3

Critical Probabilities

3.1 Equalities and Inequalities

Let G beagraph, andlet p:(G) denotéthecritical probability.of bond percolation
on G, asin Section 1.6. It is tempting to seek an exact calculation of p:(G) for
given G, but there seemsno reason to expect aclosed form for pc(G) unless G has
specia structure. Indeed, except for certain famous two-dimensional lattices, the
valueof pc(G) may have no other special features. Theexceptional casesinclude:

squarelatice  pc = 3

triangularlattice 'pc = 2sin(x/18)
hexagonal lattice “ pc = 1 — 2sin(r/18)
bow-tielattice pc = pc(bow-tie)

where pc(bow-tie) isthe unique root in (0, 1) of the equation
1— p—6p?+6p> — p° =0.

See Figure 3.1 for drawings of these lattices.

It is the operation of ‘duality’ which is of .primary value in establishing these
exact values (the definition.of planar dual isgiven beneath (1.16), see aso Section
11.2). Given aplanar lattice £ (defined in an appropriate way not explored here)
and its dual Jattice L4, one may. show that

(3.1 Pe(L) + pe(Ly) =1

subjectto certain conditionsof symmetry on L. We do not present a proof of such
arelation, since this would use techniques to be explored only later in this book.
Equation (3.2) is eguival ent to the following statement:

p > pe(L) mifandonly if 1— p < pe(Ly),
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Figure 3.1. Fivelatticesin two dimensions. (a) Thesguare lattice is self-dual. (b) The broken
edges congtitute the hexagonal (or ‘honeycomb’) lattice, and the solid edges constitute the
triangular lattice, being the dual of the hexagonal lattice. () The broken edges constitute the
hexagonal lattice, and the solid edges constitute the ‘ kagomeé' lattice, being the covering lattice
of the hexagonal lattice. (d) The so called bow-tie |attice.

for whichanintuitive explanationisasfollows. If-p=pe(L), thereexists (almost
surely) an infinite open cluster of £, and infinite clusters occupy astrictly positive
density of space. If there is a unique such infinite cluster (which fact we shall
prove in Chapter 8), thenithis cluster extends throughout space, and precludes
the existence of an infinite closed cluster of Lg; therefore 1 — p < pe(Ly).
Conversdly, if p < pc(L), al open clusters of £ are (almost surely) finite, and
the intervening space should contain‘an infinite closed cluster of Ly; therefore,
1-p > pc(Ly). Howeverappealing these crudeargumentsmay be, their rigorous
justification isthighly non-trivial.

Once (311) is accepted, the exact value pc = % for the square lattice follows
immediately, since this lattice is salf-dual. A rigorous proof of this calculation
appearsin Section 11.3. When £ isthetriangular lattice, then Ly isthe hexagonal
lattice/and.in this case we need another link between the two critical probabilities
in order to compute them exactly. The so called ‘ star—triangl€e’ relation provides
suchalink, andtheexact valuesfollow. See Section 11.9for acompletederivation.

A similar argument is valid.for the bow-tie lattice £, namely that the dual of
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Figure 3.2. A graph G may be used to generate amatching pair $1, 2. Any finite cluster of
&1 issurrounded by acircuit of §5. Inthis picture, Glisthe square latticg 1.2, and 1 and G.»
are obtained by adding the diagonals to alternate faces of G. Inthis special case, both 1 and
g, areisomorphic to the covering lattice of 1.2,

L may be transformed into a copy of £, by judicious use of the star-triangle
transformation. This enables a computation of its critical value. There may exist
other two-dimensiona lattices to which.similar arguments may be applied.

We turn now to site percolation. /As observed in Section 1.6, the bond model
on agraph G is equivalent to the site model on the covering graph Ge. It follows
in particular that the kagomé lattice, being the covering lattice of the hexagonal
|attice, satisfies pdt¢(kagomé) = 1 — 2sin(w/18).

Whereas duality was a key to bond percolationin two dimensions, the corre-
sponding property for site percolation is that of matching. A matching pair 41,
g of graphsin two dimensionsis constructed as follows. We begin with an in-
finite planar graph G with“origin’ 0, and\we select some arbitrary family # of
facesof G. We obtain g1 (respectively §2) from G by adding al diagonalsto all
facesin & (respectively al facesnot in F).-Thegraphs G, 1, 2 have the same
vertex sets, and therefore a site percolation process on G induces site percolation
processes on 41 and 2. If the origin O belongs to a finite open cluster of 41,
then the external (vertex) boundary of this cluster forms a closed circuit of G,
(see the example in Figure 3.2). Thisturns out to be a very useful property. We
say that g1 is self-matching if 1 and $2.are isomorphic graphs. Note that, if G
is atriangulation (thet is, if every faceof G isiatriangle), then G = g1 = §o,
and in this case G is self-mateching. The triangular lattice T is an example of a
self-matchinglattice. Further details and references concerning two-dimensional
matching pairs may be found in Kesten (1982).

Let 61, G2 beamatching pair of latticesin two dimensions. Subject to assump-
tionson'the pair 41, G2, one may on occasion be able to justify the relation

pSe(G) + p*(Go) = L;

cf. (3.1). One may deduce that the triangular lattice T, being self-matching, has
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| bond site
hexagonal ~ 0.70
square L2 ~ 0.59
kagomé ~0.52

cubic L3 ~025 ~0.31

Table 3.1. Numerical estimates of critical probabilities. See Hughes (1996) for origins and
explanations.

site critical probability pS'®(T) = 1. Indeed, it is believed that p§t® = 1 for a
broad family of ‘reasonable’ triangulations of the plane.

