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Abstract. A sharp-threshold theorem is proved for box-crossing proba-
bilities on the square lattice. The models in question are the random-cluster
model near the self-dual point psd(q) =

√
q/(1 +

√
q), the Ising model with

external field, and the coloured random-cluster model. The principal tech-
nique is an extension of the influence theorem for monotonic probability
measures applied to increasing events with no assumption of symmetry.

1. Introduction

The method of ‘sharp threshold’ has been fruitful in probabilistic combi-
natorics (see [20, 27] for recent reviews). It provides a fairly robust tool for
showing the existence of a sharp threshold for certain processes governed by
independent random variables. Its most compelling demonstration so far in
the field of physical systems has been the proof in [9] that the critical prob-
ability of site percolation on the Voronoi tessellation generated by a Poisson
process on R

2 equals 1
2
.

Each of the applications alluded to above involves a product measure. It was
shown in [16] that the method may be extended to non-product probability
measures satisfying the FKG lattice condition. The target of this note is to
present two applications of such a sharp-threshold theorem to measures arising
in statistical physics, namely those of the random-cluster model and the Ising
model. In each case, the event in question is the existence of a crossing of a
large box, by an open path in the case of the random-cluster model, and by a
single-spin path in the case of the Ising model. A related but more tentative
and less complete result has been obtained in [16] in the first case, and the
second case has been studied already in [23, 24] and [7].

Our methods for the Ising model can be applied to a more general model
termed here the coloured random-cluster model (CRCM), see Section 8. This
model is related to the so-called fractional Potts model of [26], and the fuzzy
Potts model and the divide-and-colour model of [5, 13, 21, 22].
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The sharp-threshold theorem used here is an extension of that given for
product measure in [15, 37], and it makes use of the results of [16]. It is
stated, with an outline of the proof, in Section 5. The distinction of the
current sharp-threshold theorem is that it makes no assumption of symmetry
on either the event or measure in question. Instead, one needs to estimate the
maximum influence of the various components, and it turns out that this may
be done in a manner which is very idiomatic for the models in question. The
sharp-threshold theorem presented here may find further applications in the
study of dependent random variables.

2. The models

2.1. The random-cluster model. The random-cluster model on a con-
nected graph G has two parameters: an edge-weight p and a cluster-weight q.
See Section 3 for a formal definition. When q ≥ 1 and G is infinite, there is
a critical value pc(q) that separates the subcritical phase of the model (when
p < pc(q) and there exist no infinite clusters) and the supercritical phase. It
has long been conjectured that, when G is the square lattice Z

2,

pc(q) =

√
q

1 +
√
q
, q ≥ 1. (2.1)

This has been proved rigorously in three famous cases. When q = 1, the
random-cluster model is bond percolation, and the exact calculation pc(1) = 1

2
was shown by Kesten [28]. When q = 2, the model is intimately related to
the Ising model, and the calculation of pc(2) is equivalent to that of Onsager
and others concerning the Ising critical temperature (see [1, 3] for a modern
treatment of the Ising model). Formula (2.1) has been proved for sufficiently
large values of q (currently q ≥ 21.61) in the context of the proof of first-order
phase transition, see [19, 29, 30, 31]. We recall that, when q ∈ {2, 3, . . .}, the
critical temperature Tc of the q-state Potts model on a graph G satisfies

pc(q) = 1 − e−1/Tc . (2.2)

A fairly full account of the random-cluster model, and its relation to the Potts
model, may be found in [19].

