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Abstract
A rigorous proof is presented of the boundedness of the entanglement entropy of a block
of spins for the ground state of the one-dimensional quantum Ising model with sufficiently
strong transverse field. This is proved by a refinement of the stochastic geometric arguments
in the earlier work by Grimmett et al. (J Stat Phys 131:305–339, 2008). The proof utilises
a transformation to a model of classical probability called the continuum random-cluster
model. Our method of proof is fairly robust, and applies also to certain disordered systems.

Keywords Quantum Ising model · Entanglement · Entropy · Area law · Random-cluster
model

Mathematics Subject Classification 82B20 · 60K35

1 The Quantum IsingModel and Entanglement

The purpose of this note is to give a rigorous proof of the area law for entanglement entropy
in the quantum Ising model in one dimension. This is achieved by an elaboration of the
stochastic geometrical approach of [21]. We prove the boundedness of entanglement entropy
of a block of spins of size L + 1 in the ground state of the model with sufficiently strong
transverse field, uniformly in L . The current paper is presented as a development of the earlier
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282 G. R. Grimmett et al.

work [21] by the same authors, to which the reader is referred for details of the background
and basic theory.

The quantum Ising model in question is defined as follows. We consider a block of L + 1
spins in a line of length 2m + L + 1. Let L ≥ 0. For m ≥ 0, let

�m = {−m,−m + 1, . . . ,m + L}
be a subset of the one-dimensional lattice Z, and attach to each vertex x ∈ �m a quantum
spin- 12 with local Hilbert space C

2. The Hilbert spaceH for the system isH = ⊗m+L
x=−m C

2.

A convenient basis for each spin is provided by the two eigenstates |+〉 =
(1
0

)
, |−〉 =

(0
1

)
,

of the Pauli operator

σ (3)
x =

(
1 0
0 −1

)

,

at the site x , corresponding to the eigenvalues±1. The other two Pauli operators with respect
to this basis are represented by the matrices

σ (1)
x =

(
0 1
1 0

)

, σ (2)
x =

(
0 −i
i 0

)

. (1.1)

A complete basis forH is given by the tensor products (over x) of the eigenstates of σ
(3)
x . In

the following, |φ〉 denotes a vector and 〈φ| its adjoint. As a notational convenience, we shall
represent sub-intervals of Z as real intervals, writing for example �m = [−m,m + L].

The spins in �m interact via the quantum Ising Hamiltonian

Hm = − 1
2

∑

〈x,y〉
λσ (3)

x σ (3)
y −

∑

x

δσ (1)
x , (1.2)

generating the operator e−βHm where β denotes inverse temperature. Here, λ ≥ 0 and δ ≥ 0
are the spin-coupling and external-field intensities, respectively, and

∑
〈x,y〉 denotes the sum

over all (distinct) unordered pairs of neighbouring spins. While we phrase our results for the
translation-invariant case, our approach can be extended to disordered systemswith couplings
and field intensities that vary across Z, much as in [21, Sect. 8]. See Theorem 1.5.

The Hamiltonian Hm has a unique pure ground state |ψm〉 defined at zero temperature
(as β → ∞) as the eigenvector corresponding to the lowest eigenvalue of Hm . This ground
state |ψm〉 depends only on the ratio θ = λ/δ. We work here with a free boundary condition
on �m , but we note that the same methods are valid with a periodic (or wired) boundary
condition, in which �m is embedded on a circle.

Write ρm(β) = e−βHm/ tr(e−βHm ), and

ρm = lim
β→∞ ρm(β) = |ψm〉〈ψm |

for the density operator corresponding to the ground state of the system. The ground-state
entanglement of |ψm〉 is quantified by partitioning the spin chain �m into two disjoint sets
[0, L] and �m \ [0, L] and by considering the entropy of the reduced density operator

ρL
m = tr�m\[0,L](|ψm〉〈ψm |). (1.3)

One may similarly define, for finite β, the reduced operator ρL
m(β). In both cases, the trace is

performed over the Hilbert space of spins belonging to�m \ [0, L]. Note that ρL
m is a positive

semi-definite operator on the Hilbert space HL of dimension d = 2L+1 of spins indexed by
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Bounded Entanglement Entropy in the Quantum Ising Model 283

the interval [0, L]. By the spectral theorem for normal matrices [10], this operator may be
diagonalised and has real, non-negative eigenvalues, which we denote in decreasing order
by λ

↓
j (ρ

L
m).

Definition 1.1 The entanglement (entropy) of the interval [0, L] relative to its complement
�m \ [0, L] is given by

S
(
ρL
m

) = − tr
(
ρL
m log2 ρL

m

) = −
2L+1
∑

j=1

λ
↓
j

(
ρL
m

)
log2 λ

↓
j

(
ρL
m

)
, (1.4)

where 0 log2 0 is interpreted as 0.

Here are our two main theorems.

Theorem 1.2 Let λ, δ ∈ (0,∞) and θ = λ/δ. There exists C = C(θ) ∈ (0,∞), and a
constant γ = γ (θ) satisfying 0 < γ < ∞ if θ < 2, such that, for all L ≥ 1,

‖ρL
m − ρL

n ‖ ≤ min{2,Ce−γm}, 2 ≤ m ≤ n. (1.5)

Furthermore, we may choose such γ satisfying γ (θ) → ∞ as θ ↓ 0.

Equation (1.5) is in terms of the operator norm:

‖ρL
m − ρL

n ‖ ≡ sup
‖ψ‖=1

∣
∣
∣〈ψ |ρL

m − ρL
n |ψ〉

∣
∣
∣, (1.6)

where the supremum is taken over all vectors |ψ〉 ∈ HL with unit L2-norm.

