SHARP THRESHOLDS FOR THE
RANDOM-CLUSTER AND ISING MODELS

BENJAMIN GRAHAM AND GEOFFREY GRIMMETT

ABSTRACT. A sharp-threshold theorem is proved for box-crossing proba-
bilities on the square lattice. The models in question are the random-cluster
model near the self-dual point psa(q) = 1/q/(1+ /q), the Ising model with
external field, and the coloured random-cluster model. The principal tech-
nique is an extension of the influence theorem for monotonic probability
measures applied to increasing events with no assumption of symmetry.

1. INTRODUCTION

The method of ‘sharp threshold’” has been fruitful in probabilistic combi-
natorics (see [20, 27] for recent reviews). It provides a fairly robust tool for
showing the existence of a sharp threshold for certain processes governed by
independent random variables. Its most compelling demonstration so far in
the field of physical systems has been the proof in [9] that the critical prob-
ability of site percolation on the Voronoi tessellation generated by a Poisson
process on R? equals %

Each of the applications alluded to above involves a product measure. It was
shown in [16] that the method may be extended to non-product probability
measures satisfying the FKG lattice condition. The target of this note is to
present two applications of such a sharp-threshold theorem to measures arising
in statistical physics, namely those of the random-cluster model and the Ising
model. In each case, the event in question is the existence of a crossing of a
large box, by an open path in the case of the random-cluster model, and by a
single-spin path in the case of the Ising model. A related but more tentative
and less complete result has been obtained in [16] in the first case, and the
second case has been studied already in [23, 24] and [7].

Our methods for the Ising model can be applied to a more general model
termed here the coloured random-cluster model (CRCM), see Section 8. This
model is related to the so-called fractional Potts model of [26], and the fuzzy
Potts model and the divide-and-colour model of [5, 13, 21, 22].
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The sharp-threshold theorem used here is an extension of that given for
product measure in [15, 37], and it makes use of the results of [16]. It is
stated, with an outline of the proof, in Section 5. The distinction of the
current sharp-threshold theorem is that it makes no assumption of symmetry
on either the event or measure in question. Instead, one needs to estimate the
maximum influence of the various components, and it turns out that this may
be done in a manner which is very idiomatic for the models in question. The
sharp-threshold theorem presented here may find further applications in the
study of dependent random variables.

2. THE MODELS

2.1. The random-cluster model. The random-cluster model on a con-
nected graph GG has two parameters: an edge-weight p and a cluster-weight q.
See Section 3 for a formal definition. When ¢ > 1 and G is infinite, there is
a critical value p.(q) that separates the subcritical phase of the model (when
p < pe(q) and there exist no infinite clusters) and the supercritical phase. It
has long been conjectured that, when G is the square lattice Z?2,

pela) = 1 fﬂ, q>1. (2.1)

This has been proved rigorously in three famous cases. When ¢ = 1, the
1

random-cluster model is bond percolation, and the exact calculation p.(1) = 5
was shown by Kesten [28]. When ¢ = 2, the model is intimately related to
the Ising model, and the calculation of p.(2) is equivalent to that of Onsager
and others concerning the Ising critical temperature (see [1, 3] for a modern
treatment of the Ising model). Formula (2.1) has been proved for sufficiently
large values of ¢ (currently ¢ > 21.61) in the context of the proof of first-order
phase transition, see [19, 29, 30, 31]. We recall that, when ¢ € {2,3,...}, the

critical temperature T, of the ¢-state Potts model on a graph G satisfies

pelq) =1 —e ™. (2.2)

A fairly full account of the random-cluster model, and its relation to the Potts
model, may be found in [19].

Conjecture (2.1) is widely accepted. Physicists have proceeded beyond a
‘mere’ calculation of the critical point, and have explored the behaviour of
the process at and near this value. For example, it is believed that there is a
continuous (second-order) phase transition if 1 < ¢ < 4, and a discontinuous
(first-order) transition when ¢ > 4, see [6]. Amongst recent progress, we
highlight the stochastic Lowner evolution process SLE;q/3 associated with the
cluster boundaries in the critical case when ¢ = 2 and p = v/2/(1 + v/2), see
(36, 35].
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The expression in (2.1) arises as follows through the use of planar duality.
When the underlying graph G is planar, it possesses a (Whitney) dual graph
(4. The random-cluster model on G with parameters p, ¢ may be related to
a dual random-cluster model on G4 with parameters pq, ¢, where

1—
pa_ _4a(l=p) (2.3)
1 —pa P
The mapping p — pq has a fixed point p = pyq(q), where
YL
I+ /4q

is termed the self-dual point. The value p = psq(q) is especially interesting
when G and G4 are isomorphic, as in the case of the square lattice Z2. See
[19, Chap. 6]. We note for future use that

Psa(q) :

p < psalq) if and only if pq > psa(q). (2.4)
Henceforth, we take G = Z2. The inequality
pe(q) > psala),  q=>1, (2.5)

was proved in [17, 38] using Zhang’s argument (see [18, p. 289]). Two further
steps would be enough to imply the complementary inequality p.(q) < psa(q):
firstly, that the probability of crossing a box [—m, m]? approaches 1 as m — oo,
when p > pq(q); and secondly, that this implies the existence of an infinite
cluster. The first of these two claims is proved in Theorem 3.4.

Kesten’s proof for percolation, [28], may be viewed as a proof of the first
claim in the special case ¢ = 1. The second claim follows for percolation by
RSW-type arguments, see [32, 33, 34] and [18, Sect. 11.7]. Heavy use is made
in these works of the fact that the percolation measure is a product measure,
and this is where the difficulty lies for the random-cluster measure.

We prove our main theorem (Theorem 3.4 below) by the method of influence
and sharp threshold developed for product measures in [15, 25|. This was
adapted in [16] to monotonic measures applied to increasing events, subject
to a certain hypothesis of symmetry. We show in Section 5 how this hypothesis
may be removed, and we apply the subsequent inequality in Section 6 to the
probability of a box-crossing, thereby extending to general ¢ the corresponding
argument of [10].

2.2. Ising model. We shall consider the Ising model on the square lattice Z>
with edge-interaction parameter § and external field h. See Section 4 for the
relevant definitions. Write (3. for the critical value of # when h = 0, so that

1—e 2P = Psa(2)

where pyq(2) is given as in (2.1). Two notions of connectivity are required: the
usual connectivity relation « on Z? viewed as a graph, and the relation «,,
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termed x-connectivity, and obtained by adding diagonals to each unit face of
Z2. Let w3, denote the Ising measure on Z? with parameters 3, h.