In the absence of ageneral method for computing critical percolation probabil-
ities, we may have cause to seek inequalities. These come in two forms, rigorous
and non-rigorous. A great deal of estimation of critical probabilities has been car-
ried out, using amixture of numerical, rigorous, and non-rigorousarguments. \We
do not survey such results here, but refer the reader to pages 182183 of Hughes
(1996). Asan example of an inequality which is both rigorous and rather tight,
Wierman (1990) has proved that

0.5182 < p2°™(kagomé) < 0.5335,

but other results of this type are generally rather weak.

Another line of enquiry has been to understand the behaviour of critical prob-
abilitiesin the limit as the number d of dimensionsisallowed to pass to infinity.
We shall encounter in Sectiond0.3 the technology known.as the ‘ lace expansion’,
which has been developedby Hara and Slade (1990, 1994,.1995) in order to un-
derstand percolation whend islarge andfinite. When applied to bond percolation
on LY, these argumentsimply an expansion.of whichthe first terms follow:

bond, 7 dy oL 1 7/2 1
(3.2 Pc (L)_2d+(2d)2+(2d)3+o<(2d)4) asd — oo.

Theremainder of thischapter is devoted toamethod for proving strict inequali-
ties between criticalprobabilities. Thismethod appearsto have fundamental merit
in situationswhere one needsto understand whether asystematic addition of edges
to aprocess’causes a strict changeinits critical value. In Section 3.2 is presented
an example of this argument at work; see Theorem (3.7). Section 3.3 contains a
general formulation of enhancementsfor percolation models. Such methods are
adapted in Section 3.4 to obtain strict inequalities between site and bond critical
probabilitiesiof cubic lattices.
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Figure 3.3. An entanglement between opposite sides of a cube in three dimensions:Note the
chain of necklaces on the right.

3.2 Strict Inequalities

If £ isasublattice of the lattice £’ (written £ C £')then clearly their critical
probabilities satisfy pc(L) > pe(L’), since any infinite open cluster of £ is
contained in some infinite open cluster of £’. "When does the strict inequality
Pc(L£) > pe(L") hold? The question may be quantified by asking for non-trivial
lower boundsfor pe(L£) — pe(L).

Similar questions arise in‘many ways, not simply within percolation theory.
More generally, consider any processindexed by a continuously varying parame-
ter T and enjoying a phasetransition at somecritical point T = T¢. In many cases
of interest, sufficient structure is available to-enable the conclusion that certain
systematic changes to/the process can,only change T in one particular direction.
For example, one may be able to conclude that the critical value of the altered
processis no greaterthan Tea The question then isto understand which systematic
changes decrease T strictly. Inthe context of the previousparagraph, the system-
atic changes in question may involve the‘switching on’ of edgeslyingin £’ but
notin L.

A related percolation question.isthat of ‘ entanglements’ . Consider bond perco-
lation on I3 /and examine thebox B(n). We think of the open edgesas being solid
connections made of elastic, say, and we may try to ‘ pull apart’ a pair of opposite
facesof B(n). If p > pc, we will generaly fail because, with large probability
(tendingto 1 asn — 00), there existsan open path joining onefaceto the opposite
face. We may fail evenif p < pc, owing to an ‘entanglement’ of open paths (a
chain of ‘necklaces, perhaps, see Figure 3.3). It may be seen that there exists an
‘entanglement transition’. at some critical point p&™ satisfying p&™ < pe. Isit the
case that strict inequality holds, that is, that p™ < pc?
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Figure 3.4. The triangular |attice may be obtained from the sguare lattice by the addition of
certain diagonals.

A technology has been developed for approaching such questions.of strict
inequality. Although, in particular cases, ad hoc arguments can be successful,
there appears to be only one general approach known currently. We illustrate
this approach next, by sketching the details.in a particular case. A more general
argument will be presented in Section 3.3, and this will allow an answer to the
entanglement question above.

Thetriangular lattice T may be obtai ned by.adding diagonal sacrossthe squares
of thesquarelattice L2, in themanner of Figure3.4. Sinceany infinite open cluster
of L2 is contained in an infinite open cluster of T, itfollowsthat pc(T) < pe(L2),
but does strict inequality hold? There are variousways of showing that the answer
isaffirmative. Here we adopt.the canonical argument of Aizenman and Grimmett
(1991), as an illugtration of a general technique. The reason for including this
specia case in advance of the more general formulation of Theorem (3.16) isthat
itillustrates clearly the structure of the method withraminimum of complications.

We point out that, far this particul ar/case, thereisavariety of waysof obtaining
the result, by using special properties of the square and triangular lattices. The
attraction of the method described/here is its generdlity, relying as it does on
essentially no assumptionsabout lattice structure or number of dimensions.

First we embed the problem in atwo-parameter system. Let p, s € [0, 1]%. We
declare each edge of 1.2 to be open with probability p, and each further edge of
T (that is, the dashed edgesin Figure 3.4) to be open with probability s. Writing
Pp,s for the associated measure, define

(3.3 0(p,s) = Pps(0 < 00).

We/propose to establish certain differential inequalities which will imply that
96 /9p and 86 /as.are comparable, uniformly on any closed subset of the interior
(0, 1)? of the parameter.space. This cannot itself be literally achieved, since we
have insufficient informationiabout the differentiability of 6. Therefore we shall
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pe(T) pe(L?) p

Figure 3.5. The ‘critical curve'. The area benezath the curve is the set of (p,s) for which
6(p,s) =0.

approximate 6 by a finite-volume quantity 6,, and shall work-with.the partial
derivatives of 6.

Let B(n) = [—n, n]9, and define
(3.4) n(p, S) = Pp,s(0 <= aB()).
Notethat 6, isapolynomial inqrands, and that

On(p,S) | 6(p.§) asn— oa.

