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Discrete-time Markov chains

This chapter is the foundation for all that follows. Discrete-time Markov chains are
defined and their behaviour is investigated. For better orientation we now list the
key theorems: these are Theorems 1.3.2 and 1.3.5 on hitting times, Theorem 1.4.2
on the strong Markov property, Theorem 1.5.3 characterizing recurrence and tran-
sience, Theorem 1.7.7 on invariant distributions and positive recurrence. Theorem
1.8.3 on convergence to equilibrium, Theorem 1.9.3 on reversibility, and Theorem
1.10.2 on long-run averages. Once you understand these you will understand the
basic theory. Part of that understanding will come from familiarity with examples,
so a large number are worked out in the text. Exercises at the end of each section
are an important part of the exposition.

1.1 Definition and basic properties

Let I be a countable set. Each ¢ € I is called a state and I is called the state-space.
We say that A = (\; : 4 € I) is a measureon I if 0 < \; < oo forall 4 € I. If in
addition the total mass ), ; A equals 1, then we call X a distribution. We work
throughout with a probability space (2, F, P). Recall that a random variable X
with values in [ is a function X :  — I. Suppose we set

Ai=P(X =i)=P{w: X(w) =1i}).
Then A defines a distribution, the distribution of X. We think of X as modelling

a random state which takes the value ¢ with probability A;. There is a brief review
of some basic facts about countable sets and probability spaces in Chapter 6.
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2 1. Discrete-time Markov chains

We say that a matrix P = (p;; : 4, € I) is stochastic if every row (p;; : j € I) is
a distribution. There is a one-to-one correspondence between stochastic matrices
P and the sort of diagrams described in the Introduction. Here are two examples:

P—(l_a @ > 1-<“>02
_ .
B B 3
1
0 1 0 X
P=| 0 1/2 1/2 3 1
/2 0 1/2
3 1 2
2

We shall now formalize the rules for a Markov chain by a definition in terms of
the corresponding matrix P. We say that (X,)n>0 is a Markov chain with initial
distribution A and transition matriz P if

(i) Xo has distribution A;

(ii) for n > 0, conditional on X,, =i, X, has distribution (p;; : j € I) and is

independent of Xy, ... , X, _1.

More explicitly, these conditions state that, for n > 0 and g, ... ,ip+1 € I,

(i) P(Xo =1i0) = Aig;

(11) P(Xn+1 = 7,."+1 | XO = 7,.07 - 7Xn = ln) = pinin+1'
We say that (X,)n,>0 is Markov(A, P) for short. If (X,)o<n<n is a finite sequence
of random variables satisfying (i) and (ii) for n =0,... , N — 1, then we again say
(Xn)o<n<n is Markov(A, P).

It is in terms of properties (i) and (ii) that most real-world examples are seen to
be Markov chains. But mathematically the following result appears to give a more
comprehensive description, and it is the key to some later calculations.

Theorem 1.1.1. A discrete-time random process (Xy)o<n<n 15 Markov(A, P) if
and only if for all ig, ... ,in €T

P(X() = io,Xl = i17.. . ,XN = iN) = ’\iop’ioilpili2 oo Pin_qin- (11)

Proof. Suppose (X,)o<n<n is Markov(A, P), then

P(Xo =0, X1 = i1,... , XN = in)
:P(XO :lo)P(Xl :’L'l |X0 :lo)P(XN :iN | XO :io,... ;XN—I :iN—l)
= XioPiois - - - Pin_1in- I

On the other hand, if (1.1) holds for N, then by summing both sides over iy € I
and using >, pij = 1 we see that (1.1) holds for N — 1 and, by induction

P(Xq =0, X1 =i1,-.. , Xn = in) = XigDigis - - - Pin_1in
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foralln =0,1,...,N. In particular, P(Xo = ig) = A;, and, forn =0,1,... ,N—-1
P(Xpy1 =ing1 | Xo =1d0,.-. , Xn =1in)
= P(Xo =10,--- ,Xn = n, Xnt1 = int1)/P(Xo =d0,... , Xn =in)
= Pinint1-
So (Xn)o<n<n is Markov(A, P). [

The next result reinforces the idea that Markov chains have no memory. We
write §; = (6;5 : j € I) for the unit mass at i, where

{ 1 ifi=j
0ij = .
0 otherwise.

Theorem 1.1.2 (Markov property). Let (X,)n>0 be Markov(\, P). Then,
conditional on Xp, = i, (Xmin)n>o0 is Markov(d;, P) and is independent of the
random variables Xo,... , Xm.

