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Exercises

2.3.1 Suppose S and T are independent exponential random variables of param-
eters o and @ respectively. What is the distribution of min{S,T}? What is the
probability that S < T'? Show that the two events {S < T'} and {min{S, T} > t}

are independent.

2.3.2 Let 711,75, ... be independent exponential random variables of parameter A
and let N be an independent geometric random variable with

P(N=n)=g(1 - )"}, n=12 ...

Show that T = Ef\;l T; has exponential distribution of parameter A3.

2.3.3 Let 51,535, . .. be independent exponential random variables with parameters
A1, Aa, ... respectively. Show that A1.S7 is exponential of parameter 1.

Use the strong law of large numbers to show, first in the special case A, = 1 for
all n, and then subject only to the condition sup,, A, < oo, that

p@snzoo)zl.

Is the condition sup,, A, < 0o absolutely necessary?

2.4 Poisson processes

Poisson processes are some of the simplest examples of continuous-time Markov
chains. We shall also see that they may serve as building blocks for the most
general continuous-time Markov chain. Moreover, a Poisson process is the natural
probabilistic model for any uncoordinated stream of discrete events in continuous
time. So we shall study Poisson processes first, both as a gentle warm-up for the
general theory and because they are useful in themselves. The key result is Theorem
2.4.3, which provides three different descriptions of a Poisson process. The reader
might well begin with the statement of this result and then see how it is used in the
theorems and examples that follow. We shall begin with a definition in terms of
jump chain and holding times (see Section 2.2). A right-continuous process (X;):>0
with valuesin {0,1,2,...} is a Poisson process of rate A (0 < A < 0o) if its holding
times Sy, Ss, . .. are independent exponential random variables of parameter A and
its jump chain is given by Y,, = n. Here is the diagram:
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The associated @-matrix is given by

-2 A

By Theorem 2.3.2 (or the strong law of large numbers) we have P(.J, — c0) = 1 so
there is no explosion and the law of (X;);>¢ is uniquely determined. A simple way to
construct a Poisson process of rate A is to take a sequence S1, S5, ... of independent
exponential random variables of parameter A, to set Jo =0, J, = S1 4+ ...+ 5,
and then set

Xt:n if Jngt<Jn+1

Xi

S S ' S3 S4 S5 ¢ Ss

The diagram illustrates a typical path. We now show how the memoryless
property of the exponential holding times, Theorem 2.3.1, leads to a memoryless
property of the Poisson process.

Theorem 2.4.1 (Markov property). Let (X;):>0 be a Poisson process of rate A.
Then, for any s > 0, (X,4¢— X, ):>0 is also a Poisson process of rate A, independent
of (Xy :r < s).

Proof. 1t suffices to prove the claim conditional on the event X = ¢, for each ¢ > 0.
Set X: = X5yt — Xs. We have

{Xs =i} ={Ji<s< Jip1} ={Ji <s}N{Siy1 >s— Ji}.
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On this event
i
X, = E lis,<y forr<s
j=1
and the holding times §1, §2, ... of ()N(t)tzo are given by
§1 :Si+1_(5_Ji); §n = Di+n fOI'TLZ?

as shown in the diagram.

: DSt Sy :

: —-——

: Sit1 o Sigo

1 Ll 1 A . |

0 Ji Jiv1 Jito

Recall that the holding times Si,Sa,... are independent E(A). Condition on
Si,...,S8; and {X; = i}, then by the memoryless property of S;4; and inde-
pendence, §1,§2, ... are themselves independent F(X). Hence, conditional on
{X; =i}, §1,§2, ... are independent (), and independent of Sy, ..., S;. Hence,
conditional on {X; = i}, ()‘Et)tzo is a Poisson process of rate A and independent of

(Xr:r<s). O

In fact, we shall see in Section 6.5, by an argument in essentially the same spirit
that the result also holds with s replaced by any stopping time T of (X;);>0.