(3.5) Lemma. There exist a positive integer L and a continuous function «
mapping (0, 1)2 to (0, co) such that

0 0 d
(36)  a(p, s)—la—p 6n(P.8) = =2 0n(P.S) = (P, S)a_p On(p, )

for0< p,s< landn > L:

Oncethisisproved, the mainresult followsimmediately, namely thefollowing.
(3.7) Theorem. Itisthe casethat pe(T) < pc(L?).
Proof/of Theorem (3.7). Hereisarough argument, the rigour comes later. It
may be shown that there exists a ‘critical curve' in (p, S)-space, separating the

regime where 8(p, s) =.0 from that when 8(p, s) > 0 (see Figure 3.5). Suppose
that thiscritical curvemay bewritten in theformh(p, s) = 0for someincreasing
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and continuousdly differentiable function h satisfying h(p, s) = 8(p, s) whenever
0(p,s) > 0. Itis enough to prove that the critical curve contains no vertical
segment, and we shall prove this by working with the gradient vector

oh adh
Vh=|—,—].
ap 9s
We take some liberties with (3.6) in the limit asn — o0, and deduce that

h
vh-©0.1=2 >
das

1 ah { ah /an\2 ) 2 o
— — == /=] +1} = :
e/ %) 7 e
which is bounded away from 0 on any closed subset of (0, 1)2. Thisindicates as
required that the critical curve has no vertical segment.
Here is the proper argument. Let  be positive and small, and find y (> 0)
suchthat a(p, s) > y on[n, 1 — n]%/Let ¥ € [0, 7 /2) satisfy tanyr= L.
Atthepoint (p, s) € [n, 1— 5], therate of change of 6, (p, S) inthe direction
(cosyr, —sinyr) satisfies

a(p, 5)2—2,

whence

. 36 6 .
(3.8 V6h - (cosSy, —Siny) = T cosy = n siny

36n .
< a—p(cosvf —ys8iny) =0

by (3.6), sincetany = 1.
Suppose now that (@, b) € [2n, 1 —/25]%. Let

@, b )= (a, b) + n(cosy, —siny),

noting that (a’, b') € [n, 1 — 7]%. Byintegrating (3.8) along the line segment
joining (a, b) to (a’, b’), we obtain that

(3.9 d@,b") = lim 6@, b") < lim 6,(a,b) =6(a, b).
n—oo n—o0

Thereis guite alot of information in such a calculation, but we abstract a small
amount/only. Let n be small and poditive. Take (a, b) = (pc(T) — ¢, pe(T) — &)
and define(@’, b’) as above. We choose ¢ sufficiently small that (a, b), (a’, b') €
[2n, 1 —25)? and.that &’ > pc(T)./The above calculation implies that

(3.10) 0@, 0),< 6@, b) <6 b) =0,
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whence pe(L?) > &' > pe(T). O

Proof of Lemma (3.5). With E? the edge set of 1.2, and IF the additional edges
inthetriangular lattice T (that is, the diagonalsin Figure 3.4), we have by Russo’'s
formula (in adightly more general version than Theorem 2.25) that

0 .
D On(p,s) = Z Pp,s(eispivota for An),

eck?

(3.11) 5
a—sen(p, S) = Z Pp,s(f ispivotal for Ap),

feFr

where A, = {0 < 3dB(n)}. Theideanow is to show that each/summand in the
first summation is comparabl e with some given summand in the second. Actually
we shall only prove the second inequality in (3.6), since thisis the only one used
in proving the abovetheorem, and in addition the proof of the otherpart issimilar.

With each edge e of E2 we associate auniqueedge f = f (e) of F suchithat f
lies near to e. This may be donein avariety of ways, but in order to be concrete
we specify that if e = (z,z+ u1) ore = (z, z+ up) then f = (z, z+ Uy + uy),
where u1 and u are unit vectorsin thedirectionsof;the (increasing) x and y axes
respectively.

We claim that there exists afunction 8(p, s), contindous on (0, 1)2, such that,
for all sufficiently largen:

(3.12) Pp.s(eispivotal for Ay) < B(p, s)Pps(f(e) ispivotal for Ay)

for al elyingin B(n). Oncethisis shown, we sum over eto obtain by (3.11) that

aip@n(p, S) = B(p,S) Z Pp.s( f (e).ispivotal for Ay)
eck?

<2B(p,9) Z Po,s(f ispivotal for An)

fer

i)
= 2B(p, S)a—sen(p, S)

asrequired. Thefactor 2 arises because, foreach f (€ F), there are exactly two
edgese with f(e) = f.

Theideaof the proof of (3.12)isthat, if eis pivota for A, inthe configuration
w, then, by making ‘local changes 'to w, we may create a configuration in which
f (e) ispivota for An. The factor 8 in (3.12) reflects the cost of making such a
local change.

Here'is afairly. formal proof of (3.12). Suppose that e = (z, z + u1) where
u1 = (1, 0); asimilar argument will be valid with u; replaced by u, = (0, 1). Let
Be = z + B(2), abox centred.at z, and |et E¢ be the set of edges of T having at
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Figure 3.6. An example of a configuration w on Ee which gives rise to a configuration
o =o' (e, w).

least onevertex in Be. Supposefor the momentthat 0:¢. B and BeN dB(n) = @.
Let w be a configuration in which e is pivotal for A,. If ewere open, then all
pathsfrom 0to d B(n) would by necessity passalong e. Therefore; there exist two
edgesgi = (a, by) of T (fori = 1, 2) such that:
(i) & € 0Be, bj ¢ Be, and theedge (a;, b)) isopen, fori =1, 2,
(i) in the configuration obtained from w by declaring all edgesin Ee \ {go, 01}
to be closed, we have that 0 <»/ag and 9 B(n) <ras:

If thereis achoice for the edges g; then we pick them according to some prede-
termined ordering of all edges. See Figure 3.6.

Having found the g;, we may find a configuration @’ (¢ ) such that:
(iii) w and o’ agree off Ee \ {go, 01},
(iv) o € {f(e)ispivota for Ap}.
Theideaintheconstruction of @’ isto find two vertex-digoint paths g and 7z of T

having verticesin Be, and suchthat 7g joinsap to z, and'r1 joinsag to z+ u1 + uy;
then we define o’ by

w(h) Afh ¢ Ee\ {go. 01},

bithy — 1 ?fhli%in 7o Of 71,
1 ifh= f(e),
0 otherwise.

