
Lecture 2.

Discrete Bayesian inference and conjugate

distributions for proportions and Poisson

means

2-1

Bayesian analysis

Summary

1. Bayesian inference for discrete parameters - binomial example

2. Bayesian direct probability statements about parameters

3. Prior distributions for proportions

4. Predictions for binomial data

5. Prior distributions for Poisson means

6. Predictions for Poisson data
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Bayesian inference for discrete parameters

• Have observable quantities y, i.e. the data

• Unknown quantity θ taking on one of a discrete set of values
θi, i = 1, .., I

• Specify a sampling model p(y | θ)

• Specify a prior distribution p(θi)

• Together define p(y, θi) = p(y|θi)p(θi): a ’full probability

model’

Then use Bayes theorem to obtain conditional probability

distribution for unobserved quantities of interest given the data:

p(θi | y) =
p(y | θi) p(θi)∑
k p(y | θk) p(θk)

∝ p(y | θi) p(θi)

when considering p(y | θi) as a function of θi: ie the likelihood.

posterior ∝ likelihood× prior.
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Inference about a discrete parameter

Suppose I have 3 coins in my pocket,

1. biased 3:1 in favour of heads

2. a fair coin,

3. biased 3:1 in favour of tails

I randomly select one coin and toss it once, observing a head.

What is the probability that I have chosen coin 3?

• Let y = 1 denote the event that I observe a head

• θ denote the probability of a head: θ ∈ (0.25,0.5,0.75)

• Prior: p(θ = 0.25) = p(θ = 0.5) = p(θ = 0.75) = 0.33

• Sampling distribution: p(y|θ) = θy(1− θ)(1−y)
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Prior Likelihood Un-normalised Normalised

Posterior Posterior

Coin θ p(θ) p(y = 1|θ) p(y = 1|θ)p(θ)
p(y=1|θ)p(θ)

p(y)†

1 0.25 0.33 0.25 0.0825 0.167

2 0.50 0.33 0.50 0.1650 0.333

3 0.75 0.33 0.75 0.2475 0.500

Sum 1.00 1.50 0.495 1.000

† The normalising constant can be calculated as p(y) =
∑

i p(y|θi)p(θi)

So observing a head on a single toss of the coin means that there

is now a 50% probability that the chance of heads is 0.75 and only

a 16.7% probability that the chance of heads in 0.25.
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Bayesian inference - how did it all start?

In 1763, Reverend Thomas Bayes of Tunbridge Wells wrote

In modern language, given r ∼ Binomial(θ, n),

what is Pr(θ1 < θ < θ2|r, n)?
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Basic idea: Direct expression of uncertainty about unknown

parameters

eg ”There is an 89% probability that the absolute increase in major bleeds is

less than 10 percent with low-dose PLT transfusions” (Tinmouth et al, 2004)
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Example: surgical

• Suppose a hospital is considering a new high-risk operation

• Experience in other hospitals indicate that the risk θ for each

patient is expected to be around 10%

• it would be fairly surprising (all else being equal) to be less

than 3% or more than 20%

2-8



Bayesian analysis

Mortality risk (%)

0 10 20 30 40 50

Probability that mortality risk above 15% = Pr(θ > 0.15) = 0.17

Pr(0.03 < θ < 0.20) = 0.90)
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Why a direct probability distribution?

1. Tells us what we want: what are plausible values for the

parameter of interest?

2. No P-values: just calculate relevant tail areas

3. No (difficult to interpret) confidence intervals: just report, say,

central area that contains 95% of distribution

4. Easy to make predictions (see later)

5. Fits naturally into decision analysis / cost-effectiveness analysis

/ project prioritisation

6. There is a procedure for adapting the distribution in the light

of additional evidence: i.e. Bayes theorem allows us to learn

from experience
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And what about disadvantages?

1. Requires the specification of what we thought before new

evidence is taken into account: the prior distribution

2. Explicit allowance for quantitative subjective judgement in the

analysis,

3. Analysis may be more complex than a traditional approach

4. Computation may be more difficult

5. Currently no established standards for Bayesian reporting

• Vital importance of accountability to scientific community,

journal editors, policy-makers, FDA etc etc.

• Strong need for transparency - not easy given complexity!
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Inference on proportions

What is a reasonable form for a prior distribution for a proportion?

θ ∼ Beta[a, b] represents a beta distribution with properties:

p(θ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1 (1− θ)b−1; θ ∈ (0,1)

E(θ|a, b) =
a

a+ b

V(θ|a, b) =
ab

(a+ b)2(a+ b+1)
:

⇒
∫ 1

0
θa−1 (1− θ)b−1 dθ =

Γ(a)Γ(b)

Γ(a+ b)
.

(Γ(a) = (a− 1)! if a integer; Γ(1) = 0! = 1)
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Beta distributions
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Surgical example

Mortality risk (%)

0 10 20 30 40 50

• A Beta[3,27] proportional to θ2(1− θ)26

• Mean = 3/(3+27) = 0.1, standard deviation 0.054, variance 0.003, median
0.091, mode 0.071.