Higuchi proved in [23, 24] that, when € (0, (.), there exists a critical value
he = he(B) of the external field such that:

(a) he(B) > 0,

(b) when h > h,, there exists mgp-almost-surely an infinite + cluster of
72, and the radius of the x-connected — cluster at the origin has ex-
ponential tail,

(c) when 0 < h < h,, there exists g 5-almost-surely an infinite *-connected
— cluster of Z?, and the radius of the + cluster at the origin has ex-
ponential tail.

A further approach to Higuchi’s theorem has been given recently by van den
Berg [7]. A key technique of the last paper is a sharp-threshold theorem of
Talagrand [37] for product measures. The Ising measure 7, 55 on a box A is
of course not a product measure, and so it was necessary to encode it in terms
of a family of independent random variables. We show here that the influence
theorem of [16] may be extended and applied directly to the Ising model to
obtain the necessary sharp threshold result. (The paper [7] contains results
for certain other models encodable in terms of product measures, and these
appear to be beyond the scope of the current method.)

2.3. Coloured random-cluster model. The Ising model with external field
is a special case of a class of systems that have been studied by a number of
authors, and which we term coloured random-cluster models (CRCM). Sharp-
threshold results may be obtained for such systems also. Readers are referred
to Section 8 for an account of the CRCM and the associated results.

3. BOX-CROSSINGS IN THE RANDOM-CLUSTER MODEL

The random-cluster measure is given as follows on a finite graph G = (V, E).
The configuration space is Q2 = {0,1}¥. For w € Q, we write n(w) = {e € E :
w(e) = 1} for the set of ‘open’ edges, and k(w) for the number of connected
components in the open graph (V,n(w)). Let p € [0,1], ¢ € (0,00), and let
¢p,q be the probability measure on €2 given by

1
bpa(w) = - {Hp‘”(e’(l - p)“’(e’}q’“(“”, w e Q, (3.1)

eck

where Z = Zg ), is the normalizing constant. We shall assume throughout
this paper that ¢ > 1, so that ¢, , satisfies the so-called FKG lattice condition

p(wr Vws)p(wy Aws) > p(wy)p(ws), w1, ws € Q. (3.2)
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Here, as usual,
w1 V wg(e) = maX{wl(e)a W2(e)}>
w1 A wa(e) = min{w; (e),ws(e)},

for e € E. As a consequence of (3.2), ¢, , satisfies the FKG inequality. See
[19] for the basic properties of the random-cluster model.

Consider the square lattice Z? with edge-set E, and let Q = {0,1}F. Let
A = A, = [-n,n)? be a finite box of Z?, with edge-set E5. For b € {0,1}
define

N ={weQ:wle)=bforeg¢Ey}.
On Q} we define a random-cluster measure ¢} as follows. For p € [0, 1] and
q € [1,00), let

1
b
¢A,p,q (W) - Zb

A,p,q

{ [1»0 —p>1—w<e>}qkw, weh,  (33)

e€Ep

where k(w,A) is the number of clusters of (Z? n(w)) that intersect A. The
boundary condition b = 0 (respectively, b = 1) is usually termed ‘free’ (re-
spectively, ‘wired’). Tt is standard that the weak limits
b1 b

Pg nh_{go ¢An,p,q
exist, and that they are translation-invariant, ergodic, and satisfy the FKG
inequality. See [19, Chap. 4].

For A, B C 72, we write A « B if there exists an open path joining some
a € Atosome b€ B. We write x «+ oo if the vertex x is the endpoint of some
infinite open path. The percolation probabilities are given as

6°(p,q) = g,q(O — 00), b=0,1.
Since each 6° is non-decreasing in p, one may define the critical point by

pe(q) = sup{p : 6*(p, q) = 0}.
It is known that ¢) , = ¢, . if p # pwa(q), and we write ¢, , for the common
value. In particular, 0°(p,q) = 0'(p, q) for p # p.(q). It is conjectured that
g = Opg When p =p.(q) and ¢ < 4.
Let By = [0,k] x [0,k — 1], and let Hj, be the event that Bj possesses an
open left-right crossing. That is, Hj is the event that Bj contains an open
path having one endvertex on its left side and one on its right side.

Theorem 3.4. Let ¢ > 1. We have that

Gp.g(Hi) < 20077, 0 < p < psalq), (3.5)
Gpg(Hp) > 1 =200 palg) <p <1, (3.6)
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for k > 1, where

pr = 2qme/Pl%, v = [2qme/pal?, (3.7)
and
M = Gpa(qq(0 < OAj2) = 0 ask — oo, (3.8)

Here, c is an absolute positive constant, and pq satisfies (2.3).

When £ is odd, we interpret Oy in (3.8) as OA|x/2).

In essence, the probability of a square-crossing has a sharp threshold around
the self-dual ‘pivot’ psq(q). Related results were proved in [16], but with three
relative weaknesses, namely: only non-square rectangles could be handled, the
‘pivot’ of the threshold theorems was unidentified, and there was no result for
infinite-volume measures. The above strengthening is obtained by using the
threshold Theorem 5.3 which makes no assumption of symmetry on the event
or measure in question. The corresponding threshold theorem for product
measure leads to a simplification of the arguments of [10] for percolation, see
20, Sect. 5.8].

Since gf)?\n,p,q <st Op.g st (/ﬁ}\mp,q and Hj is an increasing event, Theorem 3.4
implies certain inequalities for finite-volume probabilities also.

No estimate for the rate at which n; — 0 is implicit in the arguments of
this paper, and indeed one of the targets of the current work is to show that
no estimate is necessary for sharp threshold. It is expected that n, — 0 at a
rate that depends on whether or not the phase transition is continuous: one
expects that 7, decays as a power when 1 < ¢ < 4, and as an exponential
when ¢ > 4 (see [19, Sect. 6.4]). This would imply a threshold of order either
1/logk or 1/k in (3.5)—(3.6). That the radius R of the open cluster at the
origin is qbgsd(q)’ &S finite is a consequence of the (a.s.) uniqueness of the
infinite open cluster whenever it exists. See [19, Thm 6.17(a)] for a proof of
the relevant fact that

0 (pa(a),a) =0,  ¢>1. (3.9)

We shall prove a slightly more general result than Theorem 3.4. Let By, ,,, =
0, k] x [0,m] and let Hy,, be the event that there exists an open left-right
crossing of By, .

