
Lecture 3.

Univariate Bayesian inference: conjugate

analysis
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Bayesian analysis

Summary

1. Posterior predictive distributions

2. Conjugate analysis for proportions

3. Posterior predictions for proportions

4. Conjugate analysis for Normal

5. Conjugate analysis for Poisson

6. Mixtures of prior distributions
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Bayesian analysis

The Bayesian analyst (continuous parameters) needs to

• explicitly state a reasonable opinion concerning the plausibility
of different values of the parameters excluding the evidence

from the study (the prior distribution)

• provide the support for different values of the treatment effect
based solely on data from the study (the likelihood),

• weight the likelihood from the study with the relative

plausibilities defined by the prior distribution to produce

• a final opinion about the parameters (the posterior

distribution)

p(θ | y) =
p(θ) p(y | θ)∫
p(θ) p(y | θ) dθ

∝ p(y | θ) p(θ)

when considering p(y | θ) as a function of θ: ie the likelihood.

posterior ∝ likelihood× prior.
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Posterior predictive distributions

When we have observed some data y, the predictive distribution for

a new observation ỹ is given by

p(ỹ|y) =

∫
p(ỹ|y, θ)p(θ|y)dθ.

Assuming past and future observations are conditionally

independent given θ, this simplifies to

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ

The posterior-predictive expectation is

E[Ỹ |y] =
∫

E[ỹ|θ]p(θ|y)dθ

Replace integration by summation for discrete parameters
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Bayesian analysis

Three coins: continued

We have observed a single head, changing the prior distribution

(0.33, 0.33, 0.33) to a posterior distribution (0,17, 0.33, 0.50)

Suppose we want to predict probability that next toss is a head.

Now

P(Ỹ = 1|y) =
∑
i

P(Ỹ = 1|θi)p(θi|y) =
∑
i

θip(θi|y)

= (0.25× 0.167) + (0.50× 0.333) + (0.75× 0.500)

= 7/12
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Inference on proportions using a continuous prior

Suppose we observe y positive responses out of n Bernoulli trials.

Binomial sampling distribution:

p(y|θ, n) =

⎛
⎜⎝ n

y

⎞
⎟⎠ θy(1− θ)n−y ∝ θy(1− θ)n−y

Suppose that, before taking account of this evidence, we believe all

values for θ are equally likely (is this plausible?) ⇒ θ ∼ Unif(0,1)

i.e. p(θ) = 1
1−0 = 1

Posterior is then

p(θ|y, n) ∝ θy(1− θ)n−y × 1

This has form of the kernel of a Beta(y +1, n− y +1) distribution

with mean (y +1)/(n+2)
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To represent external evidence that some response rates are more

plausible than others, it is mathematically convenient to use a

Beta(a, b) prior distribution for θ

p(θ) ∝ θa−1(1− θ)b−1

Combining this with the binomial likelihood gives a posterior

distribution

p(θ | y, n) ∝ p(y | θ, n)p(θ)

∝ θy(1− θ)n−yθa−1(1− θ)b−1

= θy+a−1(1− θ)n−y+b−1

∝ Beta(y + a, n− y + b)
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E(θ|r, n) = (y + a)/(n+ a+ b) = w
a

a+ b
+ (1− w)

y

n

where w = (a+ b)/(a+ b+ n); a weighted average of the prior

mean and y/n, the standard maximum-likelihood estimator, where

the weight w reflects the relative contribution of the prior ‘effective

sample size’ a+ b.

Hence the prior parameters a and b can be interpreted as

equivalent to observing a events in a+ b trials
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Bayesian analysis

Surgery (continued): suppose we now operate on n = 10 patients

and observe y = 0 deaths. What is the current posterior

distribution

We used a Beta(3,27) as a prior distribution for a mortality rate.

