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The average value of the walk is constant; indeed it has the stronger property that
the average value of the walk at some future time is always simply the current
value. In precise terms we have

EX, = EXy;
and the stronger property says that, for n > m,
B(Xp —Xm | Xo=td0,..., Xm =im)=0.

This stronger property says that (X, ),>0 is in fact a martingale.

Here is the general definition. Let us fix for definiteness a Markov chain (Xn)nZO
and write F,, for the collection of all sets depending only on Xg,...,X,,. The
sequence (Fp)n>o is called the filtration of (X, ),>0 and we think of F,, as repre-
senting the state of knowledge, or history, of the chain up to time n. A process
(My)n>o0 is called adapted if M, depends only on Xg,...,X,. A process (My)n>0
is called integrable if E|M, | < oo for all n. An adapted integrable process (M, )n>0
is called a martingale if

El(Mpy1 — Mp)1a] =0

for all A € F,, and all n. Since the collection F,, consists of countable unions of
elementary events such as

{Xo=1i0, X1 =41,...,Xpn =in},
this martingale property is equivalent to saying that
E(Mpy1 — My | Xo=1do,..., Xp=1,) =0

for all 7g,...,1, and all n.

A third formulation of the martingale property involves another notion of con-
ditional expectation. Given an integrable random variable Y, we define

EY | Fa)= > EY | Xo=ido,. .., Xn = in)l{xomio,.. Xuzis}-

10,...,in

The random variable E(Y | F,) is called the conditional expectation of Y given F,.
In passing from Y to (Y | F,), what we do is to replace on each elementary event
A € F,, the random variable Y by its average value E(Y | A). It is easy to check
that an adapted integrable process (Mp),>0 is a martingale if and only if

E(My41 | Fn) = M, for all n.

Conditional expectation is a partial averaging, so if we complete the process and
average the conditional expectation we should get the full expectation

E(R(Y | Fa)) = B(Y).
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It is easy to check that this formula holds.

In particular, for a martingale
E(Mn) = E(E(Mp1 | Fn)) = E(Mpt1)

so, by induction
E(M,,) = E(My).
This was already clear on taking A = Q in our original definition of a martingale.

We shall prove one general result about martingales, then see how it explains
some things we know about the simple symmetric random walk. Recall that a
random variable

T:Q—{0,1,2,...}U{cc}

is a stopping time if {T' = n} € F, for all n < co. An equivalent condition is that
{T < n} € F, for all n < co. Recall from Section 1.4 that all sorts of hitting times
are stopping times.

Theorem 4.1.1 (Optional stopping theorem). Let (M,),>0 be a martingale
and let T be a stopping time. Suppose that at least one of the following conditions
holds:

(i) T < n for some n;
(il) T < o0 and |M,| < C whenever n <T.
Then EMp = EM,.

Proof. Assume that (i) holds. Then

My — My=(Mp — Mr_1)+ ...+ (M1 — My)
n—1

=" (My1 — Mi)lper.
k=0

Now {k < T} = {T < k}° € Fy, since T is a stopping time, and so
FE[(Mg41 — Mg)lp<r] = 0

since (My)g>0 is a martingale. Hence

n—1
EMyp —EMo = F[(My41 — My)ler] = 0.
k=0

If we do not assume (i) but (ii), then the preceding argument applies to the stopping
time 1" A n, so that EMrpa, = [EMy. Then

|EMT —EM0| = |EMT —EMT/\n| < E|1MT — 1MTAn| < QC]P)(T> TL)

for all n. But P(T'>n) — 0 as n — oo, so EMy =EM,. O
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Returning to the simple symmetric random walk (X, ),>0, suppose that Xo =0
and we take
=inf{n>0:X,=—a or X, =0}

where a,b € N are given. Then T is a stopping time and 7' < oo by recurrence of
finite closed classes. Thus condition (ii) of the optional stopping theorem applies
with M, = X,, and C' = a V b. We deduce that EX; = EXq = 0. So what? Well,
Nnow we can compute

p = P(X, hits —a before b).

We have X7 = —a with probability p and X7 = b with probability 1 — p, so
0=FEXy =p(—a)+ (1 —p)b

giving
p=">b/(a+Db).