Theorem 3.10. Let ¢ > 1. We have that
Oprg(Him)[1 = Opog(Hem))] < 077, 0<p1r<p2<pwalq), (3.11)
Dprg(Hiem)[1 — Bpa g (Him))] < Vﬁf;fl> psa(q) <p1 <p2 <1, (3.12)
for k,m > 1, where py, (respectively, vy ) is given in (3.7) with p = py (respec-

tively, p = p2), and ¢p_,(q),q 5 o be interpreted as ¢2sd(q)7q.
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4. BOX-CROSSINGS IN THE ISING MODEL

Let A be a box of Z?. The spin-space of the Ising model on A is ¥, =
{—1,+1}*, and the Hamiltonian is

Hy(o)=—-p Z Uxay—hZax,

e=(z,y)€EA xEA

where 3 > 0, h > 0. The relevant Ising measure is given by

Taph(0) X e Ha(o), o€ Xy,

and it is standard that the (weak) limit measure g, = limy 72 mp 5, exists.
We shall also need the 4+ boundary-condition measure WEO given as the weak
limit of 7 g conditional on o, = +1 for x € JA. (Here, A denotes as usual
the boundary of A, i.e., the set of x € A possessing a neighbour not belonging
to A). By the FKG inequality or otherwise, 74 (c0) > 0, and the critical
value of # when h = 0 is given by

Be = sup{f : mj(00) = 0}.

As remarked in Section 2, 1 —e~2% = p,(2). It is well known that there exists
a unique infinite-volume measure for the Ising model on Z? if either h # 0 or
B < (., and thus ms,, is this measure. By Holley’s Theorem, (see [19, Sect.
2.1], for example), 7g, is stochastically increasing in h.
Let
0% (8,h) = m5(0 & 00), 67 (B,h) = 75,40 <. 00),

where the relation <> (respectively, <,) means that there exists a path of
72 each of whose vertices has state +1 (respectively, a *-connected path of
vertices with state —1). The next theorem states the absence of coexistence
of such infinite components, and its proof (given in Section 7) is a simple
application of the Zhang argument for percolation (see [18, Sect. 11.3]).

Theorem 4.1. We have that
07 (8,00 (8,h) =0, 320, h=0.
There exists h. = h.(5) € [0,00) such that

«9+(ﬂ,h) 0 %fO_h<hC,
>0 if h> he.

Recall from [23, 24] that h.(5) > 0 if and only if 8 < (.. It is proved in [24]
that

0=(8. he(8)) = 0, (4.2)
but we shall not make use of this fact in the proofs of this paper. Indeed, one
of the main purposes of this article is to show how certain sharp-thresholds for
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box-crossings may be obtained using a minimum of background information
on the model in question.

Let Hy,, be the event that there exists a left-right + crossing of the box
Bim = [0, k] x [0,m]. Let 27 = max{z, 0}.

Theorem 4.3. Let 0 < 3 < . and R > 0. There exist p;+ = p;+(3) and
pi— = pi—(3, R) satisfying

pi+pi— — 0 as i — 0o, (4.4)
such that: for 0 < hy < h. < hy < R,
T (Hem) L = Topy (Hem)] < phe™ o2, kom>1. (4.5)
The proof of this theorem shows also that
T (Him)[1 = 7oy (Him)) < 027", ha < hg < he,
T (Him)[1 = T 0o (Him)] < 27", he < hy < ha.

As in Theorem 3.4, the proof neither uses nor implies any estimate on the
rate at which p; + — 0. The p; 1+ are related to the tails of the radii of the 4
cluster and the — x-cluster at the origin. More explicitly,

piy = [201+ ). (0 S 9, 5)] 7, (4.6)
pi = [201 4 7Py, (0 S, M), (4.7)

where

BT =2c€sy., B-=2csnp,
and &g, is given in the forthcoming (7.4). Equation (4.4) holds by Theorem
4.1 with h = h(B). It is in fact a consequence of (4.2) that p;; — 0 as
i — 00.

5. INFLUENCE, AND SHARP THRESHOLD

Let S be a finite set. Let y be a measure on 2 = {0, 1}* satisfying the FKG
lattice condition (3.2), and assume that u is positive in that p(w) > 0 for all
w € Q. It is standard that, for a positive measure u, (3.2) is equivalent
to the condition that p be monotone, which is to say that the one-point
conditional measure p(o, = 1 | o, = n, for y # z) is non-decreasing in 7.
Furthermore, (3.2) implies that p is positively associated, in that increasing
events are positively correlated. See, for example, [19, Chap. 2].

For p € (0,1), let u, be given by

) = A0 -0, wea G
P Vses

where Z), is chosen in such a way that i, is a probability measure. It is easy
to check that each p, satisfies the FKG lattice condition.
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Let A be an increasing event, and write 14 for its indicator function. We
define the (conditional) influence of the element s € S on the event A by

']A,p(s) = ,Up(A |1,=1) - ,Up(A | 1, =0), s €S, (5.2)

where 1, is the indicator function that w(s) = 1. Note that J4,(s) depends
on the choice of p. The conditional influence is not generally equal to the
(absolute) influence of [25],

Tap(s) = pp(la(w®) # La(ws)),

where the configuration w® (respectively, wy) is that obtained from w by setting
w(s) =1 (respectively, w(s) = 0).
Theorem 5.3. There exists a constant ¢ > 0 such that the following holds.
For any such S, u, and any increasing event A # &, ),

d cp

—pp(A) > ———— 1, (A)(1 — pp(A)) log|1/(2ma )], 5.4

) 2 P ()1 () g/ @may)). (6)
where m, = maxses Jap(s) and & = mingeg [, (1) (1 — ,(15))].
Corollary 5.5. In the notation of Theorem 5.3,

fpr (A)[1 = gy, (A)] < "’iB(prl% 0<pr<p2 <1,

where

B = inf {p(lcf_pp)}, k=2 sup Jau(s).

PE(p1,p2) PE(P1,02);
seSs

The corresponding inequality for product measures may be found in [37,
Cor. 1.2]. Throughout this note, the letter ¢ shall refer only to the constant
of Theorem 5.3.

Proof of Theorem 5.3. 1t is proved in [8, 16] that
d
dp

—tip(A) pip(1s)) Jap(5)- (5.6)

seS

Let K = [0,1]° be the ‘continuous’ cube, endowed with Lebesgue measure
A, and let B be an increasing subset of K. The influence /5(s) of an element
s is given in [11] as

Ip(s) = AM1p(¥®) # 1p(¥s))

where 1° (respectively, 1) is the member of K obtained from ¢ € K by
setting 1(s) = 1 (respectively, ©(s) = 0). The conclusion of [11] may be
expressed as follows. There exists a constant ¢ > 0, independent of all other
quantities, such that: for any increasing event B C K,

Y Ip(s) = eA(B)(1 = A(B)) log[1/(2mp)] (5.7)

seS
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where mp = maxes Ip(s). The main result of [11] is a lower bound on mp
that is easily seen to follow from (5.7).

Equation (5.7) does not in fact appear explicitly in [11], but it may be
derived from the arguments presented there, very much as observed in the
case of the discrete cube from the arguments of [25]. See [15, Thm 3.4]. The
factor of 2 on the right side of (5.7) is of little material consequence, since the
inequality is important only when mpg is small, and, when mpg < % say, the
2 may be removed with an amended value of the constant c. The literature
on influence and sharp-threshold can seem a little disordered, and a coherent
account may be found in [20]. The method used there introduces the factor 2
in a natural way, and for this reason we have included it in the above.