Plugging in the relevant values of a = 3, b = 27, y = 0 and n = 10

we obtain a posterior distribution for the mortality rate θ of

p(θ|y, n) = Beta(3,37)

Can use First Bayes : www.firstbayes.co.uk/

Written by Tony O’Hagan: not nice to install but fun to use!
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Bayesian analysis

Posterior-predictive distributions for Binomial data

Use Beta-binomial distribution, but now with parameters of

posterior distribution:

i.e. to get predictive distribution for Ỹ successes out of a further n′,

p(ỹ) =
Γ(a′+ b′)

Γ(a′)Γ(b′)

⎛
⎜⎝ n′

ỹ

⎞
⎟⎠ Γ(a′+ ỹ)Γ(b′+ n′ − ỹ)

Γ(a′+ b′+ n′)
.

where a′ = a+ y, b′ = b+ n are the revised parameters of the beta

distribution after having observed y out of n successes.
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Bayesian analysis

Surgery (continued): after n = 10 patients and observe y = 0

deaths, what is the probability that the next patient will survive the

operation, and what is the probability that there are 2 or more

deaths in the next 20 operations?

The probability of a death at the next operation is simply

E(θ|y, n) = (y + a)/(n+ a+ b) = 3/40 = 0.075. When considering

the number ỹ of deaths in the next 20 operations, from the

beta-binomial predictive distribution, we can calculate

P(ỹ ≥ 2) = 0.418.
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Bayesian analysis

Suppose y = n, i.e. the event has happened at every opportunity!

What is the chance it will happen next time?

The posterior-predictive expectation is

p(Ỹ = 1|y) =
∫

θp(θ|y)dθ =
n+1

n+2

Known as Laplace’s law of succession

Assumes ‘exchangeable events’ (see below): ie the same

(unknown) θ applies to each

Laplace originally applied to the problem of whether the sun will

rise tomorrow. But he recognised the background knowledge

should overwhelm simplistic assumptions. ”But this number [i.e.,

the probability that the sun will rise tomorrow] is far greater for

him who, seeing in the totality of phenomena the principle

regulating the days and seasons, realizes that nothing at the

present moment can arrest the course of it.”
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Normal data with unknown mean and known variance

Suppose we have an independent sample of data

yi ∼ Normal(μ, σ2), i = 1 . . . n

where σ2 is known and μ is unknown. The conjugate prior for the

Normal mean is also Normal

μ ∼ Normal(γ, τ2)

where γ and τ2 are assumed specified.

It is convenient to write τ2 as σ2/n0, where n0 represents the
‘effective number of observations’ in the prior distribution.

Then the posterior distribution for μ is given by

p(μ | y) ∝ p(μ)
n∏

i=1

p(yi | μ)

∝ exp

[
−
1

2

{
(μ− γ)2

σ2/n0

}]
exp

[
−
1

2

{∑
(yi − μ)2

σ2

}]
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Bayesian analysis

Straightforward to show posterior has the form of another Normal

density

p(μ | y) = Normal(γn, τ2n)

where γn =
n0γ + ny

n0 + n
and τ2n =

σ2

n0 + n

Posterior precision = prior precision and data precision. Other

equivalent expressions for the posterior mean:

γn = wγ + (1− w)y where w =
n0

n0 + n

γn = γ + (y − γ)
n

n0 + n
;

γn = y − (y − γ)
n0

n0 + n
;

Shows ‘shrinkage’ towards prior mean.
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Bayesian analysis

A sceptic’s view:

‘A Bayesian is one who, vaguely expecting a horse and catching a

glimpse of a donkey, strongly concludes he has seen a mule’

(Senn, 1997)
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The posterior predictive distribution can be shown to give

p(ỹ|y) = Normal
(
γn, σ2 + τ2n

)
.

So the predictive distribution is centered at the posterior mean of

μ with variance equal to the sum of the posterior variance of μ plus

the data (residual) variance.

[Write ỹ = μ+ ε where ε ∼ Normal
(
0, σ2

)
, and so ỹ is the sum of

two independent normal variables.]
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Normal data with unknown variance and known mean

Suppose again yi ∼ Normal(μ, σ2) but this time μ is assumed known

and σ2 is unknown.