Conjecture (2.1) is widely accepted. Physicists have proceeded beyond a
‘mere’ calculation of the critical point, and have explored the behaviour of
the process at and near this value. For example, it is believed that there is a
continuous (second-order) phase transition if 1 ≤ q < 4, and a discontinuous
(first-order) transition when q > 4, see [6]. Amongst recent progress, we
highlight the stochastic Löwner evolution process SLE16/3 associated with the

cluster boundaries in the critical case when q = 2 and p =
√

2/(1 +
√

2), see
[36, 35].
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The expression in (2.1) arises as follows through the use of planar duality.
When the underlying graph G is planar, it possesses a (Whitney) dual graph
Gd. The random-cluster model on G with parameters p, q may be related to
a dual random-cluster model on Gd with parameters pd, q, where

pd

1 − pd

=
q(1 − p)

p
. (2.3)

The mapping p 7→ pd has a fixed point p = psd(q), where

psd(q) :=

√
q

1 +
√
q

is termed the self-dual point. The value p = psd(q) is especially interesting
when G and Gd are isomorphic, as in the case of the square lattice Z

2. See
[19, Chap. 6]. We note for future use that

p < psd(q) if and only if pd > psd(q). (2.4)

Henceforth, we take G = Z
2. The inequality

pc(q) ≥ psd(q), q ≥ 1, (2.5)

was proved in [17, 38] using Zhang’s argument (see [18, p. 289]). Two further
steps would be enough to imply the complementary inequality pc(q) ≤ psd(q):
firstly, that the probability of crossing a box [−m,m]2 approaches 1 asm→ ∞,
when p > psd(q); and secondly, that this implies the existence of an infinite
cluster. The first of these two claims is proved in Theorem 3.4.

Kesten’s proof for percolation, [28], may be viewed as a proof of the first
claim in the special case q = 1. The second claim follows for percolation by
RSW-type arguments, see [32, 33, 34] and [18, Sect. 11.7]. Heavy use is made
in these works of the fact that the percolation measure is a product measure,
and this is where the difficulty lies for the random-cluster measure.

We prove our main theorem (Theorem 3.4 below) by the method of influence
and sharp threshold developed for product measures in [15, 25]. This was
adapted in [16] to monotonic measures applied to increasing events, subject
to a certain hypothesis of symmetry. We show in Section 5 how this hypothesis
may be removed, and we apply the subsequent inequality in Section 6 to the
probability of a box-crossing, thereby extending to general q the corresponding
argument of [10].

2.2. Ising model. We shall consider the Ising model on the square lattice Z
2

with edge-interaction parameter β and external field h. See Section 4 for the
relevant definitions. Write βc for the critical value of β when h = 0, so that

1 − e−2βc = psd(2)

where psd(2) is given as in (2.1). Two notions of connectivity are required: the
usual connectivity relation ↔ on Z

2 viewed as a graph, and the relation ↔∗,
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termed ∗-connectivity, and obtained by adding diagonals to each unit face of
Z

2. Let πβ,h denote the Ising measure on Z
2 with parameters β, h.

Higuchi proved in [23, 24] that, when β ∈ (0, βc), there exists a critical value
hc = hc(β) of the external field such that:

(a) hc(β) > 0,
(b) when h > hc, there exists πβ,h-almost-surely an infinite + cluster of

Z
2, and the radius of the ∗-connected − cluster at the origin has ex-

ponential tail,
(c) when 0 < h < hc, there exists πβ,h-almost-surely an infinite ∗-connected

− cluster of Z
2, and the radius of the + cluster at the origin has ex-

ponential tail.

A further approach to Higuchi’s theorem has been given recently by van den
Berg [7]. A key technique of the last paper is a sharp-threshold theorem of
Talagrand [37] for product measures. The Ising measure πΛ,β,h on a box Λ is
of course not a product measure, and so it was necessary to encode it in terms
of a family of independent random variables. We show here that the influence
theorem of [16] may be extended and applied directly to the Ising model to
obtain the necessary sharp threshold result. (The paper [7] contains results
for certain other models encodable in terms of product measures, and these
appear to be beyond the scope of the current method.)

2.3. Coloured random-cluster model. The Ising model with external field
is a special case of a class of systems that have been studied by a number of
authors, and which we term coloured random-cluster models (CRCM). Sharp-
threshold results may be obtained for such systems also. Readers are referred
to Section 8 for an account of the CRCM and the associated results.