Theorem 2.4.2 (Strong Markov property). Let (X;);>0 be a Poisson process
of rate A and let T' be a stopping time of (X;);>o. Then, conditional on T' < oo,
(X4t — X7 )i>0 is also a Poisson process of rate A, independent of (X, : s <T).

Here is some standard terminology. If (X;);>0 is a real-valued process, we can
consider its increment X; — X, over any interval (s,t]. We say that (X;);>0 has
stationary increments if the distribution of X;4; — X depends only on ¢ > 0.
We say that (X;);>0 has independent increments if its increments over any finite
collection of disjoint intervals are independent.

We come to the key result for the Poisson process, which gives two conditions
equivalent to the jump chain/holding time characterization which we took as our
original definition. Thus we have three alternative definitions of the same process.
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Theorem 2.4.3. Let (X;);>0 be an increasing, right-continuous integer-valued
process starting from 0. Let 0 < A < oco. Then the following three conditions are
equivalent:

(a) (jump chain/holding time definition) the holding times Sy, S3, ... of (X;)i>0
are independent exponential random variables of parameter A and the jump
chain is given by Y, = n for all n;

(b) (infinitesimal definition) (X;);>0 has independent increments and, as h | 0,
uniformly in t,

]P)(Xt-l-h - Xt = O) =1-Ah + O(h), ]P)(Xt+h - Xt = 1) = Ah + O(h),

(¢) (transition probability definition) (X;);>0 has stationary independent incre-
ments and, for each t, X; has Poisson distribution of parameter At.

If (X;):>0 satisfies any of these conditions then it is called a Poisson process of rate

A

Proof. (a) = (b) If (a) holds, then, by the Markov property, for any ¢,h > 0,
the increment X;y, — X; has the same distribution as X} and is independent of
(X 5 <t). So (X¢)s>0 has independent increments and as b | 0

P(Xeyn—Xe > D) =P(Xp > 1) =P(J1 <h)=1—e" = Ah +o(h),
P(Xign— Xy > 2)=P(X, > 2) =P(J, < h)
<P(S; < hand Sy <h)=(1—e"*)? =o(h),

which implies (b).

(b) = (c) If (b) holds, then, for i = 2,3,..., we have P(X;yp — Xy = i) = o(h) as
h | 0, uniformly in ¢. Set p;(t) = P(X; = j). Then, for j =1,2,...,

J
pilt+h) =P(Xeyn =) = Y P(Xepn— Xi = i) P(Xy = j — 1)
=0

= (1= M+ o(h))p; (1) + (M + o(h))pj -1 (1) + o)

% pi(t+h) = pi(1)
h

Since this estimate is uniform in ¢ we can put ¢ = s — h to obtain for all s > h

= “Ap; (1) + Apj—1(t) + O(h).

pi(s) —1;]'@— M) pj(s — h) + Apj—1(s — ) + O(h).

Now let A | 0 to see that p;(¢) is first continuous and then differentiable and satisfies
the differential equation

pi(8) = =Ap; (1) + Apj-1(1).
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By a simpler argument we also find
po(t) = —Apo(t).
Since Xg = 0 we have initial conditions
po(0) =1, pj(0)=0 forj=1,2,....

As we saw in Example 2.1.4, this system of equations has a unique solution given
by

At)l

pj(t)ze‘”Q, i=0,1,2,....

J!
Hence X; ~ P(At). If (X;);>0 satisfies (b), then certainly (X;);>0 has independent
increments, but also (X;4; — X)¢>0 satisfies (b), so the above argument shows
X4t — X5 ~ P(Mt), for any s, which implies (c).

(¢) = (a) There is a process satisfying (a) and we have shown that it must then
satisfy (c). But condition (c) determines the finite-dimensional distributions of
(X¢)¢>0 and hence the distribution of jump chain and holding times. So if one
process satisfying (c) also satisfies (a), so must every process satisfying (c). O

The differential equations which appeared in the proof are really the forward
equations for the Poisson process. To make this clear, consider the possibility of
starting the process from ¢ at time 0, writing IP; as a reminder, and set

pij(t) = Py(X: = j).