Remark 1.3 The value θ = 2 is critical for the quantum Ising model in one dimension, and
therefore the condition θ < 2 is sharp for γ > 0 in (1.5). See the discussion following [13,
Thm 7.1].

Theorem 1.4 Consider the quantum Ising model (1.2) on n = 2m + L + 1 spins, with
parameters λ, δ, and let γ be as in Theorem 1.2. If γ > 2 ln 2, there exists c1 = c1(θ) < ∞
such that

S(ρL
m) ≤ c1, m, L ≥ 0. (1.7)

Weaker versions of Theorems 1.2 and 1.4 were proved in [21, Thms 2.2, 2.8], namely
that (1.5) holds subject to a power factor of the form Lα , and (1.7) holds with c1 replaced by
C1 +C2 log L (and subject to a slightly stronger assumption on γ ). As noted in Remark 1.3,
Theorem 1.2 is a further strengthening of [21, Thm 2.2] in that (1.5) holds for θ < 2, rather
then just θ < 1. Stronger versions of these two theorems may be proved similarly, with
the interactions λ and field intensities δ varying with position while satisfying a suitable
condition. A formal statement for the disordered case appears at Theorem 1.5.

There is a considerable and growing literature in the physics journals concerning entan-
glement entropy in one and more dimensions. For example, paper [17] is an extensive review
of area laws. The relationship between entanglement entropy and the spectral gap has been
explored in [4,5], and polynomial-time algorithms for simulating the ground state are studied
in [6]. Related works include studies of the XY spin chain [1], oscillator systems [7], the
XXZ spin chain [8], and free fermions [25]. The connection between correlations and the
area-law is explored in [14].
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284 G. R. Grimmett et al.

We make next some remarks about the proofs of the above two theorems. The basic
approach of these mathematically rigorous proofs is via the stochastic geometric represen-
tation of Aizenman, Klein, Nachtergaele, and Newman [2,3,23]. Geometric techniques have
proved of enormous value in studying both classical systems (including Ising and Potts
models, see for example [19]), and quantum systems (see [11–13,15,18,26]).

The proofs of Theorems 1.2, 1.4 and the forthcoming Theorem 1.5 have much in com-
mon with those of [21, Thms 2.2, 2.8] subject to certain improvements in the probabilistic
estimates. The general approach and many details are the same as in the earlier paper, and
indeed there is some limited overlap of text.Wemake frequent reference here to [21], andwill
highlight where the current proofs differ, while omitting arguments that may be taken directly
from [21]. In particular, the reader is referred to [21, Sects. 4, 5] for details of the percolation
representation of the ground state, and of the associated continuum random-cluster model.
In Sect. 2, we review the relationship between the reduced density operator and the random-
cluster model, and we state the fundamental inequalities of Theorem 2.5 and Lemma 2.6.
Once the last two results have been proved, Theorems 1.2 and 1.4 follow as in [21]: the first
as in the proof of [21, Thm 2.2], and the second as in that of [21, Thm 2.8] (see the notes for
the latter included in Sect. 5).

We reflect in Sect. 4 on the extension of our methods and conclusions when the edge-
couplings λ and field strengths δ are permitted to vary, either deterministically or randomly,
about the line. In this disordered case, the Hamiltonian (1.2) is replaced by

Hm = − 1
2

∑

〈x,y〉
λx,yσ

(3)
x σ (3)

y −
∑

x

δxσ
(1)
x , (1.8)

where the sum is over neighbouring pairs 〈x, y〉 of �m . We write λ = (λx,x+1 : x ∈ Z) and
δ = (δx : x ∈ Z).

Theorem 1.5 Consider the quantum Ising model on Z with Hamiltonian (1.8), such that, for
some λ, δ > 0, λ and δ satisfy

λx,y/δx ≤ λ/δ, y = x − 1, x + 1, x ∈ Z. (1.9)

(a) If λ/δ < 2, then (1.5) holds with C and γ as given there.
(b) If, further, γ > 2 ln 2, then (1.7) holds with c1 as given there.

If λ and δ are random sequences satisfying (1.9) with probability one, then parts (a) and (b)
are valid a.s.

The situation is more complicated when λ, δ are random but do not a.s. satisfy (1.9) with
λ/δ < 2.

Remark 1.6 The authors acknowledge Massimo Campanino’s announcement in a lecture on
12 June 2019 of his perturbative proof with Michele Gianfelice of a version of Theorem 1.2
for sufficiently small θ , using cluster expansions. That announcement stimulated the authors
of the current work.

2 Estimates via the Continuum Random-Cluster Model

We write R for the reals and Z for the integers. The continuum percolation model on Z × R

is constructed as in [20,21]. For x ∈ Z, let Dx be a Poisson process of points in {x}× R with
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Bounded Entanglement Entropy in the Quantum Ising Model 285

intensity δ; the processes {Dx : x ∈ Z} are independent, and the points in the Dx are termed
‘deaths’. The lines {x} × R are called ‘time lines’.

For x ∈ Z, let Bx be a Poisson process of points in {x + 1
2 } × R with intensity λ; the

processes {Bx : x ∈ Z} are independent of each other and of the Dy . For x ∈ Z and each
(x + 1

2 , t) ∈ Bx , we draw a unit line-segment in R
2 with endpoints (x, t) and (x + 1, t),

and we refer to this as a ‘bridge’ joining its two endpoints. For (x, s), (y, t) ∈ Z × R, we
write (x, s) ↔ (y, t) if there exists a path π in R

2 with endpoints (x, s), (y, t) such that: π
comprises sub-intervals of Z × R containing no deaths, together possibly with bridges. For
�,� ⊆ Z×R, we write� ↔ � if there exist a ∈ � and b ∈ � such that a ↔ b. Let P�,λ,δ

denote the associated probability measure when restricted to the set �, and write θ = λ/δ.
Let Pλ,δ be the corresponding measure on the whole space Z × R, and recall from [9,

Thm 1.12] that the value θ = 1 is the critical point of the continuum percolation model.
The continuum random-clustermodel onZ×R is defined as follows. Leta, b ∈ Z, s, t ∈ R

satisfy a ≤ b and s ≤ t , and write � = [a, b] × [s, t] for the box {a, a + 1, . . . , b} × [s, t].
Its boundary ∂� is the set of all points (x, y) ∈ � such that: either x ∈ {a, b}, or y ∈ {s, t},
or both.