This construction is illustrated further in Figure 3.7. 1t may be seen from the
figures that o’ satisfies (iv),above. We write o’ = «/'(e, w) to emphasize the
dependence of @’ onthe choice of.e and w.

If e is such that either 0 € ‘Bg or Be N dB(n) # @, then one may find a
configuration o’ satisfying (iii) and (iv), although adightly different geometrical
construction is needed for these special cases. We omit the details of this, noting
only the conclusion that, for each eand w € {eispivotal for An}, there exists ’
satisfying (iii):and (iv) above. It follows from (iii) that

1
Pp,s(@) < F Pp,s(a)/)
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Figure 3.7. Inside the box B(n), the edge e is pivotal for the event {0 <> dB(n)}. By altering
the configuration inside the smaller box, we may construct a configuration in which. f (e) is
pivotal.

wherey = min{p,s,1— p,1—s}and R = |E¢|.
Write Ej, for the event that an edge h'is pivotal for A,. For w € Ee, we have
by (iv) that ' € E¢(g. Therefore,

1 2\R
Pp.s(Ee) = Z Pp.s(w) < Z —Rpp,s(a)/) = (;) Pp.s(Ef(e)),

weEe w€eEe

and (3.12) follows with B(p, 8) = 2/y)R. O

3.3 Enhancements

An ‘enhancement’ is defined loosely to be a systematic addition of connections
according to local rules. Enhancements.may involve further coin flips. Can an
enhancement create an infinite cluster when previously there was none?

Clearly the answer can benegative. For example, the enhancement may be
of the type: join any two neighbours of 1.9 with probability % pc Whenever they
have no incident open edges. Such an.enhancement creates extra connections but
creates (almost surely) no extrainfinite cluster.

Herelisa proper definition of the concept of enhancement for bond percolation
on L9 with parameter p. Let R be a positive integer, and let § be the set of all
simple graphs on.the vertex set B = B(R). Note that the set of open edges of
any configuration @ (€:£2) generates a member of 4, denoted wg; § containsin
addition many other graphs. Let F beafunction which associateswith every wg a
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graphin g. Wecall Rthe‘enhancementrange’ and F the‘ enhancement function’.
In the remainder of this chapter, we denote by e + x the trandate of an edge e by
the vector x; similarly, G + x denotes the trandate by x of the graph G on the
vertex set 79,

We shall consider making an enhancement at each vertex x of L9, and we shall
do thisin a stochastic fashion. To this end, we provide'ourselves with a vector
n=nXx):x ez lyinginthespace & = {0, 1}Zd. We shall interpret the value
n(X) = 1 asmeaning that the enhancement at the vertex x is ‘activated’.

These ideas are applied in the following way. For each x € 79 we observe
the configuration w on the box x 4+ B, and we write F (X, w) for the associated
evaluation of F. That isto say, we set F(X, w) = F((txw)g) Where 1y is the
shift operator on 2 given by yw(€) = w(e + X). The enhanced configurationis
defined to be the graph

(3.13) Genh(a), n) = G(w) U i U {X + F(x, a))}]

X:n(x)=1

where G(w) is the graph of open edges.under.w..ln writing the union of graphs,
we mean the graph with vertex set Z9 having the union of the appropriate edge
sets; wherever this union contains two ormore edges between the same pair of
vertices, these edges are allowed to coalesceinto a single edge.

Thusweassociatewitheachpair (w, ) € QX E anenhanced graph GM(w, ).
We endow the sample space Q x & with the product probability measure Py s,
and we refer to the parameter s as the density of the enhancement.

We call the enhancementfunction F essential if there exists a configuration o
(e Q) such that G(w) U F(w) contains a doubly-infinite path but G(w) contains
no such path. Here are two examples of| this definition.

(i) Supposethat F hasthe effect of adding an edge joining the origin and any
given unit vectar whenever thesetwo verticesareisolated in G(w). Then F
isnot essential.

(i) If, on the other hand, F adds such an edge whether or not the endvertices
areisolated, then F isindeed essential.

We call the enhancement function'F monotenic if, for all n and al w < o/, the
graph G®"(w, n)ds@asubgraph of G&™"(w’, 7). For F to be monotonicit suffices
that wg U F (wp) beasubgraph of vy U F(wg) whenever o < o'

The enhanced percolation probability is defined as
(3.14) 6°""(p, s) = Pp,s(0 belongs to an infinite cluster of G*M).

A useful definition of the enhancement critical point is given by

(3.15) pSM(Fys) = inf{p: 6°M(p, s) > O}.
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A
—

Figure 3.8. A sketch of the enhancement which adds an edge between any twe.interlocking
2 x 2 squaresinL3. Thispicture contains adoubly-infinite path if and only if the enhancement
is activated.

We note from (3.13) that 6™ is non-decreasingin s. If F is monotonic then, by
Theorem (2.1), 6™ is non-decreasingin p aso, whence

=0 "if p< p&N(F/s),

0N (p, s {
(P.9) >0 if p=p™M(F,s).

If F isnot monotonic, therewill generally be ambiguity over the correct definition

of the critical point. We will abideby.(3.15) here.

(3.16) Theorem. Let s & 0. If the enhancement function F is essential, then
pE"(F,s) < Ppe.

The main point is that essential enhancements shift the critical point strictly.
Instead of enhancements, one may study ‘ diminishments', which involvethe sys-
tematic removal of open edges according to some local rule. A similar theorem
may then be formulated, asserting that the critical point is strictly increased so
long as the diminishment in question satisfies a condition parallel to that given
above.

Here are some'examples of Theorem (3.16) and related arguments.