It is shown in [16] (see the proof of Theorem 2.10) that there exists an
increasing subset B of K such that p,(A) = A(B), and J4,(s) > Ip(s) for all
s € S. Inequality (5.4) follows by (5.6)—(5.7). O

Proof of Corollary 5.5. By (5.4),

1 1
+ 1 (A) > Blog(k™'),  p1<p<po,
(ot Ty ) 2 Bl < v

whence, on integrating over (py, ps),
Hps (A) / :U;m(A) > .~ Bp2—p1)
1- Hopo (A) 1—- Hpy (A) B
The claim follows. 0

6. PROOFS OF THEOREMS 3.4 AND 3.10

Note first that a random-cluster measure has the form of (5.1) with S = E
and p(w) = ¢"“)and it is known and easily checked that u satisfies the FKG
lattice condition when ¢ > 1 (see [19, Sect. 3.2], for example). We shall apply
Theorem 5.3 to a random-cluster ¢, , measure with ¢ > 1. It is standard (see
[19, Thm 4.17(b)]) that

p
———— < ¢pq(le) <, 6.1
) < el (61
whence

¢P,q(1e)[1 - ¢P,q(1e)] > =
We may thus take

(6.2)

in Corollary 5.5.
Let ¢ > 1,1 < k,m < n, and consider the random-cluster measures gzﬁf%p =
P, pqon the box A, For e € E?, write J7,  (e) for the (conditional) influence
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of e on the event Hy,, under the measure ¢!, . We set Jp  (e) = 0 for
€ §é EAn'
Lemma 6.3. Let ¢ > 1. We have that
sup Jp . . (e) < gnk, 0<p<pulg, 1<km<n, (6.4)
ecE2 p
q
sup J];m,n(e) S —TNlm+1, psd((l) S p < 17 1 S ka m < n, (65)
eck? Pa

where pq satisfies (2.3) and
Mk = ¢2sd(q),q(0 = aAk/Q) — 0 as k — oo.

Proof. For any configuration w € € and vertex z, let C,(w) be the open cluster
at z, that is, the set of all vertices joined to z by open paths.

Suppose first that 0 < p < py(q), and let e = (x,y) be an edge of A,,.
We couple the two conditional measures ¢9hp(- | w(e) =b), b = 0,1, in the
following manner. Let €2, be the configuration space of the edges in A,,, and
let T = {(m,w) € 22 : 7 < w} be the set of all ordered pairs of configurations.
There exists a measure p® on 7" such that:

(a) the first marginal of p° is ¢f) (- | 1. = 0),

(b) the second marginal of p®is ¢ (- | 1. = 1),

(c) for any subset 7 of A, conditional on the event {(m,w) : Cy(w) = 7},
the configurations 7 and w are p-almost-surely equal on all edges
having no endvertex in .

The details of this coupling are omitted. The idea is to build the paired
configuration (7,w) edge by edge, beginning at the edge e, in such a way that
7(f) < w(f) for each edge f examined. The (closed) edge-boundary of the
cluster C(w) is closed in 7 also. Once this boundary has been uncovered, the
configurations 7, w on the rest of space are governed by the same (conditional)
measure, and may be taken equal. Such an argument has been used in [2] and
[19, Thm 5.33(a)], and has been carried further in [4].
We claim that

‘]Ig,m,n(e) < ¢2,p(DI ‘ I = 1), (66)
where D, is the event that C) intersects both the left and right sides of By, ,.
This is proved as follows. By (5.2),

Timn(€) = 1 (w € Hypm, T & Hym)
< :U’e(w S Hk,m N Dx)
< p(w e Dy) =) (Dy | 1e = 1),
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since, when w ¢ D,, either both or neither of w, 7 belong to Hy,,. By (6.6),

np(Dx)
Timale) < —5F
ap(le)

On D,, the radius of the open cluster at z is at least %k Since gf)%p <st Dpyg
and ¢, 4 is translation-invariant,

np(Dz) < pg(r = @+ 0Aij2) = 6pg(0 & Oy2).

n?p

(6.7)

By (3.9),
Gp,g(0 > OAyj2) < ¢gsd(q),q(0 — 0Ayj2) — 0 as k — 00,

and, by (6.1) and (6.7), the conclusion of the lemma is proved when p < pg(q).

Suppose next that ps(q) < p < 1. Instead of working with the open paths,
we work with the dual open paths. Each edge eq = (u,v) of the dual lattice
traverses some edge e = (z,y) of the primal, and, for each configuration w,
we define the dual configuration wq by wq(eq) = 1 — w(e). Thus, the dual
edge eq is open if and only if e is closed. It is well known (see [19, eqn
(6.12)], for example) that, with w distributed according to ¢, ,, wq has as
law the random-cluster measure, denoted ¢, ,, 4, on the dual of A,, with free
boundary condition. The event Hj,, occurs if and only if there is no dual
open path traversing the dual of By, from top to bottom. We may therefore

apply the above argument to the dual process, obtaining thus that
Tmale) < SramaVe)
Y d)nvpdvd(]'e)

where V,, is the event that C, intersects both the top and bottom sides of the
dual of By ..

On the event V,,, the radius of the open cluster at u is at least %(m +1).
Since énpgd st Ppa,a>

Orpad(Vi) < dpyq(u < u+ aA(m+1)/2) = Ppag(0 < aA(m+1)/2)‘
As above, by (2.4),

(6.8)

Dpasa(0 = ONms1y/2) < D) (0.0(0 = ONGni1yj2) = N,
and this completes the proof when p > pq(q). O

Proof of Theorem 3.10. This follows immediately from Corollary 5.5 by (6.2)
and Lemma 6.3. O

Proof of Theorem 3.4. By planar duality,
o (He) =1 =0, (Hy),

Pa,q
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where p, pq are related by (2.3), see [19, Thms 6.13, 6.14]. Since ¢°
1
¢psd(q) q

Psa(2),q Sst

¢p<d(q) (Hy) S < p a(9),q (Hy),
and Theorem 3.4 follows from Theorem 3.10. O

7. PROOF OF THEOREMS 4.1 AND 4.3

Only an outline of the proof of Theorem 4.1 is included here, since it fol-
lows the ‘usual’ route (see [18, Sect. 11.3] or [19, Sect. 6.2], for examples of
the argument). The measure 7, is automorphism-invariant, ergodic, and
has the finite-energy property. By the main result of [12], the number N
(respectively, N7) of infinite + clusters (respectively, infinite — *-connected
clusters) satisfies

either mg,(NT=0)=1 or mgu(NF=1)=1

Assume that 0% (5, h)0~ (5, h) > 0, which is to say that 75,(NT =N— =1) =
1. One may find a box A sufficiently large that, with s -probability at least
%: the top and bottom of its boundary dA are + connected to infinity off A,
and the left and right sides are — *-connected to infinity off A. Since Nt =1
almost surely, there is a + path connecting the two infinite 4+ paths above,
and this contradicts the fact that N~ = 1 almost surely.