As sample space we take the set �� comprising all finite subsets (of �) of deaths and
bridges, and we assume that no death is the endpoint of any bridge. For ω ∈ ��, we write
B(ω) and D(ω) for the sets of bridges and deaths, respectively, of ω.

The top/bottom periodic boundary condition is imposed on �: for x ∈ [a, b], we identify
the two points (x, s) and (x, t). The remaining boundary of �, denoted ∂h�, is the set of
points of the form (x, u) ∈ � with x ∈ {a, b} and u ∈ [s, t].

For ω ∈ ��, let k(ω) be the number of its clusters, counted according to the connectivity
relation ↔ (and subject to the above boundary condition). Let q ∈ (0,∞), and define the
‘continuum random-cluster’ probability measure P�,λ,δ,q by

dP�,λ,δ,q(ω) = 1

Z
qk(ω)dP�,λ,δ(ω), ω ∈ ��, (2.1)

where Z is the appropriate partition function. As at [21, eqn (5.3)],

P�,λ,δ,q ≤st P�,λ,δ, q ≥ 1, (2.2)

in the sense of stochastic ordering.
We introduce next a variant in which the box � possesses a ‘slit’ at its centre. Let L ∈

{0, 1, 2, . . .} and SL = [0, L]× {0}. We think of SL as a collection of L + 1 vertices labelled
in the obvious way as x = 0, 1, 2, . . . , L . For m ≥ 2, β > 0, let �m,β be the box

�m,β = [−m,m + L] × [− 1
2β, 1

2β]
subject to a ‘slit’ along SL . That is, �m,β is the usual box except that each vertex x ∈ SL
is replaced by two distinct vertices x+ and x−. The vertex x+ (respectively, x−) is attached
to the half-line {x} × (0,∞) (respectively, the half-line {x} × (−∞, 0)); there is no direct
connection between x+ and x−. Write S±

L = {x± : x ∈ SL} for the upper and lower sections
of the slit SL . Henceforth we take q = 2. Let φm,β be the continuum random-cluster measure
on the slit box �m,β with parameters λ, δ, q = 2 and free boundary condition on ∂�m,β ,
and let φm,β be the corresponding probability measure with top/bottom periodic boundary
condition.

We make a note concerning exponential decay which will be important later. The criti-
cal point of the infinite-volume (q = 2) continuum random-cluster model on Z × R with
parameters λ, δ is given by θc = 2 where θ = λ/δ (see [13, Thm 7.1]). Furthermore, as in
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286 G. R. Grimmett et al.

[19, Thm 5.33(b)], there is a unique infinite-volume weak limit, denoted φλ,δ , when θ < 2.
In particular (as in the discussion of [13]) there is exponential decay of connectivity when
θ < 2. Let �m = [−m,m]2 ⊆ Z × R, with boundary ∂�m .

Theorem 2.1 ( [13, Thms 6.2, 7.1]) Let λ, δ ∈ (0,∞), and I = {0} × [− 1
2 ,

1
2 ] ⊆ Z × R.

There exist C = C(λ, δ) ∈ (0,∞) and γ = γ (λ, δ) satisfying γ > 0 when θ = λ/δ < 2,
such that

φλ,δ

(
I ↔ ∂�m

) ≤ Ce−γm, m ≥ 0. (2.3)

The function γ (λ, δ) may be chosen to satisfy γ → ∞ as δ → ∞ for fixed λ.

Henceforth the function γ denotes that of Theorem 2.1. (The function γ in Theo-
rems 1.2, 1.4 is derived from that of Theorem 2.1.) By stochastic domination, (2.3) holds
with φλ,δ replaced by P�,λ,δ,2 for general boxes �.

It is explained in [21] that a random-cluster configuration ω gives rise, by a cluster-
labelling process, to an Ising configuration on�, which serves (see [2]) as a two-dimensional
representation of the quantum Ising model of (1.2). We shall use φm,β and φm,β to denote
the respective couplings of the continuum random-cluster measures and the corresponding
(Ising) spin-configurations, and φ

η

m,β , φ
η
m,β for the measures with spin-configuration η on

∂h�m,β .

Remark 2.2 Theorem 2.1 is an important component of the estimates that follow. At the
time of the writing of [21], the result was known only when θ < 1, and the corresponding
exponential-decay theorem [21, Thm 6.7] was proved by stochastic comparison with con-
tinuum percolation (see (2.2)). More recent progress of [13] has allowed its extension to the
q = 2 continuum random-cluster model directly. In order to apply it in the current work,
a minor extension of the ratio weak-mixing theorem [21, Thm 7.1] is needed, namely that
the mixing theorem holds with φ taken to be the random-cluster measure on � with free
boundary conditions. The proof is unchanged.

Remark 2.3 In the proofs that follow, it would be convenient to have a stronger version of (2.3)
withφλ,δ replacedby thefinite-volume random-clustermeasure on�m,β withwiredboundary
condition on ∂h�m,β andperiodic top/bottomboundary condition. Itmaybepossible to derive
such an inequality as in [16], but we do not pursue that option here.