Convenient to change parameterisation to the precision ω = 1/σ2:

this is the reason BUGS uses the precision in the normal

distribution.

The conjugate prior for ω is then

ω ∼ Gamma(α, β),

so that

p(ω) ∝ ωα−1 exp{−βω} :

σ2 is then said to have an inverse-gamma distribution
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The posterior distribution for ω takes the form

p(ω|μ, y) ∝ ω
n
2 exp

⎧⎨
⎩−ω

2

n∑
i=1

(yi − μ)2

⎫⎬
⎭× ωα−1 exp{−βω}.

Collecting terms reveals that

p(ω|μ, y) = Gamma

⎛
⎝α+

n

2
, β +

1

2

n∑
i=1

(yi − μ)2

⎞
⎠ .

• Natural to think of α = n0/2, where n0 is the ‘effective number

of observations’

• Since
∑n

i=1(yi − μ)2/n is an estimate of σ2 = 1/ω, then we

interpret 2β as representing a n0× a prior estimate σ̂20
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Alternative, equivalent representations

• Can write our conjugate prior as

ω ∼ Gamma(n0/2, n0σ̂
2
0/2).

• σ2 = 1/ω therefore has an ‘inverse-Gamma’ distribution with

parameters a = n0/2, b = n0σ̂
2
0/2.

• For an inverse Gamma, p(σ2) ∝ (σ2)−(a+1)e−b/σ2.

• Gelman et al (2004), p50 point out that σ2 has a distribution

equivalent to that of n0σ̂
2
0/X, where X has a χ2n0 distribution

• They say that σ2 has a ‘scaled inverse-χ2’ distribution with

notation

σ2 ∼ Inv−χ2(n0, σ̂
2
0).

• Useful when assessing prior distributions for sample variances
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Poisson data

Suppose Yi ∼ Poisson(μti): (unknown) μ is the rate per unit of t

p(y|μ) =
∏
i

(μti)
yie−μti

yi!

The kernel of the Poisson likelihood (as a function of μ) has the

same form as that of a Gamma(a, b) prior for μ

This implies the following posterior for μ

p(μ | y) ∝ p(y | μ) p(μ)

∝
n∏

i=1

μyie−μti μa−1e−bμ

∝ μa+ys−1 e−(b+ts)μ

= Gamma(a+ ys, b+ ts).

where ys =
∑n

i=1 yi, ts =
∑n

i=1 ti
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E(μ | y) = a+ys
b+ts

= ys
ts

(
n

n+b

)
+ a

b

(
1− n

n+b

)
which we can again see is

a compromise between the prior mean a/b and the MLE ys
ts

Thus b can be interpreted as an ‘effective exposure’, and a/b as a

prior estimate of the Poisson mean
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Mixtures of prior distributions

• Suppose we doubt which of two or more prior distributions is

appropriate to the data in hand

• eg might suspect that either a drug will produce similar effect

to other related compounds, or if it doesn’t behave like these

compounds we are unsure about its likely effect

• For two possible prior distributions p1(θ) and p2(θ) the overall

prior distribution is then a mixture

p(θ) = qp1(θ) + (1− q)p2(θ),

where q is the assessed probability that p1 is ‘correct’.

• Consider the two priors as hypotheses H1 and H2, so that

q = p(H1), and

p(θ) = qp(θ|H1) + (1− q)p(θ|H2)
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• If we now observe data y, the posterior for θ is

p(θ|y) = q′p(θ|y, H1) + (1− q′)p(θ|y, H2)

where

p(θ|y, Hi) ∝ p(y|θ)p(θ|Hi)

q′ = p(H1|y) =
qp(y|H1)

qp(y|H1) + (1− q)p(y|H2)
,

where p(y|Hi) =
∫

p(y|θ)p(θ|Hi)dθ is the predictive probability of

the data y assuming Hi

• The posterior is a mixture of the respective posterior

distributions under each prior assumption, with the mixture

weights adapted to support the prior that provides the best

prediction for the observed data.
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