We turn to the proof of Theorem 4.3. For the moment, let 73, be the Ising
measure on a finite graph G = (V, E') with parameters 5 > 0 and h > 0. Tt is
well known than 73 satisfies the FKG lattice condition (3.2) on the partially
ordered set Xy = {—1,+1}V. We identify Xy with {0,1}" via the mapping
Oy = Wy = %(Ul, + 1), and we choose p by

P 2h
— =" 7.1
o= (7.1)
Then 73, may be expressed in the form (5.1), and we may thus apply the
results of Section 5. By conditioning on the states of the neighbours of x,

o2h—A8 o2h+A8

where A is the degree of the vertex x, and 1, is the indicator function that
= +1. Therefore,
o2h o2h
Tan(Le)[L = mgn(1z)] > min { (eAF  2h—A8)2" (¢=A8 4 (2htAR)2 }
o2h+208

T (1 + e2nt288)2

(7.3)
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This bound will be useful with A = 4, and we write

62h+8ﬁ

Ean = (1 c2hisny (7.4)

Note that £z is decreasing in h.

We follow the argument of the proof of Theorem 5.3. Let 5 € [0, 5.), h > 0,
and 1 < k,m < r < mn, and consider the Ising measure 7, ) = s, g, on the
box A, = [-n,n]®. For x € Z?, write Jy () for the (conditional) influence
of  on the event Hj,, under the measure m,;,. We set Ji ,n.(x) = 0 for
x & A,

Lemma 7.5. Uniformly in x € 72,
Jemn(®) < (14372 |70 1 (Biom & OA,) + sup m, p(x &t 8Ak/g)} ,
L TEA,
(7.6)

Jemn(z) < (1+ B2y Tnh(Brm <« ON,) + sup mpp(x <,z + 3Am/g)} )
L zEA,
(7.7)

Proof. Let h > 0. Let C; be the set of all vertices joined to z by a path
of vertices all of whose states are +1 (thus, C) = @ if 0, = —1). We may
couple the conditioned measures , (- | 0, = b), b = £1, such that the Ising
equivalents of (a)—(c) hold as in Section 6. As in (6.7),

0 (Dy)
’/Tn,h(lx) ’
where D is the event that C intersects both the left and right sides of By ,.

On D, the radius of C; is at least $k.
For z ¢ A,,

Jemn(x) < (7.8)

T (DF) < T (Bim & oA,).
For x € A,, we shall use the bound

T (Dy) < T &t OAg/2).

Combining the above inequalities with (7.2), we obtain (7.6).

Let C' be the set of all vertices joined to = by a *-connected path of vertices
all of whose states are —1. The event Hj, ,, occurs if and only if there is no — *-
connected path from the top to the bottom of By, ,,,. Therefore, the conditional
influence of x on Hy,, equals that of x on this new event. As in (7.8),

Wn,h(vg;)
7Tn,h(1 — 1$) ’

where V~ is the event that C intersects both the top and bottom of By .
The above argument leads now to (7.7). O
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Proof of Theorem 4.3. Let R > h, and 0 > 0, and let k,m <r < n. We set

/ﬁiM =2(1+ 68ﬁ) |:7Tn’hC5(Bk7m & OA,) + su/{) T he—s(T LN 0Ak/2)} ,
xe '

Iiim_ = 2(1 + 892 {anhch(g(Bk’m —, ON,) + sup m, pots( 4 & + 3Am/g)} .
TEA,
Let 0 < hy < he < hyg < R, and choose 6 < min{h, — hy, hy — h.}. By (7.1),
(7.3), Lemma 7.5, and Theorem 5.3, f,(h) = 7, 1(Hy.m) satisfies

1 df,, 5
-—=— > By log(1/ky . o), hi <h<h,—9, 7.10
Tl o) an = el ) .
where By = 2c¢€g ., see (7.4). The corresponding inequality for h.+0 < h < R
holds with « .  replaced by s, _, and By replaced by B_ = 2¢{g g.
We integrate (7.10) over the intervals (hy, he — 0) and (he + 0, hy), add the
results, and use the fact that f,(h) is non-decreasing in h, to obtain that

W(h) "

tog 2" > (h,— 5~ 1) B, log(1/,, )+ (hy—he—8) B log(1/x3, _).
L— fu(h) |, " "

Take the limits as n — oo, r — 00, and § — 0 in that order, and use the

monotonicity in h of 7g, to obtain the theorem. O

8. THE COLOURED RANDOM-CLUSTER MODEL

There is a well known coupling of the random-cluster and Potts models that
provides a transparent explanation of how the analysis of the former aids that
of the latter. Formulated as in [14] (see also the historical account of [19]),
this is as follows. Let p € (0,1) and ¢ € {2,3,...}. Let w be sampled from
the random-cluster measure ¢, , on the finite graph G = (V, E'). To each open
cluster of w we assign a uniformly chosen element of {1,2, ..., ¢}, these random
spins being independent between clusters. The ensuing spin-configuration o
on (G is governed by a Potts measure, and pair-spin correlations in o are
coupled to open connections in w. This coupling has inspired a construction
that we describe next.

Let p € (0,1), ¢ € (0,00), and a € (0,1). Let w have law ¢, ,. To the
vertices of each open cluster of w we assign a random spin chosen according to
the Bernoulli measure on {0, 1} with parameter a. These spins are constant
within clusters, and independent between clusters. We call this the coloured
random-cluster model (CRCM). With o the ensuing spin-configuration, we
write K, 4o for the measure governing the pair (w, o), and m,,, for the mar-
ginal law of 0. When ¢ € {2,3,...} and ga and ¢(1 — «) are integers, the
CRCM is a vertex-wise contraction of the Potts model from the spin-space
{1,2,...,q¢}V to & = {0,1}".
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The CRCM has been studied in [26] under the name ‘fractional fuzzy Potts
model’, and it is inspired in part by the earlier work of [13, 21, 22], as well as
the study of the so-called ‘divide-and-colour model’ of [5].

The following seems to be known, see [13, 21, 22, 26|, but the short proof
given below may be of value.

Theorem 8.1. The measure 7, 4 s monotone for all finite graphs G and all
p € (0,1) if and only if qor, q(1 — ) > 1.

