Lecture 2.

Discrete Bayesian inference and conjugate

distributions for proportions and Poisson
means

Bayesian analysis

Summary

S

Bayesian inference for discrete parameters - binomial example
Bayesian direct probability statements about parameters
Prior distributions for proportions

Predictions for binomial data

Prior distributions for Poisson means

Predictions for Poisson data
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Bayesian inference for discrete parameters

e Have observable quantities y, i.e. the data

e Unknown quantity 8 taking on one of a discrete set of values
Oi,i == 1, .y I

e Specify a sampling model p(y | 8)

e Specify a prior distribution p(6;)

e Together define p(y, 6;) = p(y|6;)p(6;): a 'full probability
model’

Then use Bayes theorem to obtain conditional probability
distribution for unobserved quantities of interest given the data:

_ _ p(y|6:)p(0;) o A A
p(0; | y) = S p( | 00) p(00) p(y | 6;) p(6;)

when considering p(y | 6;) as a function of 6;: ie the likelihood.

posterior « likelihood x prior.
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Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

1.
2.
3.

biased 3:1 in favour of heads
a fair coin,
biased 3:1 in favour of tails

I randomly select one coin and toss it once, observing a head.
What is the probability that I have chosen coin 37

Let y = 1 denote the event that I observe a head

0 denote the probability of a head: 6 € (0.25,0.5,0.75)
Prior: p(# = 0.25) = p(# = 0.5) = p(# = 0.75) = 0.33
Sampling distribution: p(y|6) = 6¥(1 — 6)(1—¥)
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Prior Likelihood Un-normalised Normalised

Posterior Posterior

Coin 6 | p(6) p(y=1/8) p(y=1/0)p(6) P=7lGe(®)
0.250.33 0.25 0.0825 0.167
0.50 | 0.33 0.50 0.1650 0.333
0.75(0.33 0.75 0.2475 0.500
Sum| 1.00 1.50 0.495 1.000

t The normalising constant can be calculated as p(y) = >, p(y|0:)p(6:)

So observing a head on a single toss of the coin means that there
is now a 50% probability that the chance of heads is 0.75 and only
a 16.7% probability that the chance of heads in 0.25.
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Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

PROBLEM.

Given the number of times in which an unknown
event has happened and failed: Reguired the chance
that the probability of its happening in a fingle trial
lies fomewhere between any two degrees of pro-
bability that can be named.

In modern language, given r ~ Binomial(0,n),
what is Pr(61 < 6 < 03|r,n)?
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Basic idea: Direct expression of uncertainty about unknown
parameters

eg " There is an 89% probability that the absolute increase in major bleeds is
less than 10 percent with low-dose PLT transfusions” (Tinmouth et al, 2004)
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Example: surgical

e Suppose a hospital is considering a new high-risk operation

e Experience in other hospitals indicate that the risk 0 for each
patient is expected to be around 10%

e it would be fairly surprising (all else being equal) to be less
than 3% or more than 20%
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T T T T T 1
0 10 20 30 40 50

Mortality risk (%)

Probability that mortality risk above 15% = Pr(6 > 0.15) = 0.17
Pr(0.03 < 6 < 0.20) = 0.90)

2-9

Bayesian analysis

Why a direct probability distribution?

1. Tells us what we want: what are plausible values for the
parameter of interest?

2. No P-values: just calculate relevant tail areas

3. No (difficult to interpret) confidence intervals: just report, say,
central area that contains 95% of distribution

4. Easy to make predictions (see later)

5. Fits naturally into decision analysis / cost-effectiveness analysis
/ project prioritisation

6. There is a procedure for adapting the distribution in the light
of additional evidence: i.e. Bayes theorem allows us to learn
from experience

Bayesian analysis

And what about disadvantages?

1. Requires the specification of what we thought before new
evidence is taken into account: the prior distribution

2. Explicit allowance for quantitative subjective judgement in the
analysis,

3. Analysis may be more complex than a traditional approach

4. Computation may be more difficult

5. Currently no established standards for Bayesian reporting

e Vital importance of accountability to scientific community,
journal editors, policy-makers, FDA etc etc.

e Strong need for transparency - not easy given complexity!
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Inference on proportions
What is a reasonable form for a prior distribution for a proportion?

