Variation independence

- X, Y random variables, joint probability distribution parameterised by $\theta \in \Theta$.

- Joint density:
 $$p_{XY}(x, y; \theta) = p_X(x; \theta_X) p_{Y|X}(y|x; \theta_{Y|X}) = p_Y(y; \theta_Y) p_{X|Y}(x|y; \theta_{X|Y})$$

- Where $\theta \approx (\theta_X, \theta_{Y|X}) \approx (\theta_Y, \theta_{X|Y})$.

- Desire variation independence in both forms:
 $\Theta \approx \Theta_X \times \Theta_{Y|X} \approx \Theta_Y \times \Theta_{X|Y}$

- Called strong meta Markov property.

- Maximum likelihood estimators can be derived for each factor independently.

- Profile likelihood \propto marginal likelihood.
Variation independence

- X, Y random variables, joint probability distribution parameterised by $\theta \in \Theta$.
- Joint density:

 $$p_{XY}(x, y; \theta) = p_X(x; \theta_X)p_{Y|X}(y|x; \theta_{Y|X})$$

 $$= p_Y(y; \theta_Y)p_{X|Y}(x|y; \theta_{X|Y})$$

 where $\theta \simeq (\theta_X, \theta_{Y|X}) \simeq (\theta_Y, \theta_{X|Y})$.
Variation independence

- X, Y random variables, joint probability distribution parameterised by $\theta \in \Theta$.
- Joint density:

$$p_{XY}(x, y; \theta) = p_X(x; \theta_X)p_{Y|X}(y|x; \theta_{Y|X})$$

$$= p_Y(y; \theta_Y)p_{X|Y}(x|y; \theta_{X|Y})$$

where $\theta \simeq (\theta_X, \theta_{Y|X}) \simeq (\theta_Y, \theta_{X|Y})$.
- Desire variation independence in both forms:

$$\Theta \simeq \Theta_X \times \Theta_{Y|X} \simeq \Theta_Y \times \Theta_{X|Y}$$

Called strong meta Markov property.
Variation independence

- X, Y random variables, joint probability distribution parameterised by $\theta \in \Theta$.
- Joint density:

 \[p_{XY}(x, y; \theta) = p_X(x; \theta_X)p_{Y|X}(y|x; \theta_{Y|X}) = p_Y(y; \theta_Y)p_{X|Y}(x|y; \theta_{X|Y}) \]

 where $\theta \simeq (\theta_X, \theta_{Y|X}) \simeq (\theta_Y, \theta_{X|Y})$.
- Desire variation independence in both forms:
 \[\Theta \simeq \Theta_X \times \Theta_{Y|X} \simeq \Theta_Y \times \Theta_{X|Y} \]

 Called strong meta Markov property.
- Maximum likelihood estimators can be derived for each factor independently.
 - Profile likelihood \propto marginal likelihood.
Example: Case-control study
Prentice and Pyke (1979) “Logistic disease incidence models and case-control studies”

• Observational study:
 • $X =$ discrete covariates (age band, sex, etc.)
 • $Y =$ binary response (dead/alive)
Example: Case-control study

Prentice and Pyke (1979) “Logistic disease incidence models and case-control studies”

- Observational study:
 - $X = \text{discrete covariates (age band, sex, etc.)}$
 - $Y = \text{binary response (dead/alive)}$

- Prospective: choose X, observe $Y|X$ (slow and expensive).
- Case-control: choose Y, observe $X|Y$ (quick and cheap).

Assume (X,Y) arbitrary multinomial distribution with proportional odds constraint:

\[
\log \frac{p_{XY}(x,1)}{p_{XY}(x,0)} = \alpha + X^\top \beta
\]

where β parameter of interest.

Prospective: logistic regression (easy)

Case-control: lots of parameters (complex)

Model is strong meta Markov ⇒ Likelihood function for β same shape ⇒ Case-control MLE $\hat{\beta}$ can be found by logistic regression.
Example: Case-control study
Prentice and Pyke (1979) “Logistic disease incidence models and case-control studies”

- **Observational study:**
 - $X = \text{discrete covariates (age band, sex, etc.)}$
 - $Y = \text{binary response (dead/alive)}$
- **Prospective:** choose X, observe $Y|X$ (slow and expensive).
 - **Case-control:** choose Y, observe $X|Y$ (quick and cheap).
- Assume (X, Y) arbitrary multinomial distribution with proportional odds constraint:

\[
\log \frac{p_{X|Y}(x, 1)}{p_{X|Y}(x, 0)} = \alpha + X^T \beta
\]

where β parameter of interest.

- **Prospective:** logistic regression (easy)
- **Case-control:** lots of parameters (complex)
Example: Case-control study

Prentice and Pyke (1979) “Logistic disease incidence models and case-control studies”

- Observational study:
 - $X =$ discrete covariates (age band, sex, etc.)
 - $Y =$ binary response (dead/alive)
- **Prospective:** choose X, observe $Y|X$ (slow and expensive).
 Case-control: choose Y, observe $X|Y$ (quick and cheap).
- Assume (X, Y) arbitrary multinomial distribution with proportional odds constraint:

 \[
 \log \frac{p_{X|Y}(x, 1)}{p_{X|Y}(x, 0)} = \alpha + X^T \beta
 \]

 where β parameter of interest.

 Prospective: logistic regression (easy)
 Case-control: lots of parameters (complex)
- Model is strong meta Markov
 \[\Rightarrow\] Likelihood function for β same shape
 \[\Rightarrow\] Case-control MLE $\hat{\beta}$ can be found by logistic regression.
Example: Case-control study

Prentice and Pyke (1979) “Logistic disease incidence models and case-control studies”

- Observational study:
 - \(X = \) discrete covariates (age band, sex, etc.)
 - \(Y = \) binary response (dead/alive)
- Prospective: choose \(X \), observe \(Y|X \) (slow and expensive).
- Case-control: choose \(Y \), observe \(X|Y \) (quick and cheap).
- Assume \((X, Y)\) arbitrary multinomial distribution with proportional odds constraint:
 \[
 \log \frac{p_{XY}(x, 1)}{p_{XY}(x, 0)} = \alpha + X^T \beta
 \]
 where \(\beta \) parameter of interest.
 - Prospective: logistic regression (easy)
 - Case-control: lots of parameters (complex)
- Model is strong meta Markov
 \[\Rightarrow \text{Likelihood function for } \beta \text{ same shape} \]
 \[\Rightarrow \text{Case-control MLE } \hat{\beta} \text{ can be found by logistic regression.} \]