We identify the spin-vector o € ¥ with the set A ={v €V : 0, =1}. Let
Th = Tpq.a,h D€ the probability measure obtained from 7, ,, by including an
external field with strength h € R,

mh(A) o e, o (A), ACV. (8.2)

It is an elementary consequence of Theorem 8.1 and (8.2) that, when gav, ¢(1—
a) > 1, m, is a monotone measure, and 7, is increasing in . When ¢ = 2 and
o= %, 7, is the Ising measure with external field. The purpose of this section
is to extend the arguments of Section 4 to the CRCM with external field.

There is a special case of the CRCM with an interesting interpretation. Let
w be sampled from ¢, , as above, and let ¢ = (0, : v € V) be a vector of
independent Bernoulli () variables. Let B be the event that o is constant
on each open cluster of w. The pair (w, o), conditional on B, is termed the
massively coloured random-cluster measure (MCRCM). The law of ¢ is simply
Tp.2q,4,n Where h = log[y/(1 — )]

Just as 7,4, and ¢, , may be coupled via k44, SO We can couple m, with
an ‘edge-measure’ ¢ = ¢p 444 via the following process. With B given as
above, and (w,0) € B, denote by o(C') the common spin-value of ¢ on an
open cluster C of w. Let K, = Kp 40, be the probability measure on €2 x ¥
given by

(,0) o (@) 16(w, 0) [[ (@1 —a) @], (8.3)

where the product is over the open clusters C' of w, and |C| is the number
of vertices of C. The marginal and conditional measures of k; are easily
calculated. The marginal on X is 7, and the marginal on Q is ¢, = ¢pg.an
given by

On(w) o< ¢pq(w) l_I[Oceh‘C| +1—a, w € . (8.4)

c
Note that ¢y = ¢, ,. Given w, we obtain o by labelling the open clusters with
independent Bernoulli spins in such a way that the odds of cluster C receiving
spin 1 are ae’l to 1 — a.
By (8.2), or alternatively by summing rj,(w, o) over w, we find that

m(A) oc (1 = )2 Z0 0o Za 00, AV, (8.5)
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where AA is the set of edges of G with exactly one endvertex in A, and Zp , is
the partition function of the random-cluster measure on the subgraph induced
by B C V with edge-parameter p and cluster-weight ¢. It may be checked
as in the proof of Theorem 8.1 that, for given p, ¢, «, the measure m, is
bounded above (respectively, below) by a product measure with parameter
a(h) (respectively, b(h)) where

a(—h) — 0, b(h) —1, as h — oc. (8.6)
The measure ¢, has a number of useful properties, following.

Proposition 8.7. Let ga, q(1 — o) > 1.

1 € prooaoity measure @p 1S Monolone.

i) The probabilit bn i ¢

11 € marginat measure of Ky 0onN , conaittonat on o, = 0, SaliSJles
i) Th nal f Q, conditional b, satisfi

Hh("0-$:1)25t/€h("0$:0)7 hZO,
kn(- | 0w =1) <w kn(- |02 =0), h<O0.

(iii) If p1 < po and the ordered three-item sequence (0, hy, ho) is monotonic,

then ép,gam Sst Ppg.ais-
(iv) We have that ¢pgan <st Opg, where Q = Q(h) is defined by

qo, h >0,
Q(h’) =349 h = 07
q(1—a), h<O.

We assume henceforth that qa,q(1 — «) > 1, and we consider next the
infinite-volume limits of the above measures. Let GG be a subgraph of the
square lattice Z? induced by the vertex-set V, and label the above measures
with the subscript V. By standard arguments (see [19, Chap. 4]), the limit
measure

= lim
Pn BiAE Pv,h

exists, is independent of the choice of the V| and is translation-invariant and
ergodic. By an argument similar to that of [19, Thm 4.91], the measures my,
have a well-defined infinite-volume limit 7, as V' 1 Z2. Furthermore, the pair
(¢n, m) may be coupled in the same manner as on a finite graph. That is, a
finite cluster C of w receives spin 1 with probability ael/[aeM®l+1—a]. An
infinite cluster receives spin 1 (respectively, 0) if h > 0 (respectively, h < 0).
When h = 0, the spin of an infinite cluster has the Bernoulli distribution with
parameter .

Since ¢, is translation-invariant, so is m,. As in [19, Thm 4.10], 7, is
positively associated, and the proof of [19, Thm 4.91] may be adapted to
obtain that 7, is ergodic. By a simple calculation, the 7y, have the finite-
energy property, with bounds that are uniform in V' (see [19, eqn (3.4)]), and
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therefore so does m,. Adapting the notation used in Section 4 for the Ising
model, let

0'(p, ¢, v, h) = m,(0 < 00),
0°(p, q, a, h) = 7, (0 &, 00).
As in Theorem 4.1, and with an essentially identical proof,
0'(p,q,,h)0°(p, g, o, h) = 0. (8.8)

By the remark after (8.2) and [19, Thm 4.10], 7, is stochastically increasing
in h, whence there exists h. = h.(p, ¢, ) € RU {%o00} such that

p— .f
el(p,q,a,h){ 0 ifh < he,

>0 if h > he.

By comparisons with product measures (see the remark prior to (8.6)), we
have that |h.| < co.

We call a probability measure p on 3 subcritical (respectively, supercritical)
if the p-probability of an infinite 1-cluster is 0 (respectively, strictly greater
than 0); we shall use the corresponding terminology for measures on 2. There
is a second type of phase transition, namely the onset of percolation in the
measure ¢. An infinite edge-cluster under ¢, forms part of an infinite vertex-
cluster under 7,,. Let p.(q) be the critical point of the random-cluster measure
bpq On Z?, as usual. By Proposition 8.7(iv), ¢y, is subcritical for all A when
p < pe(¢min{a, 1 — a}); in particular, for such p, ¢y, is subcritical for A lying
in some open neighbourhood of h.. On the other hand, suppose that ¢y = ¢, ,
is supercritical. By the remarks above, ' > 0 for h > 0, and #° > 0 for h < 0.
By (8.8), #' is discontinuous at h = h, = 0. By Proposition 8.7(iii), ¢5 > ¢o,
whence 0! is discontinuous at h = h. = 0 whenever p > p.(q).

With £, m € N, let Hj,, be the event that there exists a left-right 1-crossing
of the box By . A result corresponding to Theorem 4.3 holds, subject to a
condition on ¢, with h near h.. This condition has not, to our knowledge,
been verified for the Ising model, although it is expected to hold. In this sense,
the next theorem does not quite generalize Theorem 4.3.

