior Posterior

Coin ¢ p(0) p(x=10) p(x=1]9)p(6) L)
1 0.25 0.33 0.25 0.0825 0.167
2 0.50 0.33 0.50 0.1650 0.333
3 0.75 0.33 0.75 0.2475 0.500
Sum | 1.00 1.50 0.495 1.000

T The normalising constant can be calculated as p(x) = >; p(x[0;)p(6;)

So observing a head on a single toss of the coin means that there is now a 50%
probability that the chance of heads is 0.75 and only a 16.7% probability that the
chance of heads in 0.25.
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Example 6.1

Suppose we are interested in the true mortality risk 6 in a hospital H which is
about to try a new operation. On average in the country around 10% of people

die, but mortality rates in different hospitals vary from around 3% to around 20%.

Hospital H has no deaths in their first 10 operations. What should we believe
about 67

o Let X; = 1 if the ith patient dies in H (zero otherwise), i =1,...,n.
o Then fx(x|6) = 6= (1 — §)"~ 2%,
@ Suppose a priori that 6 ~ Beta(a, b) for some known a > 0, b > 0, so that

m(0) o 2711 - 0)P71 0< O < 1.
@ Then the posterior is

m(0|x) o fx(x]|0)7(6)
o gRxtaTl(p _gynaithml g < g < 1.

We recognise this as Beta(}_ x; +a,n— > x; + b) and so

92x,-+a—1 1—-6 n—>" xi+b—1
w(0|x) = ( )

B(ZX,‘ +a,n— ZX,' + b)

for0 < 0 < 1.

O
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Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

PROBLEM.

Given the number of times in which an unknown
event has happened and failed : Reguired the chance
that the probability of its happening in a fingle trial
lies fomewhere between any two degrees of pro-
bability that can be named.

In modern language, given r ~ Binomial(¢, n), what is P(6; < 6 < 62|r, n)?
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@ In practice, we need to find a Beta prior distribution that matches our
information from other hospitals.

@ It turns out that a Beta(a=3,b=27) prior distribution has mean 0.1 and
P(0.03 < 6 < 0.20) = 0.9.

The data is Y x; = 0,n = 10.
So the posterior is Beta(>_ x; + a,n — > x; + b) = Beta(3, 37)
This has mean 3/40 = 0.075.

impossible that any will ever die) does not seem plausible.

install.packages("LearnBayes")
library(LearnBayes)
prior = c( a= 3, b
data = c( s =0, f
triplot (prior,data)

27 ) # beta prior
10 ) # s events out of f trials
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Conjugacy

Bayes Triplot, beta( 3, 27 ) prior, s=0, f=10

e @ For this problem, a beta prior leads to a beta posterior. We say that the beta
=) T family is a conjugate family of prior distributions for Bernoulli samples.
- — - Posterior @ Suppose that a = b =1 so that 7(#) =1, 0 < 6 < 1 - the uniform
o distribution (called the " principle of insufficient reason’ by Laplace, 1774) .
@ Then the posterior is Beta() | x; +1,n— > x; + 1), with properties.
> 4 ‘ mean mode variance
E prior 1/2  non-unique 1/12
. S xi+1 S xi > xi+1)(n=>" xi+1)
- pOSterlOr T2 = W
@ Notice that the mode of the posterior is the mle.

o @ The posterior mean estimator, Zn)fjl is discussed in Lecture 2, where we
showed that this estimator had smaller mse than the mle for non-extreme
values of #. Known as Laplace’s estimator.

& o e

| | ‘ ‘ @ The posterior variance is bounded above by 1/(4(n+ 3)), and this is smaller
0.0 0.2 0.4 0.8 0.8 1.0 than the prior variance, and is smaller for larger n.
p @ Again, note the posterior automatically depends on the data through the
sufficient statistic.
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Bayesian approach to point estimation

o For absolute error loss,
o Let L(f,a) be the loss incurred in estimating the value of a parameter to be a

. a oo
when the true value is 6. ha) = /|e — alm(6|%)d = / (a— 0)r(6]%)d0 +/ (0 — a)w(6]%)d0
@ Common loss functions are quadratic loss L(f,a) = (6 — a)?, absolute error —o0 a
a a
loss L(0,a) = |6 — a|, but we can have others. _ a/ (0] x)d0 _/ 0r(0|%)d0
@ When our estimate is a, the expected posterior loss is —oo —o0
h(a) = J L0, )(0]x)do. +/ 97r(9|x)d9—a/ 7(0]x)d8
o The Bayes estimator # minimises the expected posterior loss. a a
o For quadratic loss Now h'(a) =0 if
a oo
) = [ (2 0Fn(61x)ds. [ worsan= [ wia
— 0o a
oy A
o W(a)=0if @ This occurs when each side is 1/2 (since the two integrals must sum to 1) so
a/7r(9|x)d9 = /Hw(e\x)dﬁ. 6 is the posterior median.

o So § = [6n(A|x)dh, the posterior mean, minimises h(a).
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Example 6.2
Suppose that Xi, ..., X, are iid N(u, 1), and that a priori u ~ N(0,72) for Example 6.3
k =2
nown T Suppose that X, ..., X, are iid Poisson(\) rv's and that A has an exponential

o The posterior is given by distribution with mean 1, so that 7(\) = e=*, A > 0.

m(p|x) oo fx(x|p)m(p) @ The posterior distribution is given by

x exp HZ(X;J]%[ 2} T(Alx) ox e AR ¥ = A2 ey >0,

o exp [_; (n+7'2) { > Xi } ] (check). ie Gamma(}_ x; + 17,?4_ 1).

n-+ 72 @ Hence, under quadratic loss, 6 = (3 x; +1)/(n+ 1), the posterior mean.

@ Under absolute error loss, 6 solves

@ So the posterior distribution of i given x is a Normal distribution with mean .
> xi/(n+ 72) and variance 1/(n + 72). /‘9 (n 4 1)X 5+ xe=(n+1)A A= 1
0 (22)! 2

@ The normal density is symmetric, and so the posterior mean and the posterior
median have the same value Y x;/(n + 72).

@ This is the optimal Bayes estimate of u under both quadratic and absolute
error loss.
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