0 ~ Betala, b] represents a beta distribution with properties:

— r(a+b) a—1 _ p\b—1.
pOle.t) = Cofn et a-0 T 6e0D)
E(fla,b) = aib
ab )
e N K CE VR
Loa1 b—1 5, _ T (a)T (D)
:>/00 (1 -0y tag = o

(Fla) =(a—1)! if a integer; M'(1) =0 =1)
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Beta distributions

(a) a=05, b=05 (b) a=1,b=1 () a=5,b=1
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Surgical example

T T T T T 1
0 10 20 30 40 50

Mortality risk (%)

e A Beta[3,27] proportional to 2(1 — 6)2°

e Mean = 3/(3+427) = 0.1, standard deviation 0.054, variance 0.003, median
0.091, mode 0.071.

e An equi-tailed 90% interval is (0.03, 0.20) which has width 0.17, but a
narrower 'Highest posterior density’ interval is (0.02, 0.18) with width 0.16
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Predictions with unknown parameters

e Suppose we assume a parametric sampling distribution p(y|6)

e willing to express our uncertainty about the parameter 6 as a
distribution p(6)

e before observing a future quantity Y, we can integrate out the
unknown parameter to produce a predictive distribution

p(y) = /p(yIG)p(H)da :

e for discrete parameter distributions this takes the form
p(y) = p(yl6;)p(6;).
i

e Such predictions are useful in, for example, cost-effectiveness
models, design of studies, checking whether observed data is
compatible with expectations, and so on
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The mean and variance of a predictive distribution can be obtained
using standard formulae:

E[Y] = EglE[Y|0]]

VY] = Eg[VI[Y|0]] + VolE[Y|0]]

© subscripts emphasises when the expectation or variance is with
respect with the distribution for 6

In certain cases we can obtain an algebraic expression for the
predictive distribution.




Bayesian analysis

Standard identities

For 2 random variables X and Y with joint distribution p(z,y), then

E[Y] = Ex[E[Y|z]]; VI[Y]= Ex[V[Y|z]] + VxI[E[Y|z]]
Proof (assuming regularity conditions to reverse order of integration)

ElY] = /ymwwziﬁﬁgm@wmwMﬂ@

Y

= /X { /Y yp(ylw)dy} p(@)dz = Ex[BlY 2],

VY]

[ - B = [ [ [w- E[Y])%(y\x)dy} p(2)da
Y X Y

| [ - BIYIa] + EY]al - EIYD2p(yle)dy| p(a)de
Al }

/ [ [- E[Y|x]>2p(y|x>dy} p@)ds + [ (BIY]a] - BIY)? [ / p(ymdy} p(2)de
X Y X Y
Ex[V[Y[al] + VA [E[Ya]]
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Predictions for Binomial data

Suppose

0 ~ Beta(a,b)
Y ~ Binomial(8,n).

The exact predictive distribution for Y is known as the
Beta-Binomial with

_T(a+b) [n ] Mat+ynri+n-—y)
F(@)r@®) \ 4 Fa+b+n)

Ifa=b=1, i.e. the prior distribution is uniform between 0 and 1,
p(y) is uniform over 0,1,...,n

p(y)

(This was the noted by Bayes in 1761)
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BY] = BolBIY|f]] = Bolnf] =n_

VIY] = EglVI[Y|0]] + VelE[Y|0]] ( )
— nd(1 — nol = n ab (n+a+b
= Eolno(1 —0)] + Velnd] =n " i

Bayesian analysis
Surgical: continued. Suppose our hospital was going to do 20
operations next year - how many deaths might we expect, and
what is the chance there will be at least 6 deaths?

Let Y be the number of deaths next year

0 ~ Beta(3,27) and Y ~ Binomial(6,20) and so Y is beta-binomial
with mean 0.1 x 20 = 2, variance 2.90 and standard deviation 1.70

We can also calculate Pr(Y > 6) = 0.04
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The gamma distribution

Flexible distribution for positive quantities. If Y ~ Gammala, b]

b,
p(yla,b) = r(a)y“ Lemtw 4 e (0,00)
E(Yl|a,b) = %

a
V(¥lab) = .

WinBUGS notation: y ~ dgamma(a,b)
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Gamma distributions
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e Gammal[l,b] distribution is exponential with mean 1/b

° Gamma[%,%] is a Chi-squared x2 distribution on v degrees of
freedom

e Y ~ Gamma(e, e) approximates p(y) o< 1/y, or that logY =
Uniform

e Used as conjugate prior distribution for Poisson means and
inverse variances (precisions)

e Used as sampling distribution for skewed positive valued
quantities (alternative to log normal) — MLE of mean is
sample mean
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Predictions for Poisson data

Suppose

0 ~ Gamma(a,b)

Y ~ Poisson(9).
The exact predictive distribution for Y is known as the
Negative-Binomial with

p(y) = rlaty) "
M(a)M(y+1) (b+ D)oty

Bayesian analysis
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VY]

ElY] = Eg[E[Y|0]] = Egl0] = %

= BolVIYI0l] + VolE[Y0]]

Bayesian analysis

a _a(b+1)

= Eglf]l +Vell] :%+b—2_

b2
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