Remark 2.4 We shall work only in the subcritical phase θ = λ/δ < 2. As remarked prior to
Theorem 2.1, there exists a unique infinite-volume measure. Similarly, the limits

φm = lim
β→∞ φm,β , φm = lim

β→∞ φm,β , (2.4)

exist and are identical measures on the strip �m = [−m,m] × (−∞,∞).

Let�m,β be the sample space of the continuum random-cluster model on�m,β , and�m,β

the set of admissible allocations of spins to the clusters of configurations, as in [21, Sect. 5].
For σ ∈ �m,β and x ∈ SL , write σ±

x for the spin-state of x±. Let �L = {−1,+1}L+1 be
the set of spin-configurations of the vectors {x+ : x ∈ SL} and {x− : x ∈ SL}, and write
σ+
L = (σ+

x : x ∈ SL) and σ−
L = (σ−

x : x ∈ SL).
Let

am,β = φm,β(σ+
L = σ−

L ). (2.5)

Then,
am,β → am = φm(σ+

L = σ−
L ) as β → ∞, (2.6)
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Bounded Entanglement Entropy in the Quantum Ising Model 287

where φm = limβ→∞ φm,β as in Remark 2.4.
Here is the main estimate of this section, of which Theorem 1.2 is an immediate corollary

with adapted values of the constants. It differs from [22, Thm 6.5] in the removal of a factor
of order Lα , and the replacement of the condition θ < 1 by the weaker assumption θ < 2.

Theorem 2.5 Let λ, δ ∈ (0,∞) and write θ = λ/δ. If θ < 2, there exist C, M ∈ (0,∞),
depending on θ only, such that the following holds. For L ≥ 1 and M ≤ m ≤ n < ∞,

sup
‖c‖=1

∣
∣
∣
∣
∣

φm(c(σ+
L )c(σ−

L ))

am
− φn(c(σ

+
L )c(σ−

L ))

an

∣
∣
∣
∣
∣
≤ Ce− 1

3 γm, (2.7)

where γ is as in Theorem 2.1, and the supremum is over all functions c : �L → R with
L2-norm satisfying ‖c‖ = 1.

In the proof of Theorem 2.5, we make use of the following two lemmas (corresponding,
respectively, to [21, Lemmas 6.8, 6.9]), which are proved in Sect. 3 using the method of ratio
weak-mixing.

Lemma 2.6 Let λ, δ ∈ (0,∞) satisfy θ = λ/δ < 2, and let γ be as in Theorem 2.1. There
exist constants A(λ, δ),C1(λ, δ) ∈ (0,∞) such that the following holds. Let

RK = C1e
− 1

2 γ K . (2.8)

For all L ≥ 3, 1 ≤ K < 1
2 L, m ≥ 1, β ≥ 1, and all ε+, ε− ∈ �L , we have that

A2K (1 − RK ) ≤ φm,β(σ+
L = ε+, σ−

L = ε−)

φm,β(σ+
L = ε+)φm,β(σ−

L = ε−)
≤ A−2K (1 + RK ),

whenever K is such that RK ≤ 1
2 .

In the second lemma we allow a general spin boundary condition on ∂h�m,β .

Lemma 2.7 Let λ, δ ∈ (0,∞) satisfy θ = λ/δ < 2, and let γ be as in Theorem 2.1.
There exists a constant C1 ∈ (0,∞) such that: for all L ≥ 3, m ≥ 1, β ≥ 1, all events
A ⊆ �L × �L , and all admissible spin boundary conditions η of ∂h�m,β ,

∣
∣
∣
∣
∣

φ
η

m,β((σ+
L , σ−

L ) ∈ A)

φm,β((σ+
L , σ−

L ) ∈ A)
− 1

∣
∣
∣
∣
∣
≤ C1e

− 2
7 γm,

whenever the right side of the inequality is less than 1.

Proof of Theorem 2.5 Let θ < 2, and let γ be as in Theorem 2.1. It suffices to prove (2.7)
with φm (respectively, φn) replaced by φm,β (respectively, φn,β ), and am (respectively, an)
replaced by am,β (respectively, an,β ). Having done so, we let β → ∞ to obtain (2.7) by
Remark 2.4.

Let A, C1, RK be as in Lemma 2.6, and let L ≥ 3 and 1 ≤ K < 1
2 L be such that

RK ≤ 1
4 . (2.9)

Remaining small values of L are covered in (2.7) by adjusting C .
Since φm,β ≤st φn,β , we may couple φm,β and φn,β via a probability measure ν on pairs

(ω1, ω2) of configurations on �n,β in such a way that ν(ω1 ≤ ω2) = 1. It is standard (as
in [19,24]) that we may find ν such that ω1 and ω2 are identical configurations within the
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288 G. R. Grimmett et al.

Fig. 1 The boxes �n,β , �m,β , and B

region of �m,β that is not connected to ∂h�m,β in the upper configuration ω2. Let D be the
set of all pairs (ω1, ω2) ∈ �n,β ×�n,β such that: ω2 contains no path joining ∂B to ∂h�m,β ,
where

B = [−r , r + L] × [−r , r ], r = � 1
2m�. (2.10)

The relevant regions are illustrated in Fig. 1.
Having constructed the measure ν accordingly, we may now allocate spins to the clusters

of ω1 and ω2 in the manner described in [21, Sect. 5]. This may be done in such a way that,
on the event D, the spin-configurations associated with ω1 and ω2 within B are identical. We
write σ1 (respectively, σ2) for the spin-configuration on the clusters of ω1 (respectively, ω2),
and σ±

i,L for the spins of σi on the slit SL .
By the remark following [21, Eq. (6.4)], it suffices to consider non-negative functions

c : �L → R, and thus we let c : �L → [0,∞) with ‖c‖ = 1. Let

Sc = c(σ+
1,L)c(σ−

1,L)

am,β

− c(σ+
2,L)c(σ−

2,L)

an,β

, (2.11)

so that
φm,β(c(σ+

L )c(σ−
L ))

am,β

− φn,β(c(σ+
L )c(σ−

L ))

an,β

= ν(Sc1D) + ν(Sc1D), (2.12)

where D is the complement of D, and 1E is the indicator function of E .
Consider first the term ν(Sc1D) in (2.12). On the event D, we have that σ±