3. Box-crossings in the random-cluster model

The random-cluster measure is given as follows on a finite graphG = (V,E).
The configuration space is Ω = {0, 1}E. For ω ∈ Ω, we write η(ω) = {e ∈ E :
ω(e) = 1} for the set of ‘open’ edges, and k(ω) for the number of connected
components in the open graph (V, η(ω)). Let p ∈ [0, 1], q ∈ (0,∞), and let
φp,q be the probability measure on Ω given by

φp,q(ω) =
1

Z

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω), ω ∈ Ω, (3.1)

where Z = ZG,p,q is the normalizing constant. We shall assume throughout
this paper that q ≥ 1, so that φp,q satisfies the so-called FKG lattice condition

µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ Ω. (3.2)
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Here, as usual,

ω1 ∨ ω2(e) = max{ω1(e), ω2(e)},
ω1 ∧ ω2(e) = min{ω1(e), ω2(e)},

for e ∈ E. As a consequence of (3.2), φp,q satisfies the FKG inequality. See
[19] for the basic properties of the random-cluster model.

Consider the square lattice Z
2 with edge-set E, and let Ω = {0, 1}E. Let

Λ = Λn = [−n, n]2 be a finite box of Z
2, with edge-set EΛ. For b ∈ {0, 1}

define

Ωb
Λ = {ω ∈ Ω : ω(e) = b for e /∈ EΛ}.

On Ωb
Λ we define a random-cluster measure φb

Λ,p,q as follows. For p ∈ [0, 1] and
q ∈ [1,∞), let

φb
Λ,p,q(ω) =

1

Zb
Λ,p,q

{

∏

e∈EΛ

pω(e)(1 − p)1−ω(e)

}

qk(ω,Λ), ω ∈ Ωb
Λ, (3.3)

where k(ω,Λ) is the number of clusters of (Z2, η(ω)) that intersect Λ. The
boundary condition b = 0 (respectively, b = 1) is usually termed ‘free’ (re-
spectively, ‘wired’). It is standard that the weak limits

φb
p,q = lim

n→∞
φb

Λn,p,q

exist, and that they are translation-invariant, ergodic, and satisfy the FKG
inequality. See [19, Chap. 4].

For A,B ⊆ Z
2, we write A ↔ B if there exists an open path joining some

a ∈ A to some b ∈ B. We write x↔ ∞ if the vertex x is the endpoint of some
infinite open path. The percolation probabilities are given as

θb(p, q) = φb
p,q(0 ↔ ∞), b = 0, 1.

Since each θb is non-decreasing in p, one may define the critical point by

pc(q) = sup{p : θ1(p, q) = 0}.
It is known that φ0

p,q = φ1
p,q if p 6= psd(q), and we write φp,q for the common

value. In particular, θ0(p, q) = θ1(p, q) for p 6= pc(q). It is conjectured that
φ0

p,q = φ1
p,q when p = pc(q) and q ≤ 4.

Let Bk = [0, k] × [0, k − 1], and let Hk be the event that Bk possesses an
open left–right crossing. That is, Hk is the event that Bk contains an open
path having one endvertex on its left side and one on its right side.

Theorem 3.4. Let q ≥ 1. We have that

φp,q(Hk) ≤ 2ρpsd−p
k , 0 < p < psd(q), (3.5)

φp,q(Hk) ≥ 1 − 2νp−psd

k , psd(q) < p < 1, (3.6)
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for k ≥ 1, where

ρk = [2qηk/p]
c/q, νk = [2qηk/pd]

c/q, (3.7)

and

ηk = φ0
psd(q),q(0 ↔ ∂Λk/2) → 0 as k → ∞. (3.8)

Here, c is an absolute positive constant, and pd satisfies (2.3).