• An equi-tailed 90% interval is (0.03, 0.20) which has width 0.17, but a
narrower ’Highest posterior density’ interval is (0.02, 0.18) with width 0.16
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Predictions with unknown parameters

• Suppose we assume a parametric sampling distribution p(y|θ)

• willing to express our uncertainty about the parameter θ as a

distribution p(θ)

• before observing a future quantity Y , we can integrate out the

unknown parameter to produce a predictive distribution

p(y) =
∫

p(y|θ)p(θ)dθ :

• for discrete parameter distributions this takes the form

p(y) =
∑
i

p(y|θi)p(θi).

• Such predictions are useful in, for example, cost-effectiveness

models, design of studies, checking whether observed data is

compatible with expectations, and so on
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The mean and variance of a predictive distribution can be obtained

using standard formulae:

E[Y ] = EΘ[E[Y |θ]]

V [Y ] = EΘ[V [Y |θ]] + V Θ[E[Y |θ]]

Θ subscripts emphasises when the expectation or variance is with

respect with the distribution for θ

In certain cases we can obtain an algebraic expression for the

predictive distribution.
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Standard identities

For 2 random variables X and Y with joint distribution p(x, y), then

E[Y ] = EX[E[Y |x]]; V [Y ] = EX[V [Y |x]] + V X[E[Y |x]]

Proof (assuming regularity conditions to reverse order of integration)

E[Y ] =

∫
Y

y p(y)dy =

∫
Y

∫
X

y [p(y|x)p(x)dx] dy

=

∫
X

[∫
Y

y p(y|x)dy

]
p(x)dx = EX[E[Y |x]].

V [Y ] =

∫
Y

(y −E[Y ])2p(y)dy =

∫
X

[∫
Y

(y −E[Y ])2p(y|x)dy

]
p(x)dx

=

∫
X

[∫
Y

(y −E[Y |x] +E[Y |x]−E[Y ])2p(y|x)dy

]
p(x)dx

=

∫
X

[∫
Y

(y −E[Y |x])2p(y|x)dy

]
p(x)dx+

∫
X

(E[Y |x]−E[Y ])2
[∫

Y

p(y|x)dy

]
p(x)dx

= EX[V [Y |x]] + V X[E[Y |x]]
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Predictions for Binomial data

Suppose

θ ∼ Beta(a, b)

Y ∼ Binomial(θ, n).

The exact predictive distribution for Y is known as the

Beta-Binomial with

p(y) =
Γ(a+ b)

Γ(a)Γ(b)

⎛
⎜⎝ n

y

⎞
⎟⎠ Γ(a+ y)Γ(b+ n− y)

Γ(a+ b+ n)
.

If a = b = 1, i.e. the prior distribution is uniform between 0 and 1,

p(y) is uniform over 0,1,...,n

(This was the noted by Bayes in 1761)
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E[Y ] = EΘ[E[Y |θ]] = EΘ[nθ] = n
a

a+ b

V [Y ] = EΘ[V [Y |θ]] + V Θ[E[Y |θ]]

= EΘ[nθ(1− θ)] + V Θ[nθ] = n
ab

(a+ b)

(n+ a+ b)

(1 + a+ b)
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Surgical: continued. Suppose our hospital was going to do 20

operations next year - how many deaths might we expect, and

what is the chance there will be at least 6 deaths?

Let Y be the number of deaths next year

θ ∼ Beta(3,27) and Y ∼ Binomial(θ,20) and so Y is beta-binomial

with mean 0.1 × 20 = 2, variance 2.90 and standard deviation 1.70

We can also calculate Pr(Y ≥ 6) = 0.04

2-20



Bayesian analysis

The gamma distribution

Flexible distribution for positive quantities. If Y ∼ Gamma[a, b]

p(y|a, b) =
ba

Γ(a)
ya−1 e−by; y ∈ (0,∞)

E(Y |a, b) =
a

b

V(Y |a, b) =
a

b2
.

WinBUGS notation: y ~ dgamma(a,b)
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Gamma distributions
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• Gamma[1,b] distribution is exponential with mean 1/b

• Gamma[v2, 12] is a Chi-squared χ2v distribution on v degrees of

freedom

• Y ∼ Gamma(ε, ε) approximates p(y) ∝ 1/y, or that logY ≈

Uniform

• Used as conjugate prior distribution for Poisson means and

inverse variances (precisions)

• Used as sampling distribution for skewed positive valued

quantities (alternative to log normal) — MLE of mean is

sample mean
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Predictions for Poisson data

Suppose

θ ∼ Gamma(a, b)

Y ∼ Poisson(θ).

The exact predictive distribution for Y is known as the

Negative-Binomial with

p(y) =
Γ(a+ y)

Γ(a)Γ(y +1)

ba

(b+1)a+y
.
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E[Y ] = EΘ[E[Y |θ]] = EΘ[θ] =
a

b

V [Y ] = EΘ[V [Y |θ]] + V Θ[E[Y |θ]]

= EΘ[θ] + V Θ[θ] =
a

b
+

a

b2
=

a(b+1)

b2
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