Summary

Lecture 2. Discrete Bayesian inference and conjugate distributions for proportions and Poisson means	 Bayesian inference for discrete parameters - binomial example Bayesian direct probability statements about parameters Prior distributions for proportions Predictions for binomial data Prior distributions for Poisson means Predictions for Poisson data 	
2-1	2-2	
Bayesian analysis	Bayesian analysis	
Bayesian inference for discrete parameters	Inference about a discrete parameter	
 Have observable quantities y, i.e. the data Unknown quantity θ taking on one of a discrete set of values θ_i, i = 1,, I Specify a sampling model p(y θ) Specify a prior distribution p(θ_i) Together define p(y, θ_i) = p(y θ_i)p(θ_i): a 'full probability model' 	Suppose I have 3 coins in my pocket, 1. biased 3:1 in favour of heads 2. a fair coin, 3. biased 3:1 in favour of tails Lirandomly select one coin and toss it once, observing a head	
Then use Bayes theorem to obtain conditional probability distribution for unobserved quantities of interest given the data: $p(\theta_i \mid y) = \frac{p(y \mid \theta_i) p(\theta_i)}{\sum_k p(y \mid \theta_k) p(\theta_k)} \propto p(y \mid \theta_i) p(\theta_i)$ when considering $p(y \mid \theta_i)$ as a function of θ_i : ie the <i>likelihood</i> . posterior \propto likelihood \times prior.	• Let $y = 1$ denote the event that I observe a head • θ denote the probability of a head: $\theta \in (0.25, 0.5, 0.75)$ • Prior: $p(\theta = 0.25) = p(\theta = 0.5) = p(\theta = 0.75) = 0.33$ • Sampling distribution: $p(y \theta) = \theta^y(1-\theta)^{(1-y)}$	

2-5

Bayesian analysis

Prior Likelihood Un-normalised Normalised

				Posterior	Posterior
Coin θ		$p(\theta)$	$p(y=1 \theta)$	$p(y=1 \theta)p(\theta)$	$\frac{p(y=1 \theta)p(\theta)}{p(y)^{\dagger}}$
1	0.25	0.33	0.25	0.0825	0.167
2	0.50	0.33	0.50	0.1650	0.333
3	0.75	0.33	0.75	0.2475	0.500
	Sum	1.00	1.50	0.495	1.000

† The normalising constant can be calculated as $p(y) = \sum_{i} p(y|\theta_i) p(\theta_i)$

So observing a head on a single toss of the coin means that there is now a 50% probability that the chance of heads is 0.75 and only a 16.7% probability that the chance of heads in 0.25.

Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

PROBLEM.

Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its happening in a fingle trial lies fomewhere between any two degrees of probability that can be named.

In modern language, given $r \sim \text{Binomial}(\theta, n)$, what is $\Pr(\theta_1 < \theta < \theta_2 | r, n)$?

2-6

Bayesian analysis

Example: surgical

- Suppose a hospital is considering a new high-risk operation
- Experience in other hospitals indicate that the risk θ for each patient is expected to be around 10%
- it would be fairly surprising (all else being equal) to be less than 3% or more than 20%

Basic idea: Direct expression of uncertainty about unknown

eg "There is an 89% probability that the absolute increase in major bleeds is

less than 10 percent with low-dose PLT transfusions" (Tinmouth et al. 2004)

parameters

• before observing a future quantity Y, we can integrate out the unknown parameter to produce a predictive distribution

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$
:

• for discrete parameter distributions this takes the form

$$p(y) = \sum_{i} p(y|\theta_i) p(\theta_i).$$

• Such predictions are useful in, for example, cost-effectiveness models, design of studies, checking whether observed data is compatible with expectations, and so on

In certain cases we can obtain an algebraic expression for the predictive distribution.

Bayesian analysis

Standard identities

For 2 random variables X and Y with joint distribution p(x, y), then

$$\boldsymbol{E}[Y] = \boldsymbol{E}_{\boldsymbol{X}}[\boldsymbol{E}[Y|\boldsymbol{x}]]; \quad \boldsymbol{V}[Y] = \boldsymbol{E}_{\boldsymbol{X}}[\boldsymbol{V}[Y|\boldsymbol{x}]] + \boldsymbol{V}_{\boldsymbol{X}}[\boldsymbol{E}[Y|\boldsymbol{x}]]$$