When k is odd, we interpret ∂Λk/2 in (3.8) as ∂Λ⌊k/2⌋.
In essence, the probability of a square-crossing has a sharp threshold around

the self-dual ‘pivot’ psd(q). Related results were proved in [16], but with three
relative weaknesses, namely: only non-square rectangles could be handled, the
‘pivot’ of the threshold theorems was unidentified, and there was no result for
infinite-volume measures. The above strengthening is obtained by using the
threshold Theorem 5.3 which makes no assumption of symmetry on the event
or measure in question. The corresponding threshold theorem for product
measure leads to a simplification of the arguments of [10] for percolation, see
[20, Sect. 5.8].

Since φ0
Λn,p,q ≤st φp,q ≤st φ

1
Λn,p,q and Hk is an increasing event, Theorem 3.4

implies certain inequalities for finite-volume probabilities also.
No estimate for the rate at which ηk → 0 is implicit in the arguments of

this paper, and indeed one of the targets of the current work is to show that
no estimate is necessary for sharp threshold. It is expected that ηk → 0 at a
rate that depends on whether or not the phase transition is continuous: one
expects that ηk decays as a power when 1 ≤ q < 4, and as an exponential
when q > 4 (see [19, Sect. 6.4]). This would imply a threshold of order either
1/ log k or 1/k in (3.5)–(3.6). That the radius R of the open cluster at the
origin is φ0

psd(q),q-a.s. finite is a consequence of the (a.s.) uniqueness of the

infinite open cluster whenever it exists. See [19, Thm 6.17(a)] for a proof of
the relevant fact that

θ0(psd(q), q) = 0, q ≥ 1. (3.9)

We shall prove a slightly more general result than Theorem 3.4. Let Bk,m =
[0, k] × [0, m] and let Hk,m be the event that there exists an open left–right
crossing of Bk,m.

Theorem 3.10. Let q ≥ 1. We have that

φp1,q(Hk,m)[1 − φp2,q(Hk,m))] ≤ ρp2−p1

k , 0 < p1 < p2 ≤ psd(q), (3.11)

φp1,q(Hk,m)[1 − φp2,q(Hk,m))] ≤ νp2−p1

m+1 , psd(q) ≤ p1 < p2 < 1, (3.12)

for k,m ≥ 1, where ρk (respectively, νk) is given in (3.7) with p = p1 (respec-
tively, p = p2), and φpsd(q),q is to be interpreted as φ0

psd(q),q.
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4. Box-crossings in the Ising model

Let Λ be a box of Z
2. The spin-space of the Ising model on Λ is ΣΛ =

{−1,+1}Λ, and the Hamiltonian is

HΛ(σ) = −β
∑

e=〈x,y〉∈EΛ

σxσy − h
∑

x∈Λ

σx,

where β > 0, h ≥ 0. The relevant Ising measure is given by

πΛ,β,h(σ) ∝ e−HΛ(σ), σ ∈ ΣΛ,

and it is standard that the (weak) limit measure πβ,h = limΛ→Z2 πΛ,β,h exists.
We shall also need the + boundary-condition measure π+

β,0 given as the weak
limit of πΛ,β,0 conditional on σx = +1 for x ∈ ∂Λ. (Here, ∂Λ denotes as usual
the boundary of Λ, i.e., the set of x ∈ Λ possessing a neighbour not belonging
to Λ). By the FKG inequality or otherwise, π+

β,0(σ0) ≥ 0, and the critical
value of β when h = 0 is given by

βc = sup{β : π+
β,0(σ0) = 0}.

As remarked in Section 2, 1−e−2βc = psd(2). It is well known that there exists
a unique infinite-volume measure for the Ising model on Z

2 if either h 6= 0 or
β < βc, and thus πβ,h is this measure. By Holley’s Theorem, (see [19, Sect.
2.1], for example), πβ,h is stochastically increasing in h.

Let

θ+(β, h) = πβ,h(0
+↔ ∞), θ−(β, h) = πβ,h(0

−↔∗ ∞),

where the relation
+↔ (respectively,

−↔∗) means that there exists a path of
Z

2 each of whose vertices has state +1 (respectively, a ∗-connected path of
vertices with state −1). The next theorem states the absence of coexistence
of such infinite components, and its proof (given in Section 7) is a simple
application of the Zhang argument for percolation (see [18, Sect. 11.3]).