Then, by spatial homogeneity p;;(t) = pj—i(t), and we could rewrite the differential
equations as

Pio(t) = —Apio(t), pio(0) = b0,
Pi; () = Apij—1(t) — Api; (1), pij (0) = 65

or, in matrix form, for ) as above,

Theorem 2.4.3 contains a great deal of information about the Poisson process
of rate A. It can be useful when trying to decide whether a given process is a
Poisson process as it gives you three alternative conditions to check, and it is likely
that one will be easier to check than another. On the other hand it can also be
useful when answering a question about a given Poisson process as this question
may be more closely connected to one definition than another. For example, you
might like to consider the difficulties in approaching the next result using the jump
chain/holding time definition.
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Theorem 2.4.4. If (X;);>0 and (Y;);>0 are independent Poisson processes of rates
A and p, respectively, then (X: + Y;)i>0 is a Poisson process of rate A + p.

Proof. We shall use the infinitesimal definition, according to which (Xt)tZO and
(Y1)i>0 have independent increments and, as h | 0, uniformly in ¢,

P(Xipp —Xe =0)=1—=Ah+o(h), P(Xigp— X¢=1)=Ah+o(h),
B(Yipn— Vi =0)= 1 — puh+o(h), B(¥ign—Yi=1) = ph + o(h)
Set Z; = X; +Y;. Then, since (X;);>0 and (Y;);>0 are independent, (7Z;);>0 has
independent increments and, as A | 0, uniformly in ¢,
P(Zign— 7t = 0) = P(Xyqn — Xt = O)P(Vigr — Y2 = 0)
= (1 =X+ o(h))(1 —ph+o(h))=1—(A+ p)h+ o(h),
P(Zign— 71 = 1) = P(Xygp — X¢ = DP(Vigp — Y: = 0)
+P(Xiqpn— Xt = 0P (Vign — Vi = 1)
= (h+ o(h)(1 = ah + o(h)) + (1 — X + o(h))(sh + o(h))
= (A4 p)h + o(h).

Hence (Z;):>0 is a Poisson process of rate A + pu. [

Next we establish some relations between Poisson processes and the uniform
distribution. Notice that the conclusions are independent of the rate of the process
considered. The results say in effect that the jumps of a Poisson process are as
randomly distributed as possible.

Theorem 2.4.5. Let (X;);>0 be a Poisson process. Then, conditional on (X¢)i>0
having exactly one jump in the interval [s,s + t], the time at which that jump
occurs is uniformly distributed on [s, s + 1].

Proof. We shall use the finite-dimensional distribution definition. By stationarity
of increments, it suffices to consider the case s = 0. Then, for 0 < u < ¢,

P(Ji <ul|Xy=1)=P(Ji <uand Xy = 1)/P(X; = 1)
= P(Xu=1and X; — Xy = 0)/P(X; = 1)
= due~ M e =) /(A= M) = u/t. O

Theorem 2.4.6. Let (Xt)tZO be a Poisson process. Then, conditional on the event
{X: = n}, the jump times Jy, ..., J, have joint density function

flte, . t) = 0l ljo<s, <. <t <t}

Thus, conditional on {X; = n}, the jump times Ji, ... ,.J, have the same distribu-
tion as an ordered sample of size n from the uniform distribution on [0, 1].

Proof. The holding times Si,...,S,+1 have joint density function

1, =X s
)‘n+ € (s s +1)1{517~“75n+120}
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so the jump times Jy, ..., Jo41 have joint density function

n+l_—At,
ATHLETA M L chi< St

So for A C IR” we have
P((Jl,... ,Jn) € A and X, :n) :P((Jl,... yJn) € Aand J, <t < Jn+1)

= 6_)\t)\n/ 1{O§t1$m§tn$t}dtl e dtn
(t1,...,'tn)€A
and since P(X; = n) = e~*' )" /n! we obtain
P((J1,...,Jn) €EA| Xy =n) :/ flte, ... tp)dty .. dt,
A

as required. [

We finish with a simple example typical of many problems making use of a range
of properties of the Poisson process.