A. Entanglements. Consider bond percolation on the three-dimensional cubic
lattice .3, Whenever we see two interlinking 2 x 2 open squares, we join them
by an edge (see Figure 3.8). It is easy to see that this enhancement is essential,
and therefore it shifts the critical point downwards. Any reasonable definition of
entanglement would require that two such interlocking squares be entangled, and
it would follow that p&" < pc. We do not formulate precisely the notion of an
entanglement since there are'certain difficulties over this; see Section 12.5.
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B. Lattices and sublattices. Let £ be a sublattice of the lattice’£’. Assuming a
reasonable definition of the term ‘lattice’, there will exist a periodic class & of
edges of £’ which do not liein .£. Supposeit isthe casethat each e € & issuch
that: there exists a bond configuration on £ containing no‘doubly-infinite open
path, but such a path exists if we add e to the configuration. Although Theorem
(3.16) cannot be applied directly in this situation, its proof may be adapted in a
straightforward manner to deduce (rather asin Section 3.2) that pc(£) > pe(L).

C. Sabs Let d > 3, and define the slab S¢ of thickness k by S = 72 x
0,1,2,..., k{92 wherek > 0. Since & € Su1, we have that pe(S) >
Pc(Scr1). The method of Theorem (3.16) may be used as follows to obtain the
gtrict inequality pe(S) > pc(Sc+1)- Let e be the unit vector (0,0,...,0,0, 1).
Take £’ to bethe graph derived from LY by deleting all. edges of theform (x, x +e)
such that |xq + 1| is divisible by k + 2. We construct the subgraph £ of £’ by
deleting all edges (x, x + €) such that |xq + 1| is divisible by k.+ 1. Then £’
may be obtained by systematic enhancements of £, and the claim may.now be
obtained in the usual way.

D. Augmented percolation. Here istfarquestionswhich.has arisen in so called
‘invasion percolation’. Consider bond percolation on a lattice £. Each edge
isin exactly one of three categories: (i) open, (ii) closed and belonging to afinite
closed cluster, (iii) closed and belonging to aninfinite closed cluster. Consider the
graph obtained from £ by deleting all edgeslying in category (iii) whileretaining
those in categories (i) and (ii). Doesthere exist aninterval of valuesof p (< pc)
for which this graph contains (almost surely) aninfinite component? That this
indeed holds for L9 with d >2 followsby considering the enhancement in which
an edgeis added between the origin and aneighbour x if andenly if al other edges
incident to 0 and x are open.

E. Site percolation. The proof of Theorem (3.16) may be adapted to bond and site
percolation on general lattices. Thecondition of ‘essentialness’ was formulated
abovefor bond percolation, andis replaced asfollowsfor site percolation. We say
that therealization & < {0, 1}Zd of site percolation contains a doubly-infinite self-
repelling path if there exists a doubly-infinite open path none of whose verticesis
adjacent to any other.vertex.of the path except for itstwo neighboursinthepath. An
enhancement of site percolationis called essential if there exists a configuration
& containing no doubly-infinite self-repelling path, but such that the enhanced
configuration obtained by activating the enhancement at the origin does indeed
contain such a path.

Proof/of Theorem (3.16). We follow Aizenman and Grimmett (1991). In this
proof weshall construct variousfunctionson (0, 1)2, denotedasé; fori > 1. Such
functions shall by convention be continuous and strictly positive on their domain
(0, 1)2.
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Thefirst stepisto generalizeequations(3.11). A pair (w, ) € 2 x E givesrise
to an enhanced graph G®™(w, 1), and we call the edges of this graph enhanced.
For (w, ) € @ x E ande € EY, x € 29, we define configurations «®, we, n*, nx

by

o [o(f) iff#e _{a)(f) it f£e,
w(f)_{l e D=0 if f=e,
x| 1) ifyF#EX _{n(y) ify #x,
n(y)_{l ty=x, TV iy

Let n be a positive integer, and let A = Ap/be the event that there exists a
path of enhanced edges joining the origin to same vertex of the set d B(n). For
(w,n) €2 x Eande e EY, x € Z9, we say that

eis(+)pivotal for Aif Ia(w®, n) = 1and | o(we, ) =10,
eis(—)pivotal for Aif Ia(w®, n) = 0and | a(we, n) =1,
x is (+)pivotal for Aif 1a(w, n*) = 1and Ia(w, nx) = 0,
where :
| a(@. 1) = { 1 if Aoc'curs

0 otherwise.

Notethat, if the enhancement isnot monotonic, edgesmay generally be (—)pivotal
for an increasing event A. Vertices, on the other hand, can only be (+)pivotal for
an increasing event.

Since the occurrence of Adependson only finitely many of the w(e) and n(x),
we have by aminor extension of Theorem (2.32) that 6,(p, S) = Pp,s(A) satisfies

%—i’; - Z { Pp.s(eis (+)pivotal for A) — Py s(eis (—)pivotal for A)}
(317) ecEd
3_Sn = ) "Pps(Xis(+)pivotal for A).
xezd

We continue with.a.geometrical observation. Recall that R is the range of the
enhancement. lsét m be a positive integer satisfyingm > R+ 2, and let v, w be
distinct verticesin 9 B(m). The enhancement has been assumed essential, which
is to say that there exists a bond configuration w having the following property:
w contains no doubly-infinite open path, but such a path 7 = 7 (w) is created
when the enhancement at the origin is activated. Such a path = must contain
two digoint.singly-infinite open paths of w, denoted 71 = Xg, fo, X1, f1,... and
72 = Y0, 090, 1,94, . - ., Such that xg, Yo € B(R). Let

r=min{fi 1% € dBm~ 1)}, s=min{i:y; € 9B(m— 1)},
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Figure 3.9. Anillustration of the way in‘which o is constructed when the enhancement is
essential.

notingthat r, s > 2. Wemay find vertex-diseintpathsv1, v> of L9, using vertices
in B(m) \ B(m — 2) only, such that v1 joins X, to v-and v, joins ys to w. We now
define the configuration @ (€ 2) by:

w(e) /if ehasbothits endverticesin.B(m — 2),

. 1 if eliesin either v1 or vy,
w(e) = .