Theorem 4.1. We have that

θ+(β, h)θ−(β, h) = 0, β ≥ 0, h ≥ 0.

There exists hc = hc(β) ∈ [0,∞) such that

θ+(β, h)

{

= 0 if 0 ≤ h < hc,

> 0 if h > hc.

Recall from [23, 24] that hc(β) > 0 if and only if β < βc. It is proved in [24]
that

θ±(β, hc(β)) = 0, (4.2)

but we shall not make use of this fact in the proofs of this paper. Indeed, one
of the main purposes of this article is to show how certain sharp-thresholds for
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box-crossings may be obtained using a minimum of background information
on the model in question.

Let Hk,m be the event that there exists a left–right + crossing of the box
Bk,m = [0, k] × [0, m]. Let x+ = max{x, 0}.
Theorem 4.3. Let 0 ≤ β < βc and R > 0. There exist ρi,+ = ρi,+(β) and
ρi,− = ρi,−(β,R) satisfying

ρi,+ρi,− → 0 as i→ ∞, (4.4)

such that: for 0 ≤ h1 ≤ hc ≤ h2 < R,

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρhc−h1

k,+ ρh2−hc
m,− , k,m ≥ 1. (4.5)

The proof of this theorem shows also that

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρh2−h1

k,+ , h1 ≤ h2 ≤ hc,

πβ,h1(Hk,m)[1 − πβ,h2(Hk,m)] ≤ ρh2−h1
m,− , hc ≤ h1 ≤ h2.

As in Theorem 3.4, the proof neither uses nor implies any estimate on the
rate at which ρi,± → 0. The ρi,± are related to the tails of the radii of the +
cluster and the − ∗-cluster at the origin. More explicitly,

ρi,+ =
[

2(1 + e8β)πβ,hc(0
+↔ ∂Λi/2)

]B+ , (4.6)

ρi,− =
[

2(1 + e8β+2R)πβ,hc(0
−↔∗ ∂Λi/2)

]B−, (4.7)

where
B+ = 2cξβ,hc, B− = 2cξβ,R,

and ξβ,h is given in the forthcoming (7.4). Equation (4.4) holds by Theorem
4.1 with h = hc(β). It is in fact a consequence of (4.2) that ρi,± → 0 as
i→ ∞.

5. Influence, and sharp threshold

Let S be a finite set. Let µ be a measure on Ω = {0, 1}S satisfying the FKG
lattice condition (3.2), and assume that µ is positive in that µ(ω) > 0 for all
ω ∈ Ω. It is standard that, for a positive measure µ, (3.2) is equivalent
to the condition that µ be monotone, which is to say that the one-point
conditional measure µ(σx = 1 | σy = ηy for y 6= x) is non-decreasing in η.
Furthermore, (3.2) implies that µ is positively associated, in that increasing
events are positively correlated. See, for example, [19, Chap. 2].

For p ∈ (0, 1), let µp be given by

µp(ω) =
1

Zp

{

∏

s∈S

pω(s)(1 − p)1−ω(s)

}

µ(ω), ω ∈ Ω, (5.1)

where Zp is chosen in such a way that µp is a probability measure. It is easy
to check that each µp satisfies the FKG lattice condition.
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Let A be an increasing event, and write 1A for its indicator function. We
define the (conditional) influence of the element s ∈ S on the event A by

JA,p(s) = µp(A | 1s = 1) − µp(A | 1s = 0), s ∈ S, (5.2)

where 1s is the indicator function that ω(s) = 1. Note that JA,p(s) depends
on the choice of µ. The conditional influence is not generally equal to the
(absolute) influence of [25],

IA,p(s) = µp(1A(ωs) 6= 1A(ωs)),

where the configuration ωs (respectively, ωs) is that obtained from ω by setting
ω(s) = 1 (respectively, ω(s) = 0).