1,L = σ±
2,L , so

that

|ν(Sc1D)| ≤
∣
∣
∣
∣1 − am,β

an,β

∣
∣
∣
∣
φm,β(c(σ+

L )c(σ−
L ))

am,β

. (2.13)

By Lemma 2.6 and [21, Lemma 6.10],

φm,β(c(σ+
L )c(σ−

L )) =
∑

ε±∈�L

c(ε+)c(ε−)φm,β(σ+
L = ε+, σ−

L = ε−)

≤ A−2K (1 + RK )φm,β(c(σ+
L ))φm,β(c(σ−

L ))
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Bounded Entanglement Entropy in the Quantum Ising Model 289

= A−2K (1 + RK )

⎛

⎝
∑

ε∈�L

c(ε)φm,β(σ+
L = ε)

⎞

⎠

2

≤ A−2K (1 + RK )
∑

ε∈�L

φm,β(σ+
L = ε)2, (2.14)

where we have used reflection-symmetry in the horizontal axis at the intermediate step. By
Lemma 2.6 and reflection-symmetry again,

am,β =
∑

ε∈�L

φm,β(σ+
L = σ−

L = ε)

≥ A2K (1 − RK )
∑

ε∈�L

φm,β(σ+
L = ε)2.

Therefore,
φm,β(c(σ+

L )c(σ−
L ))

am,β

≤ A−4K 1 + RK

1 − RK
. (2.15)

We set A = {σ+
L = σ−

L } in Lemma 2.7 to find that, for sufficiently large m ≥ M1(λ, δ),
∣
∣
∣
∣
∣

φ
η

m,β(σ+
L = σ−

L )

φm,β(σ+
L = σ−

L )
− 1

∣
∣
∣
∣
∣
≤ Ce− 2

7 γm <
1

2
.

Each of the two probabilities on the left side may be interpreted as probabilities in the
continuum Potts model of [21, Eq. (5.4)] on �m . By averaging over η, sampled according to
φn,β when viewed as a Potts measure, we deduce by the spatial Markov property that

∣
∣
∣
∣
∣

φn,β(σ+
L = σ−

L )

φm,β(σ+
L = σ−

L )
− 1

∣
∣
∣
∣
∣
≤ Ce− 2

7 γm <
1

2
,

which is to say that ∣
∣
∣
∣
an,β

am,β

− 1

∣
∣
∣
∣ ≤ Ce− 2

7 γm <
1

2
. (2.16)

We make a note for later use. In the same way as above, a version of inequality (2.15)
holds with φm,β replaced by the continuum random-cluster measure φB on the box B with
free boundary conditions, namely,

φB(c(σ+
L )c(σ−

L ))

aB
≤ A−4K 1 + RK

1 − RK
, (2.17)

where aB = φB(σ+
L = σ−

L ). By (2.10) and (2.16), we may take C and M1 above such that
∣
∣
∣
∣
an,β

aB
− 1

∣
∣
∣
∣ ≤ Ce− 1

7 γm <
1

2
, m ≥ M1(λ, δ). (2.18)

Inequalities (2.15) and (2.16) may be combined as in (2.13) to obtain

|ν(Sc1D)| ≤ C1A
−4K 1 + RK

1 − RK
e− 2

7 γm (2.19)

for an appropriate constant C1 = C1(λ, δ) and all m ≥ M1.
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We turn to the term ν(Sc1D) in (2.12). Evidently,

|ν(Sc1D)| ≤ Am + Bn, (2.20)

where

Am = ν(c(σ+
1,L)c(σ−

1,L)1D)

am,β

, Bn = ν(c(σ+
2,L)c(σ−

2,L)1D)

an,β

.

There exist constants C2, M2 depending on λ, δ, such that, for m > r ≥ M2,

Bn = ν(D)

an,β

ν
(
c
(
σ+
2,L

)
c
(
σ−
2,L

) | D)

= ν(D)

an,β

φn,β

(
φ

η

B(c(σ+
2,L)c(σ−

2,L)) | D)

≤ ν(D)

aB
C2φB

(
c
(
σ+
L

)
c
(
σ−
L

))
(2.21)

by Lemma 2.7 with φm,β replaced by φB , and (2.18). At the middle step, we have used
conditional expectation given the spin configuration η on �m,β \ B. By (2.17),

Bn ≤ ν(D)A−4K 1 + RK

1 − RK
. (2.22)

A similar upper bound is valid for Am , on noting that the conditioning on D imparts certain
information about the configuration ω1 outside B but nothing further about ω1 within B.
Combining this with (2.20)–(2.22), we find that, for r ≥ M3(λ, δ) and some C3 = C3(λ, δ),

|ν(Sc1D)| ≤ ν(D)C3A
−4K 1 + RK

1 − RK
. (2.23)

By (2.2), (2.10), and Theorem 2.1,

ν(D) ≤ C4me− 1
2 γm ≤ C5e

− 1
3 γm, m ≥ M4, (2.24)

for someC4,C5, M4 ≥ 2M3. We combine (2.19), (2.23), (2.24) as in (2.12). Letting β → ∞
and recalling (2.9), we obtain (2.7) from (2.6), for m ≥ M := max{M1, M2, M4}.