Example 2.4.7

Robins and blackbirds make brief visits to my birdtable. The probability that in
any small interval of duration h a robin will arrive is found to be ph+o(h), whereas
the corresponding probability for blackbirds is Sh 4 o(h). What is the probability
that the first two birds I see are both robins? What is the distribution of the
total number of birds seen in time ¢7 Given that this number is n, what is the
distribution of the number of blackbirds seen in time ¢7

By the infinitesimal characterization, the number of robins seen by time ¢ is a
Poisson process (R;);>o of rate p, and the number of blackbirds is a Poisson pro-
cess (Bt)tZO of rate 8. The times spent waiting for the first robin or blackbird are
independent exponential random variables S; and T of parameters p and 3 respec-
tively. So a robin arrives first with probability p/(p + 3) and, by the memoryless
property of 71, the probability that the first two birds are robins is p?/(p + 3)2.
By Theorem 2.4.4 the total number of birds seen in an interval of duration ¢ has
Poisson distribution of parameter (p + 3)t. Finally

P(B;=k|Ri+ B;=n)=P(B;=k and R, =n — k)/P(R;+ B; = n)
() (522)  (Z o)
N <Z> <pfﬁ>k <p£ﬁ>n_k

so if n birds are seen in time ¢, then the distribution of the number of blackbirds
is binomial of parameters n and 3/(p + ).

Exercises
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2.4.1 State the transition probability definition of a Poisson process. Show directly
from this definition that the first jump time J; of a Poisson process of rate A is
exponential of parameter A.

Show also (from the same definition and without assuming the strong Markov
property) that

P(tl <Ji <ty < JQ) = 6_/\t1/\(t2 — tl)e_/\(t2_t1)

and hence that J» — J; is also exponential of parameter A and independent of J.

2.4.2 Show directly from the infinitesimal definition that the first jump time J; of
a Poisson process of rate A has exponential distribution of parameter A.

2.4.3 Arrivals of the Number 1 bus form a Poisson process of rate one bus per
hour, and arrivals of the Number 7 bus form an independent Poisson process of
rate seven buses per hour.

(a) What is the probability that exactly three buses pass by in one hour?

(b) What is the probability that exactly three Number 7 buses pass by while I
am waiting for a Number 17

(¢) When the maintenance depot goes on strike half the buses break down before
they reach my stop. What, then, is the probability that I wait for 30 minutes
without seeing a single bus?

2.4.4 A radioactive source emits particles in a Poisson process of rate A. The
particles are each emitted in an independent random direction. A Geiger counter
placed near the source records a fraction p of the particles emitted. What is the
distribution of the number of particles recorded in time 7

2.4.5 A pedestrian wishes to cross a single lane of fast-moving traffic. Suppose the
number of vehicles that have passed by time t is a Poisson process of rate A, and
suppose it takes time a to walk across the lane. Assuming that the pedestrian can
foresee correctly the times at which vehicles will pass by, how long on average does
it take to cross over safely? [Consider the time at which the first car passes.]

How long on average does it take to cross two similar lanes (a) when one must
walk straight across (assuming that the pedestrian will not cross if, at any time
whilst crossing, a car would pass in either direction), (b) when an island in the
middle of the road makes it safe to stop half-way?

2.5 Birth processes

A birth process is a generalization of a Poisson process in which the parameter A is
allowed to depend on the current state of the process. The data for a birth process
consist of birth rates 0 < q; < oo, where j = 0,1,2,.... We begin with a definition
in terms of jump chain and holding times. A minimal right-continuous process
(X¢)¢>0 with values in {0,1,2,...} U {oo} is a birth process of rates (q; : j > 0)
if, conditional on Xy = 7, its holding times S1, Sa, ... are independent exponential