Theorem 5.3. There exists a constant c > 0 such that the following holds.
For any such S, µ, and any increasing event A 6= ∅,Ω,

d

dp
µp(A) ≥ cξp

p(1 − p)
µp(A)(1 − µp(A)) log[1/(2mA,p)], (5.4)

where mA,p = maxs∈S JA,p(s) and ξp = mins∈S

[

µp(1s)(1 − µp(1s))
]

.

Corollary 5.5. In the notation of Theorem 5.3,

µp1(A)[1 − µp2(A)] ≤ κB(p2−p1), 0 < p1 ≤ p2 < 1,

where

B = inf
p∈(p1,p2)

{

cξp
p(1 − p)

}

, κ = 2 sup
p∈(p1,p2),

s∈S

JA,p(s).

The corresponding inequality for product measures may be found in [37,
Cor. 1.2]. Throughout this note, the letter c shall refer only to the constant
of Theorem 5.3.

Proof of Theorem 5.3. It is proved in [8, 16] that

d

dp
µp(A) =

1

p(1 − p)

∑

s∈S

µp(1s)(1 − µp(1s))JA,p(s). (5.6)

Let K = [0, 1]S be the ‘continuous’ cube, endowed with Lebesgue measure
λ, and let B be an increasing subset of K. The influence IB(s) of an element
s is given in [11] as

IB(s) = λ(1B(ψs) 6= 1B(ψs))

where ψs (respectively, ψs) is the member of K obtained from ψ ∈ K by
setting ψ(s) = 1 (respectively, ψ(s) = 0). The conclusion of [11] may be
expressed as follows. There exists a constant c > 0, independent of all other
quantities, such that: for any increasing event B ⊆ K,

∑

s∈S

IB(s) ≥ cλ(B)(1 − λ(B)) log[1/(2mB)] (5.7)
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where mB = maxs∈S IB(s). The main result of [11] is a lower bound on mB

that is easily seen to follow from (5.7).
Equation (5.7) does not in fact appear explicitly in [11], but it may be

derived from the arguments presented there, very much as observed in the
case of the discrete cube from the arguments of [25]. See [15, Thm 3.4]. The
factor of 2 on the right side of (5.7) is of little material consequence, since the
inequality is important only when mB is small, and, when mB < 1

3
say, the

2 may be removed with an amended value of the constant c. The literature
on influence and sharp-threshold can seem a little disordered, and a coherent
account may be found in [20]. The method used there introduces the factor 2
in a natural way, and for this reason we have included it in the above.

It is shown in [16] (see the proof of Theorem 2.10) that there exists an
increasing subset B of K such that µp(A) = λ(B), and JA,p(s) ≥ IB(s) for all
s ∈ S. Inequality (5.4) follows by (5.6)–(5.7). �

Proof of Corollary 5.5. By (5.4),
(

1

µp(A)
+

1

1 − µp(A)

)

µ′
p(A) ≥ B log(κ−1), p1 < p < p2,

whence, on integrating over (p1, p2),

µp2(A)

1 − µp2(A)

/

µp1(A)

1 − µp1(A)
≥ κ−B(p2−p1).

The claim follows. �

6. Proofs of Theorems 3.4 and 3.10

Note first that a random-cluster measure has the form of (5.1) with S = E
and µ(ω) = qk(ω), and it is known and easily checked that µ satisfies the FKG
lattice condition when q ≥ 1 (see [19, Sect. 3.2], for example). We shall apply
Theorem 5.3 to a random-cluster φp,q measure with q ≥ 1. It is standard (see
[19, Thm 4.17(b)]) that

p

q
≤ p

p+ q(1 − p)
≤ φp,q(1e) ≤ p, (6.1)

whence

φp,q(1e)[1 − φp,q(1e)] ≥
p(1 − p)

q
.