Theorem 8.9. Let R > 0. When h, # 0 we require in addition that R < |he|.
Suppose that ¢y, is subcritical for h € [he — R, h. + R]. There exist p;1 =
pii(p, g, 0, R) and pio = pio(p, q, . R) satisfying

piipio — 0 as i — 00,
such that: for hy € [he — R, he], he € [he, he + R,

iy (Hi)[L = Ty (Him)] < ph M or2g"e, kym > 1
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As in the proof of Theorem 4.3, the first step is to establish bounds on
the one-point marginals of 7,. This may be strengthened to a finite-energy
property, but this will not be required here. The proof is deferred to the end
of the section.

Lemma 8.10. Let G = (V, E) be a finite graph with maximum vertex-degree
A. Then

h
ae A l -« A
- (1- < ,=1)<1l— ———(1-
Consider the subgraph of Z? induced by A, = [-n,n]¢, and let z € A,,.

Objects associated with the finite domain A,, are labelled with the subscript
n. For b = 0,1, let 7%, (respectively, ¢} ,) be the marginal measure on %,
(respectively, €,,) of the coupling k,,;, conditioned on o, = b.

By Proposition 8.7, ¢, >« &, when b > 0, and ¢, , <y ¢, when
h < 0. It is convenient to work with a certain coupling of the pairs (¢, ,,, 7, ;)
and (¢, ,, 7, ;). Recall that Cy(w) denotes the open cluster at z in the edge-
configuration w € €.

Lemma 8.11. Let h € R. There exists a probability measure 5, on (€, x
¥,)% with the following properties. Let (W', 0%, wt, ot) be sampled from (£, x

¥n)? according to k)Y,
(i) Forb=0,1, w* has law ¢, .
(i) Forb=0,1, 0® has law 70,
(iii) If h <0, W' > W' Ifh >0, w' > 0.
(iv) The spin configurations ¢° and o' agree at all vertices y ¢ Cy,(w®) U

Cp(wh).

Proof. Assume first that A > 0. There exists a probability measure ¢,, on 02,
with support D; = {(w% w') € Q2 : W < W'}, whose first (respectively, sec-
ond) marginal is ¢9Z7 , (respectively, qﬁ}lh) By sampling from ¢,, in a sequential
manner beginning at x, and proceeding via the open connections of the upper
configuration, we may assume in addition that (w° w') € Dy, where D, is
the set of pairs such that w’(e) = w'(e) for any edge e having at most one
endpoint in C,(w'). Let (w’,w') € D = Dy N Dy.
The spin vectors o® may be constructed as follows:
(a) attach spin b to the cluster C,(w?),
(b) attach independent Bernoulli spins to the other w’-open clusters in
such a way that the odds of cluster C' receiving spin 1 are ae™®l to
1 —a.
We may assign spins o to the open clusters of the w® in such a way that: o®
has law 70 ,, and o)) = o} for y ¢ Cy(w'). Write 3!, for the joint law of the

ensuing pairs (w°, %), (W', o).
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When h < 0, let /ﬁ%h be the coupling as above, with the differences that:
w® > w', and o) = o, for y ¢ Cy (). O

We seek next a substitute for Lemma 7.5 in the current setting. Let Jy ., . (2)
be the conditional influence of vertex z on the event Hj ,,, with reference
measure 7, 5 on A,.

Let (W% 0% w! o') be sampled according to the measure x

8.11. Define random clusters CH CV C 7Z? as follows,
CHW, 0% w0 = {z€7?: Ty € Cb(w°), y <> z in o'}
CY (W, 0% wh ol ={z€Z%: Iy cC(wh), y &, zin o’}

Notice that, if h > 0 (respectively, h < 0), CH (respectively, CV) is the spin-1
cluster (respectively, spin-0 x-cluster) at x under o' (respectively, ¢°). It may
be checked as before that:

01

nn Of Lemma

Jimn(x) < kb, (CH contains a horizontal crossing of By,y), (8.12)
Jimn(x) < K04, (CY contains a vertical #-crossing of By, ). (8.13)

The notation C, CV is introduced in order to treat the cases h > 0 and
h < 0 simultaneously.

Lemma 8.14. Let R be as in Theorem 8.9.
(i) If 0'(p,q,, he) = 0, and ¢y, is subcritical for h € [he — R, he|, there

exists v 1 satisfying v 1 — 0 as k — oo such that

limsup  sup sup Jrmn(r) < vgg.
n—0o0 h€lhc—R,hc] TEAR

(ii) If 0(p,q,, he) = 0, and ¢y, is subcritical for h € [he, he + R, there

extsts Vo satisfying vy, o — 0 as m — oo such that

limsup sup  sup Jimn(®) < Vpo.
n—0o0  h€lhe,hc+R] TEAL

Proof. We prove part (i) only, the proof of (ii) being similar. If [h. — R, h¢] C
[0,00), let ¢ = ¢p,; if [he — R, he] C (—00,0], let ¢ = ¢p._g. By Proposition
8.7, and the assumptions of (i),

(a) @ <st ¢ for n > 1 and h € [h. — R, h.],

(b) ¢ is subcritical,

(c) mp, is subcritical, and 7, <g Tnpn, for b € [he — R, he).
By Lemma 8.10, there exists L > 0 such that

Tnn(0z = Dy p(o, =0) > L (8.15)
foralln > 1, x € A,,, and h € [h. — R, he + R]. Let
Ay (w) =sup{r > 0:x < x4+ 0A,}
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denote the radius rad(C,) of the edge cluster C, = C,(w) at z, and note that
$(Ay <o0) =1

Let r > max{k,m} and z € A,. By (8.12) and the positive association of
Ty 5, and as in (6.7),

Jimn(2) < Ko p(rad(CL) > 1k)

< Z ¢?z,h(Ax = a)arlz,h(x> a, %k)
a=0

1 o
S E ; ¢n,h(A$ - a)an,h(xa a, %k)u

where
ai,h(‘r7a7 b) - 7T§7h<$ + Aa é T+ aAb } Oy = 1 for yeco -+ Aa)‘
Since a, (2, a,b) is non-decreasing in a, and furthermore ¢, 5, <g ¢ and ¢ is

translation-invariant,

sup Jimon(x Zqﬁ (Ag=a sup{@nh x,a, %k)} (8.16)

TEN, TEA,

By (8.15) and the fact that m,, <g Tph.,

0 n(,a, 5k) < min {1 ——Tnh (T + A &+ aAk/g)} (8.17)

1
LIAr]
Suppose now that x € A, \ A,. Then

Jeamn(@) < Ky (Cy' O B # )

< Z ¢2,h(AI =a) é,h(% a)
a=0

S % ; ¢n,h(A$ - a)ﬁn,h(x7 CL),

where
ﬂfx,h(x7 a) = Wﬁ,h(ﬂf + A & Bim } oy=1foryeaz+ Aa)

is a non-decreasing function of a. Since ¢, <s ¢, and ¢ is translation-
invariant,

h

e —Z (Ao = a)Bnn(z,a).
a=0
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As above,
Brn(z,a) < Lﬁ‘ ‘th(x + A, & By m)
< U%ﬂn,h(Bkm SON,,)  ifa<nm
whence