Finally, we remark thatC and M depend on both λ and δ. The left side of (2.7) is invariant
under re-scalings of the time-axes, that is, under the transformations (λ, δ) �→ (λη, δη) for
η ∈ (0,∞). We may therefore work with the new values λ′ = θ , δ′ = 1, with appropriate
constants α(θ, 1), C(θ, 1), M(θ, 1). ��

3 Proofs of Lemmas 2.6 and 2.7

Let � be a box in Z × R (we shall later consider a box � with a slit SL , for which the
same definitions and results are valid). A path π of � is an alternating sequence of disjoint
intervals (contained in �) and unit line-segments of the form [z0, z1], b12, [z2, z3], b34, . . .,
b2k−1,2k , [z2k, z2k+1], where: each pair z2i , z2i+1 is on the same time line of �, and b2i−1,2i

is a unit line-segment with endpoints z2i−1 and z2i , perpendicular to the time-lines. The path
π is said to join z0 and z2k+1. The length of π is its one-dimensional Lebesgue measure. A
circuit D of � is a path except inasmuch as z0 = z2k+1. A set D is called linear if it is a
disjoint union of paths and/or circuits. Let �, � be disjoint subsets of �. The linear set D is
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said to separate � and � if every path of � from � to � passes through D, and D is minimal
with this property in that no strict subset of D has the property.

Let ω ∈ ��. An open path π of ω is a path of � such that, in the notation above, the
intervals [z2i , z2i+1] contain no death of ω, and the line-segments b2i−1,2i are bridges of ω.

Let � be a measurable subset and � a finite subset of � such that � ∩ � = ∅. We shall
make use of the ‘ratio weak-mixing property’ of the spin-configurations in � and � that is
stated and proved in [21, Thm 7.1]; note Remark 2.2.

Consider the box �m,β with slit SL . Let K be an integer satisfying 1 ≤ K < 1
2 L , and let

� = {x+ : x ∈ SL , K ≤ x ≤ L − K },
� = {x− : x ∈ SL , K ≤ x ≤ L − K }. (3.1)

The following replaces [21, Lemma 7.24].

Lemma 3.1 Let λ, δ ∈ (0,∞) satisfy θ = λ/δ < 2, and let γ > 0 be as in Theorem 2.1.
There exists C1 = C1(λ, δ) ∈ (0,∞) such that the following holds. For ε+

K ∈ ��, ε
−
K ∈ �� ,

we have that
∣
∣
∣
∣
∣

φm,β(σ� = ε+
K , σ� = ε−

K )

φm,β(σ� = ε+
K )φm,β(σ� = ε−

K )
− 1

∣
∣
∣
∣
∣
≤ C1e

− 1
2 γ K ,

whenever the right side is less than 1
2 .

Proof Take

D =
(
[−m, 0) × {0}

)
∪

(
(L, L + m] × {0}

)
,

the union of the two horizontal line-segments that, when taken with the slit SL , complete the
‘equator’ of �m,β . Thus D is a linear subset of �m,β that separates � and �. Let t1, t2, t be
as in [21, Thm 7.1], namely,

t1 = φm,β(� ↔ D), t2 =
√

φm,β(D ↔ �),

t = t1 + 2t2 + t1 + t2
1 − t1 − 2t2

.
(3.2)

By Theorem 2.1, there exist constants C2, C3, depending on λ and δ only, such that

t1 ≤ 2
�L/2�∑

i=K

C2e
−γ i ≤ C3e

−γ K ,

and furthermore t22 = t1. The claim now follows by [21, Thm 7.1] and Remark 2.2. ��
We now prove Lemmas 2.6 and 2.7 .

Proof of Lemma 2.6 Let θ < 2 and let γ be as in Theorem 2.1. With 1 ≤ K < 1
2 L , write

σ±
L,K = (σ±

x : K ≤ x ≤ L − K ). First, let x = (L, 0), and let ε+, ε− ∈ {−1,+1}L+1

be possible spin-vectors of the sets S+
L and S−

L , respectively. By [21, Lemma 7.25] with
S = S+

L ∪ S−
L \ {x+},

φm,β(σ+
L = ε+, σ−

L = ε−)

≥ 1
2φm,β(σ+

y = ε+
y for y ∈ S+

L \ {x+}, σ−
L = ε−)P�m,β ,λ,δ(x

+
� S).
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Now, P�m,β ,λ,δ(x � S) is at least as large as the probability that the first event (death or
bridge) encountered on moving northwards from x is a death, so that

P�m,β ,λ,δ(x � S) ≥ δ

2λ + δ
.

On iterating the above, we obtain that

φm,β(σ+
L = ε+, σ−

L = ε−) ≥ A2Kφm,β(σ+
L,K = ε+

K , σ−
L,K = ε−

K ), (3.3)

where ε±
K is the vector obtained from ε± by removing the entries labelled by vertices x

satisfying 0 ≤ x < K and L − K < x ≤ L , and

A =
(

δ

2(2λ + δ)

)2

. (3.4)

In summary, for ε± ∈ �L ,

A2Kφm,β

(
σ+
L,K = ε+

K , σ−
L,K = ε−

K

) ≤ φm,β

(
σ+
L = ε+, σ−

L = ε−)

≤ φm,β

(
σ+
L,K = ε+

K , σ−
L,K = ε−

K

)
. (3.5)

With�, � as in (3.1), we apply Lemma 3.1 to obtain that there existsC1 = C1(λ, δ) < ∞
such that ∣

∣
∣
∣
∣

φm,β

(
σ+
L,K = ε+

K , σ−
L,K = ε−

K

)

φm,β

(
σ+
L,K = ε+

K

)
φm,β

(
σ−
L,K = ε−

K

) − 1

∣
∣
∣
∣
∣
≤ C1e

− 1
2 γ K , (3.6)

whenever the right side is less than or equal to 1
2 .