There is an entirely different, Markovian, way to compute p, using the methods of
Section 1.4. But the intuition behind the result EX; = 0 is very clear: a gambler,
playing a fair game, leaves the casino once losses reach a or winnings reach b,
whichever is sooner; since the game is fair, the average gain should be zero.

We discussed in Section 1.3 the counter-intuitive case of a gambler who keeps
on playing a fair game against an infinitely rich casino, with the certain outcome
of ruin. This game ends at the finite stopping time

=inf{n>0: X, = —a}
where a is the gambler’s initial fortune. Since Xy = —a we have
EXp = —a # 0 = EXj

but this does not contradict the optional stopping theorem because neither con-
dition (i) nor condition (ii) is satisfied. Thus, while intuition might suggest that
EX7p = [EXj is rather obvious, some care is needed as it is not always true.

The example just discussed was rather special in that the chain (X, ),>0 itself
was a martingale. Obviously, this is not true in general; indeed a martingale
is necessarily real-valued and we do not in general insist that the state-space I is
contained in IR. Nevertheless, to every Markov chain is associated a whole collection
of martingales, and these martingales characterize the chain. This is the basis of a
deep connection between martingales and Markov chains.

We recall that, given a function f : I — R and a Markov chain (X, ),>0 with
transition matrix P, we have

NG =008 = E(F(X0)).

Jjel
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Theorem 4.1.2. Let (Xn)nzo be a random process with values in I and let P
be a stochastic matrix. Write (F,)n>o for the filtration of (X,)n>0. Then the
following are equivalent:

(1) (Xn)n>o is a Markov chain with transition matrix P;

(i) for all bounded functions f : I — R, the following process is a martingale:

n—1

M] = f(Xn) = F(Xo) = D (P = Df(Xm).

m=0
Proof. Suppose (i) holds. Let f be a bounded function. Then

(PH@)] =1 pij fi| < sup |
jel J
SO
|M]]] < 2(n+ 1)sup | fi] < o0
J

showing that M/ is integrable for all n.
Let A={Xo=1ig,...,X, = i,}. By the Markov property

E(f(Xng1) | A) = B, (F(X1)) = (P)(in)

SO

E(Ml 4y = M | A) = Ef (Xag1) = (PH(Xa) | A] =0
and so (MJ),>0 is a martingale.

On the other hand, if (ii) holds, then
Ff(Xng1) — (PH(Xn) | Xo =d0,... , Xn=1p] =0
for all bounded functions f. On taking f = 1y;,,,} we obtain
P(Xpg1=tng1 [ Xo=10,..., Xn = in) = Pininp

s0 (X5 )n>o0 is Markov with transition matrix P. [

Some more martingales associated to a Markov chain are described in the next
result. Notice that we drop the requirement that f be bounded.

Theorem 4.1.3. Let (X, ),>0 be a Markov chain with transition matrix P. Sup-
pose that a function f : N x I — R satisfies, for alln > 0, both

Elf(n, Xn)| < 0

and

(PH(n+1,9) =Y pijf(n+1,5) = f(n,1).

JEeI

Then M, = f(n, X,) is a martingale.
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Proof. We have assumed that M, is integrable for all n. Then, by the Markov
property
E(Mn+1 — Mn | X() = io, . ,Xn = Zn) = En [f(n —+- 1,X1) — f(n,Xo)]
=(Pf(n+1,in) — f(n,in) = 0.
So (My)n>0 is a martingale. [J

Let us see how this theorem works in the case where (Xn)nzo is a simple random
walk on Z, starting from 0. We consider f(i) = i and g(n, i) = i?—n. Since | X,| < n
for all n, we have

E|f(Xn)| < o0, Elg(n, X,)| < co.

Also
(P = (= 1)/2+ (i +1)/2=i= f(i),
(Pg)(n+1,i)=(i—-1?/24+ (G —-1)?/2—(n+1)=4>—n = g(n,i).

Hence both X,, = f(X,) and Y,, = ¢g(n, X,,) are martingales.