1 ife= fl’—17 gS—17

0 otherwise.

About @ we note the following:
(i) al open edges of & have both endverticesin B(m),
(ii) @ has no open path joining v and w;
(iii) if theenhancement.at O is activated, then anenhanced path is created joining
v and w_and using vertices.of B(m) only.

We write @/{= wm(v, w) to emphasize the dependence of @ on n, v, w. The
construction of  isillustrated in Figure 3.9.

Suppose that e = (z, z 4+ u) where u is a (positive) unit vector of 1.9, Let
Be = 2+ B(m+ R), abox centred & z, and let v1, vy, ... beafixed ordering of
the verticesof Be. For n € E, we define n; by

0 ifXE{vl,Uz,...,Ui},

(3.18) ni(x) = { n(X) otherwise.
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Let n be a positive integer, write A = Ap, and let (w, n) € £ x E. Suppose
for the moment that

(3.19) m+1<|z<n-m-1,

and let
Ke = min{i : some vertex of Be is (+)pivotal for A
in the configuration (w, ni)};
with the convention that the minimum of the empty set i's co.
Theconfigurations(w, nj) are obtained from (w /) by altering abounded num-
ber of variables n(x). Also, if Ke < 0o, then in at least one of the'configurations

(w, ni), 0 <1 < |Bel, thereexist one or more (+)pivotal vertices! Thereforethere
existsafunction §1 such that

(3.20)
|Bel
Pp.s(Ke <00) < Y >~ Pys({(e. ) : xis(+)pivotal for Ain(a, ni)})
i=0 xeBe

< 81(p, 9)(1 + | Bel) *Pps(Hle=-1),

where ITe is the number of (+)pivotal vertices for A lying in Bg; this may be
compared with the final step in the proof of Lemma (3.5).

We consider next the case Ke = 0. Lét (w,n)/€ Q x E besuchthat eis
(+)pivotal for A, w(e) = 1, and Ke = co. Letn’ be given by

0 ifXEBe,

) = { n(x) \ otherwise.

Since Ke = oo, we have that e is (+)pivoetalsfor A in (w, n"). Using (3.19)
and the fact that w(e)/= 1, we observe that there exists an enhanced path xg =
0, fo, x1, f1,..., Xt With x; € 9 B(n)/which utilizes the edge e, and we set

r=min{i 1 x €z+B@)}. s=max{i:x €z+ B(m)},

thefirstandlast verticesthereof lyinginz+B(m). Notethat1 <r < s < t. LetEe
betheset of |atticeedgeshaving at | east oneendvertexin z+ B(m). We proposeto
alter thevaluesw (1), T € Ee, inorder to obtain anew configurationinwhich zis
(+)pivotal for A. We dothisby “pasting’ theconfiguration @ = &m(Xr — 2z, Xs—2)
into z+ B(m). More specifically, wedefine o’ (€ 2) by

o(h — 2z) if h hasboth endverticesin Be,
1 ifh= f_q, fs,

0 for other edges h of Ee,

w(h) if h ¢ Ee.

(3.21) o' (h) =
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~+ f

3B(n)

Figure 3.10. If Ke = 00, one may alter the states of a bounded number of edges and vertices
in order to obtain a configuration «’ in which z is (+)pivotal forA.

The configuration «’ isillustrated in Figure 3.10.

It may be seenfromthedefinition of @ that, in (', 1'), thevertex zis (+)pivotal
for A. Since (o', ") has been obtained from (w, n) by changing only a bounded
number of variables w (h), n(x), there exists 82 such that

(3.22) Pp.s(eis (+)pivotal, eis open, Ke = o)
< 82(p, 5) Pps(zis (+)pivotal for A)
< 82(p,S)Ppslle = D).

Adding (3.20) and (3.22), and remembering that theevents {e is (+)pivotal for A}
and {eis open} are independent, we conclude that

(3.23) Pp.s(eis (+)pivotal for A) < 83(p, S) Pp,sTe > 1)

for some §3.

We now relax assumption (3.19)/ Suppose first that z € B(m) and that e is
(+)pivotal for A. Instead of workinginthe box Be = z+ B(m), we work instead
within the larger box B(2m + 1). If the quantity corresponding to Ke is finite,
then the above argument may be applied-directly. If it is infinite, then we alter
the configuration within B(2m + R +1) in such a way as to arrange for the
vertex (m+ 1, 050, . . ., 0) to become (+)pivotal for A. Thisleadsasbeforeto an
inequality ofthe form of (3.23) with.é3 replaced by some 64 and with I replaced
by the number of (+)pivotal verticesinside the box B(2m + R + 1).

A similar congtruction is valid if ||z| > n — m, although we note the added
complication that there may exist (+)pivotal vertices which lie outside B(n), but
necessarily,within distance R of B(n).

In conclusion; there exists 84 such that, for al e = (z, z+ u) € EY,

(3.24) Pp.s(eis(+)pivotd for A) < 54(p, s)Pps(M, > 1)
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where I is the number of pivotal verticeswithinz+ B(2m + R+ 1).
Summing (3.24) over al e € EY, we deduce via (3.17) that

n

06 06n 06
(3.25) W < 84(p, 9)d|B(2m + R+1)|¥_v(p,s)¥,

just asin the second inequality of Lemma (3.5). We now argue as in the proof of
(3.8)—(3.9). Let 5 be positive and small, and choose'y such that v(p,s) < y 1
on[n,1—7n)? andlettany =y~ 1. If (a, b) € [25, 1 — 21]? and

(3.26) @, b) = (a,b) + n(cosys, —siny),
then, asin (3.9),
(3.27) 6@, b) <6(,b).