1 , 1
Jemn(z) < 17 ZO ®(Ag = a) min {1 A T . he (B.m & O\, _ a)} . (8.18)

where the minimum is interpreted as 1 when a > r.
We add (8.16)—(8.17) and (8.18), and take the limit n — oo, to obtain by
the bounded convergence theorem that

limsup sup Jg m.n(2)
n—oo TEAp,

S%[;qu(flo:a)min{l Lﬁ‘ ‘th(x%—/\ H@Ak/g)}
+ZO¢(A0:a)min{1 L;\ |7rhc(Bkm<—>8AT a)}]

We now send r — oo. Since 0'(p,q,a,h.) = 0 by assumption, the last
summand tends to 0. By the bounded convergence theorem,

lim sup sup Jg mn(x) < v, (8.19)

n—oo TEAp

where
= —1 E Ay = in<1, L —T + A, & oA
Vi1 0 ¢(Ap = a) min T (x k/g)

By the bounded convergence theorem again, v,; — 0 as & — oo. Since
(8.16)—(8.17) and (8.18) are uniform in h € [h. — R, h.], one may include the
supremum over h in (8.19), as required for the lemma. O

Proof of Theorem 8.9. Let f,(h) = mpn(Hy.m). By (5.4) and Lemma 8.10,
1 d X
fa(h)[1 — fn(h)]%fn(h) > cLlog [Qmaxx Jk,m,n(:t)] : (8.20)

with L as in the proof of Lemma 8.14. Let

Enk1=  Sup sup 2Jimn(), Eunmo=  Sup sup 2Jy mn(T).
helhe—R,he] T€A, helhe,he+R] ©€A,
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By (8.20),
ho
1f”(h) > (he — hy)eLlog(671 ) + (hy — he)eL1
Ogm > (he = hi)eLlog(&, 1) + (ha — he)eL1og (& p0),
n hi
whence
Fa(h)[1 = fulho)] < RN Mg,
Take the limit as n — oo and use Lemma 8.14. ]

Proof of Proposition 8.7. A strictly positive measure g on Q = {0,1}¥ is
monotone if and only if: for all w € Q with w(e) =w(f) =0, e # f,

p(w ) p(w) > plw)p’), (8.21)
see, for example, [19, Thm 2.19]. Given two strictly positive measures p; and
12, at least one of which is monotone, it is sufficient for p; <g pso that:

(W) _ pa(w)
pi(w) — pa(w)

This is proved in [19, Thm 2.6]. Condition (8.22) is non-trivial only when
w(e) = 0.

We shall prove (i) by checking that ¢, satisfies (8.21). Write C(w) for the
set of open clusters under w, and let f,(k) = ae + 1 — a. Substituting (8.4)
into (8.21), we must check

¢p,q( ¢pq H fh ‘C’ H fh ‘C’
CeC(weT) CeC(w)

Z¢pq ¢pq H fu(C1) H fu(IC])- (8.23)

CeC(we) ceC(wl)

we eckE. (8.22)

On using the monotonicity of ¢, ,, and on cancelling the factors f,(|C|) for
C € C(w) NC(w™T), we arrive at the following three cases.
(i) There are clusters C;, Cy € C(w), such that C; U Cy € C(w®) = C(w').
It suffices that

afu(@) fu(b) = frla+b), a=|[Ci], b=[Csl,
and this is easily checked for a,b > 0 since qo, ¢(1 — a) > 1.

(ii) There are clusters C,Cy, C5 € C(w), such that C; U Cy € C(w®) and
Co U5 € C(w). Tt suffices that

fula+b+0)falb) > fala+b)falb+c), a=|Ci|,b=]|Cyl, c=]|Csl,

and this is immediate.

(iii) There are clusters C,Cy,C3,Cy € C(w) such that C; U Cy € C(w®)
and C3 U Cy € C(w’). In this case, inequality (8.23) simplifies to a
triviality.
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It may be checked similarly that the marginal measure of k(- | 0, = b) on
() is monotone if either h > 0,b =1 or h <0, b = 0. One uses the expression

kp(w | 0z = b) d)p,q("‘))ehb‘cz(w)‘ H fu(1C)), w € .
CeC(w)\{Cr(w)}

Parts (ii) and (iii) then follow by checking (8.22) with appropriate ;. Part (iv)
follows from part (iii) by taking the limit as |h| — co. Many of the required
calculations are rather similar to part (i), and we omit further details. UJ

Proof of Theorem 8.1. We identify the spin-vector ¢ € ¥ with the set A =
{veV:g,=1}. Inorder that 7 = m,,, be monotone it is necessary and
sufficient (see inequality (8.21)) that

T(A™)m(A) > n(A")w(AY), ACV, z,ye V\ A, z#uy. (8.24)

Let ACV,z,y € V\ A, z #y. Let a be the number of edges of the form
(x,z) with z € A, let b be the number of edges of the form (x, z) with z ¢ A

and z # x,y, and let e be the number of edges joining x and y.
We write A* = AU {x}, etc. By (8.5) with h =0,

A _ g pypreaZraeliigne @ Sigu-oll)
W(A) ZA,QZZ,q(l—a) e ¢Am,qa(II) ’
where I, is the event that x is isolated, and ¢ 4 4 is the random-cluster measure

on the subgraph induced by vertices of A with edge-parameter p and cluster-
weight ¢. Similarly,

m(AY) 1 —a  Pawga(ls)
The ratio of the left to the right sides of (8.24) is

QSAT(II) . ¢ﬁ([x) _ ¢Amy,qa([x ‘ [y) . ¢Z,q(1—a)(II ’ [y)
¢Amy (II) QSZ(II) ¢Amy,qa([x) ¢Z,q(1—a)(lx)

Inequality (8.24) holds by the positive association of random-cluster measures
with cluster-weights at least 1.

That the conditions are necessary for monotonicity follows by an example.
Suppose 0 < qov < 1 and ¢(1 — ) > 1. Let G be a cycle of length four, with
vertices (in order, going around the cycle) u, z,v,y. Take A = {u, v} above, so
that e = 0. The final ratio in (8.25) equals 1, and the penultimate is strictly
less than 1. 0

m(AY) a a7 g(1—a) Lx)

(8.25)

Proof of Lemma 8.10. By Proposition 8.7(iv) and inequality (6.1),
¢h(Ix) Z ¢p,Q([x) Z (1 _p)Aa
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where [, is the event that z is isolated. Conditional on I, the spin of x under
the coupling x;, has the Bernoulli distribution with parameter ae’/[ae” 4+ 1 —
al. O
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