Proof. We have to show that for any event A determined by X, ... ,X,, we have
P({Xm = dmy- - 7Xm+n = Z'm+n} nA | KXm = l)

= 6iimpimim+1 e 'pim+n_1im+nP(A | Xm = 7/) (12)

then the result follows by Theorem 1.1.1. First consider the case of elementary

events
A={Xo=i0,. ., Xm =im}-

In that case we have to show

P(Xo =gy, Xmmin = imin and i = ip)/P(Xp = 0)
= 5iimpimim+1 . ‘pim+n—1im+nP(X0 = io, [N ;Xm = /Lm and i = Zm)/P(Xm = l)l

which is true by Theorem 1.1.1. In general, any event A determined by Xy, ... , X,
may be written as a countable disjoint union of elementary events

A=

(@

Apg.

k=1

Then the desired identity (1.2) for A follows by summing up the corresponding
identities for Ay. [

The remainder of this section addresses the following problem: what is the prob-
ability that after n steps our Markov chain is in a given state? First we shall see
how the problem reduces to calculating entries in the nth power of the transition
matrix. Then we shall look at some examples where this may be done explicitly.

We regard distributions and measures A as row vectors whose components are
indexed by I, just as P is a matrix whose entries are indexed by I x I. When I is
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finite we will often label the states 1,2,...,N; then A will be an N-vector and P
an N x N-matrix. For these objects, matrix multiplication is a familiar operation.
We extend matrix multiplication to the general case in the obvious way, defining a
new measure AP and a new matrix P? by

(AP); = > Aipij,  (P?)ik = Y_ pijpjn-

iel jeI

We define similarly P™ for any n. We agree that P° is the identity matrix I, where
(I)ij = 6;5. The context will make it clear when I refers to the state-space and
when to the identity matrix. We write pz(;l) = (P™);; for the (4,j) entry in P™.

In the case where \; > 0 we shall write P;(A) for the conditional probability
P(A | Xo = 1i). By the Markov property at time m = 0, under P;, (X,)n>0 is
Markov(d;, P). So the behaviour of (X,),>0 under P; does not depend on A.

Theorem 1.1.3. Let (X,)n>0 be Markov(\, P). Then, for all n,m >0,
(i) P(Xn =) = (AP");;
(i) Pi(Xp =) = PXgm = § | Xm =) = ).

Proof. (i) By Theorem 1.1.1

P(Xp=34)=> ... > P(Xo=rio,,Xn 1 =tin1,Xn =)
o€l in—1€1

=0 ) NigPigia -+ Pin_ij = (AP™);.

o€l in—1€T

(ii) By the Markov property, conditional on Xy, = i, (Xpm4n)n>o0 is Markov (4;, P),
so we just take A =4; in (i). O

(n) "y .. . )
ZJ" the n-step transition probability from i to j.
The following examples give some methods for calculating pﬁ?).

In light of this theorem we call p

Example 1.1.4

The most general two-state chain has transition matrix of the form

(11—« a
P‘( 8 1—ﬂ)

and is represented by the following diagram:

)

B
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We exploit the relation P*t! = PP to write

P =pl B+ p7 (1 - a).
We also know that pg?) + p§3’ = P (X, =1or2) =1, so by eliminating pY;’ we

get a recurrence relation for pgrf):

Pt = —a-ppl? +8, plf =1

This has a unique solution (see Section 1.11):

n — 4+ l—-a—-p)" fora+p>0
Py ={ atp a+B( 2 g
1 fora+8=0.

Example 1.1.5 (Virus mutation)

Suppose a virus can exist in N different strains and in each generation either stays
the same, or with probability a mutates to another strain, which is chosen at
random. What is the probability that the strain in the nth generation is the same
as that in the Oth?
We could model this process as an N-state chain, with NV x N transition matrix
P given by
pi=1l—a, pj=af/(N-1) fori#j.

Then the answer we want would be found by computing pﬁ). In fact, in this

example there is a much simpler approach, which relies on exploiting the symmetry
present in the mutation rules.

At any time a transition is made from the initial state to another with probability
a, and a transition from another state to the initial state with probability a/ (N —1).
Thus we have a two-state chain with diagram

o
initial Q other
af(N —1)

and by putting 8 = a/(N —1) in Example 1.1.4 we find that the desired probability

18
1 1 aN \"
N+<1_N> (1_N—1) :

Beware that in examples having less symmetry, this sort of lumping together of
states may not produce a Markov chain.
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Example 1.1.6

Consider the three-state chain with diagram

1

o=

and transition matrix

P =

v O O
O = =
RN O

The problem is to find a general formula for p§’1’).

First we compute the eigenvalues of P by writing down its characteristic equation

O=det(z—P)=z(z—3%)>-1=1@-1)42” +1).