Let0 < b < 1andletn (> 0) besufficiently small that
2n < b, pe@¥< 1— 2n.
We may find a such that
2n <a<pedd) <a <1-—2y
wherea’ isgivenin (3.26). By (3.27),
f(a,b) > 6@’ /)=0@@,0) >0,

whence pS™(F, b) < a as required. O

3.4 Bond and Site Critical Probabilities

For any connected graph G, it is the case that p2°™(G) < pS®(G), but when
does strict inequality hold here? The answer depends on the choice of graph.
For example, if G is atree, then it is easy to see that equality holds rather than
inequality. On the other hand, it is reasonable to expect strict inequality to be
valid for arangeof graphsincluding al finite-dimensional latticesin two or more
dimensions. We provethisinthe'special case of L9 withd > 2.
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Figure 3.11. A representation of the enhancement described, when d = 2. Each copy of
the configuration on the left is replaced, with probability s, by the configuration on the right.
Filled circles indicate open vertices, and hatched circles denote enhanced vertices.

(3.28) Theorem. Consider .Y with d > 2. We have that p2ond /pgite,

Proof. Wefollow Grimmett and Stacey (1998): The basic approach isto use the
enhancement technology expounded in the last section, but with some interesting
differences. We shall construct a site percolation procession L9, and shall define
an enhancement thereof which is dominated by bond percolation:

The sample space appropriatefor site percolationis & = {0, 1}Zd. Weinterpret
the vector £ € E as aredlization of site percolation on LY. At each vertex x,
we shall consider making an enhancement with probability s, and to this end
we provide ourselves with an ‘ enhancement realization’.s.€.E. As before, we
interpret the value n(x) = 1 as meaning that the enhancement at the vertex x is
activated. The pair (¢, ) takes valuesin the sample space E x &, and we endow

this space with the product probability measure Pp s = Py x Ps.

Letuq, Uy, ..., Ug denotethe unit vectorsof RY, that is, u1 = (1, 0,0, ..., 0),
us = (0,1,0,0,...,0),and soon. Givenavertexx € 7¢ we define digoint sets
of vertices closeto x asfollows:

Ax={XFuU, x+ui+u:1<i<j=d}
Bx = {X— ui, x —uj = U l=in<j < d}.

We say that avertex X isa qualifying vertex (for &) if £(x) = 0and &(y) = 1
foraly e Ax U Bx. For (§,1).€ E/x E, theenhanced configuration¢ = ¢ (&, n)
(e B) isdefined by: ¢(x) =1if and only if either

() Ex)y=1,0r

(i) x isaqudifyingvertex for &, and n(x) = 1.
We call avertex x openif &(x) =11, and enhanced if ¢ (x) = 1. SeeFigure 3.11
for a sketch'of the above enhancement in action.

We shall refer to ¢ (or the law it induces on E) as enhanced site percolation

with parameters p and s, and we write

6°™"(p, s) = Pp.s(0liesin an infinite enhanced path)

for the percolation probability.of/the enhanced configuration; cf. (3.14).
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(3.29) Lemma. Wehavethat 6™ (p, p?) < #PMd(p).

Theorem (3.28) follows easily from this lemma, as follows. We note that
Theorem (3.16) is not directly applicable in this setting, since it was concerned
with enhancementsof bond percolationrather than of site percolation. However, it
isstraightforward to adapt thetheoremto the current setting, and it may be seenthat
the enhancement described above is essential in the sense of site percolation; see
Paragraph E following the statement of Theorem (3.16)/Let s satisfy /S = 5 pSte.
It followsfrom the appropriate reworking of Theorem(3.16) that there exists 7 (s)
satisfying 7(s) < pg'® such that 6™ (p, s) > Ofor@l p > 7(s). Letp satisfy

max{7(s), vS} < p </pg*.

Since p2 > s, we have that 6™ (p, p?) > 6°M(p, s) > 0. Therefore, by Lemma
(3.29), 6"°9(p) > 0, whence pg® > p > p2nd gs required.

Proof of Lemma (3.29). We shall employ a coupling of bond:and site perco-
lation which is essentially that used for the second inequality of (1.34). ket X =
(Xe : € € EY) be arealization of bond percolationon LY. Let Z = (Zx i x € Z9)
be a collection of independent Bernoulli random variables, independent of the
Xe, having mean p aso. In thefirst stage.of.this proof, we construct from these
two families a new collection Y = A(Yx : x € Z%) of random variables, which
congtitutes a site percolation process with.density p. Thislast process will have
the property that, for x, y € Z9, if y cannet be reached from x in the bond process
X, then neither can y be reached from x in‘the site process Y; this will show that
gsite( p) < Qbond(p)_

Let e, e, ... bean enumeration of the edgesof Z9 and let x1, Xo, ... bean
enumeration of its vertices; we take x1'= 0, the origin. We wish to define the Yy
in terms of the Xe and the/Zy, and we shall do so by arecursion, described next.
Suppose at some stage that we have defined the set (Yx ¢ X € S), where Sisa
proper subset of Z9. (At the start we take S.=-@%)"For x € S, we say that x is
“currently open’ if Yy/= 1 and ‘currently closed" if Yy = 0. Let T be the set of
vertices not belonging to S which are adjacent to some currently open vertex. If
T = g, then let y be the first vertex (in the above enumeration) not lying in S,
andsetYy = Zy. If T # @, welet y bethefirst vertex in T, and welet y’ be the
first currently open vertex adjacent to it; we then set Yy = X,y vy, where as usual
(u, v) denotes the edge joining two neighbours u, v. Repeating this procedure
will eventually exhaust all Vertices x € 79, and assign values to all the variables
Y.