By a similar argument to (3.5),

AKφm,β

(
σ±
L,K = ε±

K

) ≤ φm,β

(
σ±
L = ε±) ≤ φm,β

(
σ±
L,K = ε±

K

)
. (3.7)

The claim follows on combining (3.5)–(3.7). ��
Proof of Lemma 2.7 Let� = S+

L ∪S−
L and� = ∂h�m,β , and suppose θ < 2. Let k = 3

7m and
assume for simplicity that k is an integer. (If eitherm is small or k is non-integral, the constant
C may be adjusted accordingly.) Let D0 be the circuit illustrated in Fig. 2, comprising a path
in the upper half-plane from (−k, 0) to (L + k, 0) together with its reflection in the x-axis.
Let D = D0 ∩ �m,β . Thus, D = D0 in the case β = β2 of the figure. In the case β = β1, D
comprises two disjoint paths of �m,β . In each case, D separates � and �.

Let t1, t2, t be as in (3.2). By the ratioweak-mixing theorem [21, Thm7.1] andRemark 2.2,
∣
∣
∣
∣
∣

φ
η

m,β((σ+
L , σ−

L ) = (ε+, ε−))

φm,β((σ+
L , σ−

L ) = (ε+, ε−))
− 1

∣
∣
∣
∣
∣
≤ 2t, ε± ∈ �L ,

whenever t ≤ 1
2 . We multiply up, and sum over (ε+, ε−) ∈ A to obtain

∣
∣
∣
∣
∣

φ
η

m,β(σ� ∈ A)

φm,β(σ� ∈ A)
− 1

∣
∣
∣
∣
∣
≤ 2t, (3.8)

whenever t ≤ 1
2 .

By Theorem 2.1, there exist C2,C3, c4 > 0, depending on λ, δ, such that

t1 ≤ 4
�L/2�∑

i=0

φm,β((i, 0) ↔ D0)
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Fig. 2 The circuit D0 is approximately a parallelogram with � at its centre. The sides comprise vertical steps
of height 2 followed by horizontal steps of length 1. The horizontal and vertical diagonals of D0 have lengths
2k + L and (approximately) 4k + 2L respectively, where k = 3

7m. Two values of β are indicated. When
β = β2, D0 is contained in �m,β and we take D = D0. When β = β1, �m,β is the shaded area only, and we
work with D = D0 ∩ �m,β considered as the union of two disjoint paths that separates � and �

≤ 4
�L/2�∑

i=0

C2e
−γ 2

3 (k+i) ≤ C3e
− 2

7 γm, (3.9)

and similarly,

t22 ≤ 8
�k+L/2�∑

i=0

C2e
−γ ( 47m+c4i) ≤ C3e

− 4
7 γm . (3.10)

The claim follows. ��

4 Quenched Disorder

The parameters λ and δ have so far been assumed constant. The situation is more complicated
in the disordered case, when either they vary deterministically, or they are random. The
arguments of this paper may be applied in both cases, and the outcomes are summarised in
this section. Let the Hamiltonian (1.2) be replaced by (1.8), and write λ = (λx,x+1 : x ∈ Z)

and δ = (δx : x ∈ Z).
The fundamental bound of Theorem 2.5 depends only on the ratio θ = λ/δ. In the

disordered setting, the connection probabilities of the continuum random-cluster model are
increasing in λ and decreasing in δ, and powers of the function A(λ, δ) of (3.4) are replaced
by products of the form

A′
x,k =

k∏

i=1

(
δx+i

2(δx+i + λx+i,x+i−1 + λx+i,x+i+1)

)

, (4.1)
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which are decreasing in λ and increasing in δ. By examination of the earlier lemmas and
proofs, the conclusions of the paper are found to be valid with γ = γ (λ, δ) whenever (1.9)
holds with some λ, δ > 0. Hence, in the disordered case where (1.9) holds with probability
one, the corresponding conclusions are valid a.s. (subject to appropriate bounds on the ratio
λ/δ). This proves Theorem 1.5.

Consider now the situation in which (1.9) does not hold with probability one. Suppose
that the λx,x+1, x ∈ Z, are independent, identically distributed random variables, and sim-
ilarly the δx , x ∈ Z, and assume that the vectors λ and δ are independent. We write P
for the corresponding probability measure, viewed as the measure governing the ‘random
environment’.

A quenched area law might assert something along the following lines: subject to suitable
conditions, there exists a random variable Z which is P-a.s. finite such that S(ρL

m) < Z
for all appropriate m, L . Such a uniform upper bound will not generally exist, owing to the
fluctuations in the system as L → ∞. In the absence of an assumption of the type of (1.9),
there may exist sub-domains of Z where the environment is not propitious for such a bound.

Partial progress may be made using the methods of [21, Sect. 8], but this is too incomplete
for inclusion here.

5 Proof of Theorem 1.4

Since this proof is very close to that of [21, Thm 2.12], we include only details that are
directly relevant to the strengthened claims of the current theorem, namely the removal of
the logarithmic term of [21] and the weakened assumption on γ .