N

The eigenvalues are 1,i/2, —i/2 and from this we deduce that pr) has the form

" i n i n
pgl):a-l—b(E) +C<—§)

for some constants a, b and ¢. (The justification comes from linear algebra: having
distinct eigenvalues, P is diagonalizable, that is, for some invertible matrix U we
have

1 0 0
P=U|[0 /2 0 |U*
0 0 —i/2
and hence
1 0 0

P*=U|[0 (i/2)" 0 vt
0 0 (—i/2)"

which forces pﬁ” to have the form claimed.) The answer we want is real and

ii n_ lniimrﬂ_ 1n< n_ﬂi'inn_ﬂ)
5) =13) ¢ =13 cos - Fisin -

so it makes sense to rewrite pY;) in the form

1\" nmw . nm
Y =a+ (5) {50057+'ysm7}
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for constants a, § and «y. The first few values of pﬁ) are easy to write down, so we

get equations to solve for a, § and ~:

1=p) =a+8

0=piY =a+3y

0=pi} =a-}s

soa=1/5=4/5v=-2/5and

(n)—l-i- 1" écosn—ﬁ—gsinn—ﬂ
Pt =57 %) 152 "5 2 [

More generally, the following method may in principle be used to find a formula
for pgf) for any M-state chain and any states ¢ and j.
(i) Compute the eigenvalues A1,..., Ay of P by solving the characteristic

equation.

(") has the form

(i) If the eigenvalues are distinct then p;;

pgl) =am Al + ... +amiy
for some constants ay, ... ,apy (depending on ¢ and j). If an eigenvalue A
is repeated (once, say) then the general form includes the term (an + b)A™.
(iii) As roots of a polynomial with real coefficients, complex eigenvalues will
come in conjugate pairs and these are best written using sine and cosine,
as in the example.

Exercises
1.1.1 Let By, B,,... be disjoint events with |-, B, = Q. Show that if A is
another event and P(A|B,) = p for all n then P(A) = p.

Deduce that if X and Y are discrete random variables then the following are
equivalent:

(a) X and Y are independent;

(b) the conditional distribution of X given Y = y is independent of y.

1.1.2 Suppose that (X,)n>0 is Markov (A, P). If Y;, = Xjyp, show that (Y,,)n>0 is
Markov (), P¥).

1.1.3 Let X be a random variable with values in a countable set I. Let Y7,Y5,...
be a sequence of independent random variables, uniformly distributed on [0, 1].
Suppose we are given a function

G:Ix[0,1] -1

and define inductively
Xn+1 = G(Xn; Yn+1)-
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Show that (X,),>0 is a Markov chain and express its transition matrix P in terms
of G. Can all Markov chains be realized in this way? How would you simulate a
Markov chain using a computer?

Suppose now that Zy, Z;,... are independent, identically distributed random
variables such that Z; = 1 with probability p and Z; = 0 with probability 1 — p.
Set So =0, 5, =21 +...+ Z,. In each of the following cases determine whether
(Xn)n>o0 is a Markov chain:

(a) Xp, = Zn, (b) X,y = Sp, (€) Xy = So+...4+Sn, (d) Xy, = (Sp, So+...+Sn)-

In the cases where (X;,)n>0 is a Markov chain find its state-space and transition
matrix, and in the cases where it is not a Markov chain give an example where
P(Xp41 =1i|Xn =4, Xn—1 = k) is not independent of k.

1.1.4 A flea hops about at random on the vertices of a triangle, with all jumps
equally likely. Find the probability that after n hops the flea is back where it
started.

A second flea also hops about on the vertices of a triangle, but this flea is twice
as likely to jump clockwise as anticlockwise. What is the probability that after n
hops this second flea is back where it started? [Recall that e*"/6 = \/3/2 +1i/2.]

1.1.5 A die is ‘fixed’ so that each time it is rolled the score cannot be the same as
the preceding score, all other scores having probability 1/5. If the first score is 6,
what is the probability p that the nth score is 67 What is the probability that the
nth score is 17

Suppose now that a new die is produced which cannot score one greater (mod 6)
than the preceding score, all other scores having equal probability. By considering
the relationship between the two dice find the value of p for the new die.

1.1.6 An octopus is trained to choose object A from a pair of objects A, B by
being given repeated trials in which it is shown both and is rewarded with food
if it chooses A. The octopus may be in one of three states of mind: in state 1 it
cannot remember which object is rewarded and is equally likely to choose either; in
state 2 it remembers and chooses A but may forget again; in state 3 it remembers
and chooses A and never forgets. After each trial it may change its state of mind
according to the transition matrix

1 1
State 1 5 3 0

1 1 5
State 2 B 12 12
State3 0 0 1

It is in state 1 before the first trial. What is the probablity that it is in state 1
just before the (n+1)th trial ? What is the probability P,1(A) that it chooses A
on the (n + 1)th trial ?

Someone suggests that the record of successive choices (a sequence of As and Bs)
might arise from a two-state Markov chain with constant transition probabilities.
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Discuss, with reference to the value of P,y (A) that you have found, whether this
is possible.

1.1.7 Let (X,)n>0 be a Markov chain on {1,2,3} with transition matrix

0 1 0
P=[(0 2/3 1/3
p 1-p 0

Calculate P(X,, = 1|Xo = 1) in each of the following cases: (a) p = 1/16, (b)
p=1/6,(c) p= 1/12.