This algorithm begins at the origin.0, and builds up a (possibly infinite) open
cluster together with a neighbour set of closed vertices. When the cluster at O
is complete, another vertex is selected as a new starting point, and the process
is iterated.. Note that this recursion is transfinite, since infinitely many steps are
neededin order to build up any infinite cluster.

We now make two observations about the variables Yy. First, for each vertex
X, the probability that Yy =4, conditional on any information about the values
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of those Yy determined prior to the definition of Yy, is equal to p. Based upon
this observation one may prove without great difficulty that the random variables
(Yx : x € 2% areindependent with mean p, which isto say that they form asite
percolation process on Z4.

Secondly, if there exists a path of open vertices between two points, then there
exists a (possibly longer) path of open bonds. Therefore we have succeeded in
coupling abond and a site process with the required domination property.

We shall now adapt this construction in order to obtain a suitable coupling of
bond percolation with the enhanced site percolation process obtainedfrom the Y.
Here is the main idea. Suppose that X is a qualifying vertex for the realization
Y. ThenYx = 0,andYy = 1foraly e AU Bx. Note thatal the vertices
of Ay (respectively Bx) must lie in the same site percolation cluster C; = C1(X)
(respectively Co = Cy(x)). If C1 = Cp, then the.enhancing of x makes no
difference to the connectivity properties of the graph except/at x. If C; # Cp,
then enhancing x effectively joins C1 and C, together. Since Yy =10, it isthe case
that at most one edge eincident with x wasexamined (in the sensethat the val ue of
Xe Was considered) in the determination of the Y. Therefore, there existsat least
one unexamined edge joining x to Ay; let the first such edge in our enumeration
be e = e(x). Likewise, there exists;afirst.unexamined edge, f = f(x) say,
joining x and By. We adopt the following rule: we declare x to be enhanced if
and only if Xe = X5 = 1. This has the effect of adding x into the enhanced
configuration with probability p?. Actingthusfor all gualifying vertices x yields
an enhanced site percolation; the independence.of the enhancement at different
qualifying vertices follows from the fact that the sequence of al e(x) and f (x)
contains no repetitions. Furthermore, the above enhancement cannot join any
two vertices which are not already joined by an open path in the bond model:
enhancing x hasthe effect of connecting x.to the clusters Cy(x) and C»(x) and to
no others, and this enhancement of x occurs only in situations where x is already
joined to both of these clusters in the bond process X

It is fairly straightforward to present a formal description of the informal ac-
count above. In order to obtain the appropriate enhancement, we require afamily
(Hy : x € 79) of independent Bernoulli random variables, having parameter p?
and independent of the vector Y. We only require the Hy for qualifying vertices
X, and we may ssmply set Hy = Xep) Xfeo, Where e(x) and f (x) are given as
above.

We have now given acoupling.of bond percolation and an enhanced site perco-
lation with the property that any two vertices which are in the same cluster of the
enhanced site process are also in the same cluster of the bond process. It follows
that, if the origin liesin an infinite enhanced path, then the cluster containing the
origininthe bond processisinfiniteaso. Therequired inequality follows. O
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3.5 Notes

Section 3.1. We omit a detailed history of the results of this section;.of which
adiscussion may be found in Hughes (1996). Kesten (1980a, 1982) proved that
pc = % for bond percolation on1L2, and Wierman (1981) adapted his proof inorder
to calculate pc for the hexagonal and triangular | attices. Theserigorousarguments
confirmed the proposals of Sykes and Essam (1963,/1964), who discussed the
notion of amatching pair of graphs. Theexact calculation of pc(bow-ti€) appeared
in Wierman (19844).

Certain rigorous numerical inequalities have been proved for two-dimensional
percolation by Wierman (1990, 1995). The rigarous derivation of the series ex-
pansion (3.2) was presented by Hara and Slade (1995), in response to physica
arguments which appeared earlier in the physicsliterature.

Sections 3.2 and 3.3. The first systematic approach tostrict inequalities for
ordered pairs of lattices is due to Menshikov (19873, d, €), although there'existed
already some special results in the literature. The discussion and technelogy of
Sections 3.2 and 3.3 draws heavily on Aizenman and Grimmett (1991); see also
Grimmett (1997).

Theorem (3.16) may be adapted to enhancements of site percolation (see the
discussion following the statement of thetheorem). Theassumption that enhance-
ments take place at all vertices x may be relaxed; see Aizenman and Grimmett
(1991).

The problem of entanglements appeared first in Kantor and Hassold (1988),
who reported certain numericalsconclusions. The existence of an entanglement
transition different from that of percolation was proved by, Aizenman and Grim-
mett (1991); the strict positivity of the entanglement critical point was proved
by Holroyd (1998b). The entanglement transition_has-been studied more sys-
tematically by Holroyd (1998b) and Grimmett and Holroyd (1998). There are
topological difficultiesin deciding on the “correct’ definition of critical point, and
in proving that the critical point differsfrom zero. Certain related issues arise in
the study of so called “rigidity percolation’, in which one studies the existence of
infinite rigid components of the open subgraph of alattice; see Jacobsand Thorpe
(1995, 1996) and Holroyd (1998a). Further accounts of entanglement and rigidity
may be found in Sections12.5 and 12.6.

The ‘augmented percolation’ gquestion posed after Theorem (3.16) was dis-
cussed by Chayes, Chayes, and Newman (1988) in the context of invasion perco-
lation on the triangular lattice and on the covering lattice of the square lattice. It
was answered by Aizenman and Grimmett (1991).

Section 3:4. Theorem (3.28) istaken from Grimmett and Stacey (1998), where
a general theorem of this sort is presented. Earlier work on strict inequalities
between bond and sitecritical probabilities in two dimensions may be found in
Higuchi (1982), Kesten (1982),.and T6th (1985). Corresponding resultsfor Ising,
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Potts, and random-cluster models have been studied by Aizen
(1991), Bezuidenhout, Grimmett, and Kesten (1993), and b
19944, 19953, 1999c).




