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6. Bayesian estimation 6.1. The parameter as a random variable

The parameter as a random variable

So far we have seen the frequentist approach to statistical inference

i.e. inferential statements about θ are interpreted in terms of repeat sampling.

In contrast, the Bayesian approach treats θ as a random variable taking
values in Θ.

The investigator’s information and beliefs about the possible values for θ,
before any observation of data, are summarised by a prior distribution π(θ).

When data X=x are observed, the extra information about θ is combined
with the prior to obtain the posterior distribution π(θ |x) for θ given X=x.

There has been a long-running argument between proponents of these
different approaches to statistical inference

Recently things have settled down, and Bayesian methods are seen to be
appropriate in huge numbers of application where one seeks to assess a
probability about a ’state of the world’.

Examples are spam filters, text and speech recognition, machine learning,
bioinformatics, health economics and (some) clinical trials.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Prior and posterior distributions

By Bayes’ theorem,

π(θ |x) =
fX(x | θ)π(θ)

fX(x)
,

where fX(x) =
∫

fX(x |θ)π(θ)dθ for continuous θ, and
fX(x) =

∑
fX(x |θi )π(θi ) in the discrete case.

Thus

π(θ |x) ∝ fX(x |θ)π(θ) (1)

posterior ∝ likelihood× prior,

where the constant of proportionality is chosen to make the total mass of the
posterior distribution equal to one.

In practice we use (1) and often we can recognise the family for π(θ | x).

It should be clear that the data enter through the likelihood, and so the
inference is automatically based on any sufficient statistic.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

1 biased 3:1 in favour of tails
2 a fair coin,
3 biased 3:1 in favour of heads

I randomly select one coin and flip it once, observing a head. What is the
probability that I have chosen coin 3?

Let X = 1 denote the event that I observe a head, X = 0 if a tail

θ denote the probability of a head: θ ∈ (0.25, 0.5, 0.75)

Prior: p(θ = 0.25) = p(θ = 0.5) = p(θ = 0.75) = 0.33

Probability mass function: p(x |θ) = θx(1− θ)(1−x)
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6. Bayesian estimation 6.2. Prior and posterior distributions

Prior Likelihood Un-normalised Normalised
Posterior Posterior

Coin θ p(θ) p(x = 1|θ) p(x = 1|θ)p(θ) p(x=1|θ)p(θ)
p(x)†

1 0.25 0.33 0.25 0.0825 0.167
2 0.50 0.33 0.50 0.1650 0.333
3 0.75 0.33 0.75 0.2475 0.500

Sum 1.00 1.50 0.495 1.000

† The normalising constant can be calculated as p(x) =
∑

i p(x |θi )p(θi )
So observing a head on a single toss of the coin means that there is now a 50%
probability that the chance of heads is 0.75 and only a 16.7% probability that the
chance of heads in 0.25.
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6. Bayesian estimation 6.2. Prior and posterior distributions

Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

In modern language, given r ∼ Binomial(θ, n), what is P(θ1 < θ < θ2|r , n)?
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6. Bayesian estimation 6.2. Prior and posterior distributions

Example 6.1

Suppose we are interested in the true mortality risk θ in a hospital H which is
about to try a new operation. On average in the country around 10% of people
die, but mortality rates in different hospitals vary from around 3% to around 20%.
Hospital H has no deaths in their first 10 operations. What should we believe
about θ?

Let Xi = 1 if the ith patient dies in H (zero otherwise), i = 1, . . . , n.

Then fX(x |θ) = θ
∑

xi (1− θ)n−
∑

xi .

Suppose a priori that θ ∼ Beta(a, b) for some known a > 0, b > 0, so that
π(θ) ∝ θa−1(1− θ)b−1, 0 < θ < 1.

Then the posterior is

π(θ |x) ∝ fX(x |θ)π(θ)

∝ θ
∑

xi+a−1(1− θ)n−
∑

xi+b−1, 0 < θ < 1.

We recognise this as Beta(
∑

xi + a, n −∑ xi + b) and so

π(θ |x) =
θ
∑

xi+a−1(1− θ)n−
∑

xi+b−1

B(
∑

xi + a, n −∑ xi + b)
for 0 < θ < 1.

�
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6. Bayesian estimation 6.2. Prior and posterior distributions

In practice, we need to find a Beta prior distribution that matches our
information from other hospitals.

It turns out that a Beta(a=3,b=27) prior distribution has mean 0.1 and
P(0.03 < θ < 0.20) = 0.9.

The data is
∑

xi = 0, n = 10.

So the posterior is Beta(
∑

xi + a, n −∑ xi + b) = Beta(3, 37)

This has mean 3/40 = 0.075.