Let C and γ > 2 ln 2 be as in Theorem 1.2, and choose an integer K = K (θ) ≥ 2 such
that

Ce−γ K ≤ 1. (5.1)

As in [21],
S
(
ρL
m

) ≤ 2K , 2 ≤ m ≤ K , (5.2)

and we assume henceforth that m > K .
Let ε(r) = Ce−γ (K+r), so that, by (5.1),

ε(r) ≤ e−γ r , r ≥ 0. (5.3)

On following the proof of [21, Thm 2.8] up to equation (2.22) there, we find that

λ
↓
j

(
ρL
m

) ≤ c

j ξ
, 22K < j, (5.4)

where ξ = γ /(2 ln 2) > 1 and c = eγ (K+1)/(1 − e−γ ).
Now,

S
(
ρL
m

) = S1 + S2, (5.5)

where

S1 = −
ν∑

j=1

λ
↓
j

(
ρL
m

)
log2 λ

↓
j

(
ρL
m

)
, S2 = −

2L+1
∑

j=ν+1

λ
↓
j

(
ρL
m

)
log2 λ

↓
j

(
ρL
m

)
,

and ν = 22(K+2). Since the λ
↓
j (ρ

L
m), 1 ≤ j ≤ ν, are non-negative with sum Q satisfying

Q ≤ 1, we have
S1 ≤ log2 ν = 2(K + 2). (5.6)

123



Bounded Entanglement Entropy in the Quantum Ising Model 295

We use (5.4) to bound S2 as in [21], to obtain

S2 ≤ −
∞∑

j=ν+1

c

j ξ
log2

(
c

j ξ

)

≤ c1,

for some c1 = c1(θ) < ∞. By (5.5)–(5.6),

S
(
ρL
m

) ≤ 2(K + 2) + c1, m ≥ K , (5.7)

which completes the proof.
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References

1. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Entanglement dynamics of disordered quantum
XY chains. Lett. Math. Phys. 106, 649–674 (2016)

2. Aizenman, M., Klein, A., Newman, C.M.: Percolation methods for disordered quantum Ising models. In:
Kotecký, R. (ed.) Phase Transitions: Mathematics, Physics, Biology, . . . , pp. 129–137. World Scientific,
Singapore (1992)

3. Aizenman, M., Nachergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164,
17–63 (1994)

4. Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems.
In: Proceedings of the 4th Innovations in Theoretical Computer Science (ITCS) arXiv.1301.1162 (2013)

5. Arad, I., Landau, Z., Vazirani, U.: Improved one-dimensional area law for frustration-free systems. Phys.
Rev. B 85, 195145 (2012)

6. Arad, I., Landau, Z., Vazirani, U., Vidick, T.: Rigorous RG algorithms and area laws for low energy
eigenstates in 1D. Commun. Math. Phys. 356, 65–105 (2017)

7. Beaud, V., Sieber, J., Warzel, S.: Bounds on the bipartite entanglement entropy for oscillator systems with
or without disorder. J. Phys. A. Math. Theor. 52, 235202 (2019)

8. Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J.
Math. Phys. 59, 012109 (2018)

9. Bezuidenhout, C.E., Grimmett, G.R.: Exponential decay for subcritical contact and percolation processes.
Ann. Probab. 19, 984–1009 (1991)

10. Bhatia, R.: Matrix Analysis, 2nd edn. Springer, Berlin (1997)
11. Björnberg, J.E.: Vanishing critical magnetization in the quantum Ising model. Commun.Math. Phys. 337,

879–907 (2015)
12. Björnberg, J.E.: The free energy in a class of quantum spin systems and interchange processes. J. Math.

Phys. 57, 073303 (2016)
13. Björnberg, J.E., Grimmett, G.R.: The phase transition of the quantum Ising model is sharp. J. Stat. Phys.

136, 231–273 (2009)
14. Brandão, F.G.S.L., Horodecki, M.: An area law for entanglement from exponential decay of correlations.

Nat. Phys. 9, 721–726 (2013)
15. Crawford, N., Ioffe, D.: Random current representation for transverse field Ising model. Commun. Math.

Phys. 296, 447–474 (2010)
16. Duminil-Copin,H., Raoufi,A., Tassion,V.: Sharp phase transition for the random-cluster and Pottsmodels

via decision trees. Ann. Math. 189, 75–99 (2019)
17. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy—a review. Rev. Mod. Phys.

82, 277–306 (2010)
18. Goldschmidt, C., Ueltschi, D., Windridge, P.: Quantum Heisenberg Models and Their Probabilistic Rep-

resentations. Entropy and the Quantum II, Contemporary Mathematics, vol. 552, pp. 177–224. American
Mathematical Society, Providence, RI (2011)

19. Grimmett, G.R.: The Random-Cluster Model. Springer, Berlin (2006). http://www.statslab.cam.ac.uk/
~grg/books/rcm.html

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1301.1162
http://www.statslab.cam.ac.uk/~grg/books/rcm.html
http://www.statslab.cam.ac.uk/~grg/books/rcm.html


296 G. R. Grimmett et al.

20. Grimmett, G.R.: Space-time percolation. In: Sidoravicius, V., Vares,M.E. (eds.) In andOut of Equilibrium
2. Progress in Probability, vol. 60, pp. 305–320. Birkhäuser, Boston (2008)

21. Grimmett, G.R., Osborne, T.J., Scudo, P.F.: Entanglement in the quantum Ising model. J. Stat. Phys. 131,
305–339 (2008)

22. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press,
Oxford (2001)

23. Nachtergaele, B.: A stochastic geometric approach to quantum spin systems. In: Grimmett, G.R. (ed.)
Probability and Phase Transition, pp. 237–246. Kluwer Academic Publishers, Dordrecht (1994)

24. Newman, C.M.: Disordered Ising systems and random cluster representations. In: Grimmett, G.R. (ed.)
Probability and Phase Transition, pp. 247–260. Kluwer Academic Publishers, Dordrecht (1994)

25. Pastur, L., Slavin, V.: Area law scaling for the entropy of disordered quasifree fermions. Phys. Rev. Lett.
113, 15404 (2014)

26. Tóth, B.: Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet.
Lett. Math. Phys. 28, 75–84 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Bounded Entanglement Entropy in the Quantum Ising Model
	Abstract
	1 The Quantum Ising Model and Entanglement
	2 Estimates via the Continuum Random-Cluster Model
	3 Proofs of Lemmas 2.6 and 2.7 
	4 Quenched Disorder
	5 Proof of Theorem 1.4
	References