In order to put this to some use, consider again the stopping time
T=inf{n>0:X,=—a or X, =0}
where a,b € N. By the optional stopping theorem
0= B(Y) = E(Yran) = B(X3r,) — BT An)

Hence

E(T An) =TF(X7np)-

On letting n — oo, the left side converges to E(T), by monotone convergence, and
the right side to E(X2) by bounded convergence. So we obtain

F(T) = E(X7) = a®p + b*(1 - p) = ab.

We have given only the simplest examples of the use of martingales in study-
ing Markov chains. Some more will appear in later sections. For an excellent
introduction to martingales and their applications we recommend Probability with
Martingales by David Williams (Cambridge University Press, 1991).

Exercise

4.1.1 Let (Xn)nZO be a Markov chain on I and let A be an absorbing set in I. Set
T=inf{n>0:X, € A}

and
hi = Py(X,, € A for some n > 0) = P;(T < o).

Show that M,, = h(X,,) is a martingale.



118 4. Further theory
4.2 Potential theory

Several physical theories share a common mathematical framework, which is known
as potential theory. One example is Newton’s theory of gravity, but potential
theory is also relevant to electrostatics, fluid flow and the diffusion of heat. In
gravity, a distribution of mass, of density p say, gives rise to a gravitational potential
¢, which in suitable units satisfies the equation

_Ad) =P
where A = §%/022 + 0%/0y? + 82/92%. The potential ¢ is felt physically through

its gradient
_ (92 99 99
Ve = <6x’ dy’ &z)

which gives the force of gravity acting on a particle of unit mass. Markov chains,
where space is discrete, obviously have no direct link with this theory, in which
space 1s a continuum. An indirect link is provided by Brownian motion, which we
shall discuss in Section 4.4.

In this section we are going to consider potential theory for a countable state-
space, which has much of the structure of the continuum version. This discrete
theory amounts to doing Markov chains without the probability, which has the
disadvantage that one loses the intuitive picture of the process, but the advantage of
wider applicability. We shall begin by introducing the idea of potentials associated
to a Markov chain, and by showing how to calculate these potentials. This is
a unifying idea, containing within it other notions previously considered such as
hitting probabilities and expected hitting times. It also finds application when one
associates costs to Markov chains in modelling economic activity: see Section 5.4.

Once we have established the basic link between a Markov chain and its associ-
ated potentials, we shall briefly run through some of the main features of potential
theory, explaining their significance in terms of Markov chains. This is the easiest
way to appreciate the general structure of potential theory, unobscured by techni-
cal difficulties. The basic ideas of boundary theory for Markov chains will also be
introduced.

Before we embark on a general discussion of potentials associated to a Markov
chain, here are two simple examples. In these examples the potential ¢ has the
interpretation of expected total cost.
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Example 4.2.1

Consider the discrete-time random walk on the directed graph shown above, which
at each step choses among the allowable transitions with equal probability. Suppose
that on each visit to states i = 1,2, 3,4 a cost ¢; is incurred, where ¢; = 7. What is
the fair price to move from state 3 to state 47

The fair price is always the difference in the expected total cost. We denote by
@i the expected total cost starting from 2. Obviously, ¢5 = 0 and by considering
the effect of a single step we see that

¢1 =1+ ¢,

¢2 = 2+ ¢,

63 =3+ 261 + 504,
¢4 = 4.

Hence ¢3 = 8 and the fair price to move from 3 to 4 is 4.

We shall now consider two variations on this problem. First suppose our process
is, instead, the continuous-time random walk (X;);>0 on the same directed graph
which makes each allowable transition at rate 1, and suppose cost is incurred at
rate ¢; = 7 in state ¢ for ¢ = 1,2, 3,4. Thus the total cost is now

/O " (X )ds.

What now is the fair price to move from 3 to 47 The expected cost incurred on
each visit to 7 is given by ¢;/¢; and ¢1 = 1,92 = 1,93 = 3,94 = 1. So we see, as

before
o1 =14 2,
¢2 = 2+ @3,
b3 =32+ 101+ 104,
¢q = 4.

Hence ¢3 = 5 and the fair price to move from 3 to 4 is 1.

In the second variation we consider the discrete-time random walk (Xn)nZO on
the modified graph shown below. Where there is no arrow, transitions are allowed