NB Even though nobody has died so far, the mle θ̂ =
∑

xi/n = 0 (i.e. it is
impossible that any will ever die) does not seem plausible.

install.packages("LearnBayes")

library(LearnBayes)

prior = c( a= 3, b = 27 ) # beta prior

data = c( s = 0, f = 10 ) # s events out of f trials

triplot(prior,data)
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6. Bayesian estimation 6.2. Prior and posterior distributions
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6. Bayesian estimation 6.3. Conjugacy

Conjugacy

For this problem, a beta prior leads to a beta posterior. We say that the beta
family is a conjugate family of prior distributions for Bernoulli samples.

Suppose that a = b = 1 so that π(θ) = 1, 0 < θ < 1 - the uniform
distribution (called the ”principle of insufficient reason’ by Laplace, 1774) .

Then the posterior is Beta(
∑

xi + 1, n −∑ xi + 1), with properties.

mean mode variance
prior 1/2 non-unique 1/12

posterior
∑

xi+1
n+2

∑
xi

n
(
∑

xi+1)(n−∑ xi+1)
(n+2)2(n+3)

Notice that the mode of the posterior is the mle.

The posterior mean estimator,
∑

Xi+1
n+2 is discussed in Lecture 2, where we

showed that this estimator had smaller mse than the mle for non-extreme
values of θ. Known as Laplace’s estimator.

The posterior variance is bounded above by 1/(4(n + 3)), and this is smaller
than the prior variance, and is smaller for larger n.

Again, note the posterior automatically depends on the data through the
sufficient statistic.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Bayesian approach to point estimation

Let L(θ, a) be the loss incurred in estimating the value of a parameter to be a
when the true value is θ.

Common loss functions are quadratic loss L(θ, a) = (θ − a)2, absolute error
loss L(θ, a) = |θ − a|, but we can have others.

When our estimate is a, the expected posterior loss is
h(a) =

∫
L(θ, a)π(θ |x)dθ.

The Bayes estimator θ̂ minimises the expected posterior loss.

For quadratic loss

h(a) =

∫
(a− θ)2π(θ |x)dθ.

h′(a) = 0 if

a

∫
π(θ |x)dθ =

∫
θπ(θ |x)dθ.

So θ̂ =
∫
θπ(θ |x)dθ, the posterior mean, minimises h(a).
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

For absolute error loss,

h(a) =

∫
|θ − a|π(θ |x)dθ =

∫ a

−∞
(a− θ)π(θ |x)dθ +

∫ ∞

a

(θ − a)π(θ |x)dθ

= a

∫ a

−∞
π(θ |x)dθ −

∫ a

−∞
θπ(θ |x)dθ

+

∫ ∞

a

θπ(θ |x)dθ − a

∫ ∞

a

π(θ |x)dθ

Now h′(a) = 0 if ∫ a

−∞
π(θ |x)dθ =

∫ ∞

a

π(θ |x)dθ.

This occurs when each side is 1/2 (since the two integrals must sum to 1) so
θ̂ is the posterior median.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Example 6.2

Suppose that X1, . . . ,Xn are iid N(µ, 1), and that a priori µ ∼ N(0, τ−2) for
known τ−2.

The posterior is given by

π(µ |x) ∝ fX(x |µ)π(µ)

∝ exp

[
−1

2

∑
(xi − µ)2

]
exp

[
−µ

2τ 2

2

]

∝ exp

[
−1

2

(
n + τ 2

){
µ−

∑
xi

n + τ 2

}2
]

(check).

So the posterior distribution of µ given x is a Normal distribution with mean∑
xi/(n + τ 2) and variance 1/(n + τ 2).

The normal density is symmetric, and so the posterior mean and the posterior
median have the same value

∑
xi/(n + τ 2).

This is the optimal Bayes estimate of µ under both quadratic and absolute
error loss.
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6. Bayesian estimation 6.4. Bayesian approach to point estimation

Example 6.3

Suppose that X1, . . . ,Xn are iid Poisson(λ) rv’s and that λ has an exponential
distribution with mean 1, so that π(λ) = e−λ, λ > 0.

The posterior distribution is given by

π(λ |x) ∝ e−nλλ
∑

xi e−λ = λ
∑

xi e−(n+1)λ, λ > 0,

ie Gamma(
∑

xi + 1, n + 1).

Hence, under quadratic loss, θ̂ = (
∑

xi + 1)/(n + 1), the posterior mean.

Under absolute error loss, θ̂ solves

∫ θ̂

0

(n + 1)
∑

xi+1λ
∑

xi e−(n+1)λ

(
∑

xi )!
dλ =

1

2
.
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