Likelihood

Maximum likelihood estimation is one of the most important and widely used methods for finding estimators. Let \(X_1, \ldots, X_n \) be rv's with joint pdf/pmf \(f_X(x \mid \theta) \). We observe \(X = x \).

Definition 4.1

The **likelihood** of \(\theta \) is \(\text{like}(\theta) = f_X(x \mid \theta) \), regarded as a function of \(\theta \). The **maximum likelihood estimator** (mle) of \(\theta \) is the value of \(\theta \) that maximises \(\text{like}(\theta) \).

It is often easier to maximise the **log-likelihood**.

If \(X_1, \ldots, X_n \) are iid, each with pdf/pmf \(f_X(x \mid \theta) \), then

\[
\text{like}(\theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)
\]

\[
\log\text{like}(\theta) = \sum_{i=1}^{n} \log f_X(x_i \mid \theta).
\]

Example 4.1

Let \(X_1, \ldots, X_n \) be iid Bernoulli(\(p \)).

Then \(l(p) = \log\text{like}(p) = \left(\sum x_i \right) \log p + (n - \sum x_i) \log(1 - p) \).

Thus

\[
\frac{dl}{dp} = \frac{\sum x_i}{p} - \frac{n - \sum x_i}{(1 - p)}.
\]

This is zero when \(p = \frac{\sum x_i}{n} \), and the mle of \(p \) is \(\hat{p} = \frac{\sum x_i}{n} \).

Since \(\sum X_i \sim \text{Bin}(n, p) \), we have \(\mathbb{E}(\hat{p}) = p \) so that \(\hat{p} \) is unbiased.

Example 4.2

Let \(X_1, \ldots, X_n \) be iid \(N(\mu, \sigma^2) \), \(\theta = (\mu, \sigma^2) \). Then

\[
l(\mu, \sigma^2) = \log\text{like}(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum (x_i - \mu)^2.
\]

This is maximised when \(\frac{\partial l}{\partial \mu} = 0 \) and \(\frac{\partial l}{\partial \sigma^2} = 0 \). We find

\[
\frac{\partial l}{\partial \mu} = -\frac{1}{\sigma^2} \sum (x_i - \mu), \quad \frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum (x_i - \mu)^2,
\]

so the solution of the simultaneous equations is \((\hat{\mu}, \hat{\sigma}^2) = (\bar{x}, s_{XX}/n) \).

(writing \(\bar{x} \) for \(\frac{1}{n} \sum x_i \) and \(s_{XX} \) for \(\sum (x_i - \bar{x})^2 \)).

Hence the maximum likelihood estimators are \((\hat{\mu}, \hat{\sigma}^2) = (\bar{X}, S_{XX}/n) \).

We know \(\hat{\mu} \sim N(\mu, \sigma^2/n) \) so \(\hat{\mu} \) is unbiased.

We shall see later that \(\frac{s_{XX}}{n} = \frac{n\hat{\sigma}^2}{n} \sim X^2_{n-1} \), and so \(\mathbb{E}(\hat{\sigma}^2) = \frac{(n-1)s^2}{n} \), ie \(\hat{\sigma}^2 \) is biased.

However \(\mathbb{E}(\hat{\sigma}^2) \to \sigma^2 \) as \(n \to \infty \), so \(\hat{\sigma}^2 \) is asymptotically unbiased.

[So sample variance estimator denominator: \(n - 1 \) is unbiased, \(n \) is mle.]
Example 4.3

Let X_1, \ldots, X_n be iid $U[0, \theta]$. Then

$$
\text{like}(\theta) = \frac{1}{\theta^n} [\min x_i \geq \theta]^{n} [\max x_i \leq \theta].
$$

For $\theta \geq \max x_i$, $\text{like}(\theta) = \frac{1}{\theta^n} > 0$ and is decreasing as θ increases, while for $\theta < \max x_i$, $\text{like}(\theta) = 0$.

Hence the value $\hat{\theta}$ maximises the likelihood.

Is $\hat{\theta}$ unbiased? First we need to find the distribution of $\hat{\theta}$. For $0 \leq t \leq \theta$, the distribution function of $\hat{\theta}$ is

$$
F_{\hat{\theta}}(t) = \mathbb{P}(\hat{\theta} \leq t) = \mathbb{P}(X_i \leq t, \text{ all } i) = \left(\mathbb{P}(X_i \leq t) \right)^n = \left(\frac{t}{\theta} \right)^n,
$$

where we have used independence at the second step.

Differentiating with respect to t, we find the pdf $f_{\hat{\theta}}(t) = \frac{nt^{n-1}}{\theta^n}, 0 \leq t \leq \theta$. Hence

$$
\mathbb{E}(\hat{\theta}) = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt = \frac{n\theta}{n + 1},
$$

so $\hat{\theta}$ is biased, but asymptotically unbiased.

Properties of mle’s

(i) If T is sufficient for θ, then the likelihood is $g(T(x), \theta)h(x)$, which depends on θ only through $T(x)$.

To maximise this as a function of θ, we only need to maximise g, and so the mle $\hat{\theta}$ is a function of the sufficient statistic.

(ii) If $\phi = h(\theta)$ where h is injective ($1 \rightarrow 1$), then the mle of ϕ is $\hat{\phi} = h(\hat{\theta})$. This is called the invariance property of mle’s. IMPORTANT.

(iii) It can be shown that, under regularity conditions, that $\sqrt{n}(\hat{\theta} - \theta)$ is asymptotically multivariate normal with mean 0 and ‘smallest attainable variance’ (see Part II Principles of Statistics).

(iv) Often there is no closed form for the mle, and then we need to find $\hat{\theta}$ numerically.

Example 4.4

Smarties come in k equally frequent colours, but suppose we do not know k.

[Assume there is a vast bucket of Smarties, and so the proportion of each stays constant as you sample. Alternatively, assume you sample with replacement, although this is rather unhygienic]

Our first four Smarties are Red, Purple, Red, Yellow.

The likelihood for k is (considered sequentially)

$$
\text{like}(k) = \mathbb{P}_k(1\text{st is a new colour}) \mathbb{P}_k(2\text{nd is a new colour}) \mathbb{P}_k(3\text{rd matches 1st}) \mathbb{P}_k(4\text{th is a new colour})
= \frac{k - 1}{k} \times \frac{1}{k} \times \frac{k - 2}{k}
= \frac{(k - 1)(k - 2)}{k^3}
$$

(Alternatively, can think of Multinomial likelihood $\propto \frac{1}{k^3}$, but with $\binom{k}{3}$ ways of choosing those 3 colours.)

Can calculate this likelihood for different values of k:

like(3) = 2/27, like(4) = 3/32, like(5) = 12/25, like(6) = 5/54, maximised at $k = 5$.