Proof (assuming regularity conditions to reverse order of integration)

$$\begin{split} E[Y] &= \int_{Y} y \, p(y) dy = \int_{Y} \int_{X} y \left[p(y|x) p(x) dx \right] dy \\ &= \int_{X} \left[\int_{Y} y \, p(y|x) dy \right] p(x) dx = E_{X} [E[Y|x]]. \end{split}$$

$$\begin{split} \mathbf{V}[Y] &= \int_{Y} (y - \mathbf{E}[Y])^2 p(y) dy = \int_{X} \left[\int_{Y} (y - \mathbf{E}[Y])^2 p(y|x) dy \right] p(x) dx \\ &= \int_{X} \left[\int_{Y} (y - \mathbf{E}[Y|x] + \mathbf{E}[Y|x] - \mathbf{E}[Y])^2 p(y|x) dy \right] p(x) dx \\ &= \int_{X} \left[\int_{Y} (y - \mathbf{E}[Y|x])^2 p(y|x) dy \right] p(x) dx + \int_{X} (\mathbf{E}[Y|x] - \mathbf{E}[Y])^2 \left[\int_{Y} p(y|x) dy \right] p(x) dx \\ &= \mathbf{E}_{X}[\mathbf{V}[Y|x]] + \mathbf{V}_{X}[\mathbf{E}[Y|x]] \end{split}$$

Predictions for Binomial data

Suppose

$$\theta \sim \text{Beta}(a, b)$$

 $Y \sim \text{Binomial}(\theta, n)$

The exact predictive distribution for Y is known as the **Beta-Binomial** with

$$p(y) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \begin{pmatrix} n \\ y \end{pmatrix} \frac{\Gamma(a+y)\Gamma(b+n-y)}{\Gamma(a+b+n)}.$$

If a = b = 1, *i.e.* the prior distribution is uniform between 0 and 1, p(y) is uniform over 0,1,...,n

(This was the noted by Bayes in 1761)

2-18

Bayesian analysis

2-17

$$E[Y] = E_{\Theta}[E[Y|\theta]] = E_{\Theta}[n\theta] = n\frac{a}{a+b}$$

 $V[Y] = E_{\Theta}[V[Y|\theta]] + V_{\Theta}[E[Y|\theta]]$ = $E_{\Theta}[n\theta(1-\theta)] + V_{\Theta}[n\theta] = n \frac{ab}{(a+b)} \frac{(n+a+b)}{(1+a+b)}$ Bayesian analysis

Surgical: continued. Suppose our hospital was going to do 20 operations next year - how many deaths might we expect, and what is the chance there will be at least 6 deaths?

Let Y be the number of deaths next year

 $\theta \sim \text{Beta}(3,27)$ and $Y \sim \text{Binomial}(\theta,20)$ and so Y is beta-binomial with mean 0.1 \times 20 = 2, variance 2.90 and standard deviation 1.70

We can also calculate $Pr(Y \ge 6) = 0.04$

Bayesian analysis

The gamma distribution

Flexible distribution for positive quantities. If $Y \sim \text{Gamma}[a, b]$

$$p(y|a,b) = \frac{b^a}{\Gamma(a)} y^{a-1} e^{-by}; \quad y \in (0,\infty)$$
$$\mathsf{E}(Y|a,b) = \frac{a}{b}$$
$$\mathsf{V}(Y|a,b) = \frac{a}{b^2}.$$

WinBUGS notation: y ~ dgamma(a,b)

Gamma distributions

2-21

Bayesian analysis

- Gamma[1,b] distribution is exponential with mean 1/b
- Gamma $[\frac{v}{2}, \frac{1}{2}]$ is a Chi-squared χ^2_v distribution on v degrees of freedom
- $Y \sim \text{Gamma}(\epsilon, \epsilon)$ approximates $p(y) \propto 1/y$, or that $\log Y \approx$ Uniform
- Used as conjugate prior distribution for Poisson means and inverse variances (precisions)
- Used as sampling distribution for skewed positive valued quantities (alternative to log normal) — MLE of mean is sample mean

Bayesian analysis

2-22

Predictions for Poisson data

Suppose

$$\theta \sim \text{Gamma}(a, b)$$

 $Y \sim \text{Poisson}(\theta).$

The exact predictive distribution for Y is known as the **Negative-Binomial** with

$$p(y) = \frac{\Gamma(a+y)}{\Gamma(a)\Gamma(y+1)} \frac{b^a}{(b+1)^{a+y}}.$$

Bayesian analysis

$$E[Y] = E_{\Theta}[E[Y|\theta]] = E_{\Theta}[\theta] = \frac{a}{b}$$

$$V[Y] = E_{\Theta}[V[Y|\theta]] + V_{\Theta}[E[Y|\theta]]$$
$$= E_{\Theta}[\theta] + V_{\Theta}[\theta] = \frac{a}{b} + \frac{a}{b^2} = \frac{a(b+1)}{b^2}$$

2-25