We may thus take

B =
c

q
(6.2)

in Corollary 5.5.
Let q ≥ 1, 1 ≤ k,m < n, and consider the random-cluster measures φb

n,p =

φb
Λn,p,q on the box Λn. For e ∈ E

2, write J b
k,m,n(e) for the (conditional) influence
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of e on the event Hk,m under the measure φb
n,p. We set J b

k,m,n(e) = 0 for
e /∈ EΛn

.

Lemma 6.3. Let q ≥ 1. We have that

sup
e∈E2

J0
k,m,n(e) ≤

q

p
ηk, 0 < p ≤ psd(q), 1 ≤ k,m < n, (6.4)

sup
e∈E2

J1
k,m,n(e) ≤

q

pd
ηm+1, psd(q) ≤ p < 1, 1 ≤ k,m < n, (6.5)

where pd satisfies (2.3) and

ηk = φ0
psd(q),q(0 ↔ ∂Λk/2) → 0 as k → ∞.

Proof. For any configuration ω ∈ Ω and vertex z, let Cz(ω) be the open cluster
at z, that is, the set of all vertices joined to z by open paths.

Suppose first that 0 < p ≤ psd(q), and let e = 〈x, y〉 be an edge of Λn.
We couple the two conditional measures φ0

n,p(· | ω(e) = b), b = 0, 1, in the
following manner. Let Ωn be the configuration space of the edges in Λn, and
let T = {(π, ω) ∈ Ω2

n : π ≤ ω} be the set of all ordered pairs of configurations.
There exists a measure µe on T such that:

(a) the first marginal of µe is φ0
n,p(· | 1e = 0),

(b) the second marginal of µe is φ0
n,p(· | 1e = 1),

(c) for any subset γ of Λn, conditional on the event {(π, ω) : Cx(ω) = γ},
the configurations π and ω are µe-almost-surely equal on all edges
having no endvertex in γ.

The details of this coupling are omitted. The idea is to build the paired
configuration (π, ω) edge by edge, beginning at the edge e, in such a way that
π(f) ≤ ω(f) for each edge f examined. The (closed) edge-boundary of the
cluster Cx(ω) is closed in π also. Once this boundary has been uncovered, the
configurations π, ω on the rest of space are governed by the same (conditional)
measure, and may be taken equal. Such an argument has been used in [2] and
[19, Thm 5.33(a)], and has been carried further in [4].

We claim that

J0
k,m,n(e) ≤ φ0

n,p(Dx | 1e = 1), (6.6)

where Dx is the event that Cx intersects both the left and right sides of Bk,m.
This is proved as follows. By (5.2),

J0
k,m,n(e) = µe(ω ∈ Hk,m, π /∈ Hk,m)

≤ µe(ω ∈ Hk,m ∩Dx)

≤ µe(ω ∈ Dx) = φ0
n,p(Dx | 1e = 1),
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since, when ω /∈ Dx, either both or neither of ω, π belong to Hk,m. By (6.6),

J0
k,m,n(e) ≤

φ0
n,p(Dx)

φ0
n,p(1e)

. (6.7)

On Dx, the radius of the open cluster at x is at least 1
2
k. Since φ0

n,p ≤st φp,q

and φp,q is translation-invariant,

φ0
n,p(Dx) ≤ φp,q(x↔ x+ ∂Λk/2) = φp,q(0 ↔ ∂Λk/2).

By (3.9),

φp,q(0 ↔ ∂Λk/2) ≤ φ0
psd(q),q(0 ↔ ∂Λk/2) → 0 as k → ∞,

and, by (6.1) and (6.7), the conclusion of the lemma is proved when p ≤ psd(q).
Suppose next that psd(q) ≤ p < 1. Instead of working with the open paths,

we work with the dual open paths. Each edge ed = 〈u, v〉 of the dual lattice
traverses some edge e = 〈x, y〉 of the primal, and, for each configuration ω,
we define the dual configuration ωd by ωd(ed) = 1 − ω(e). Thus, the dual
edge ed is open if and only if e is closed. It is well known (see [19, eqn
(6.12)], for example) that, with ω distributed according to φ1

n,p, ωd has as
law the random-cluster measure, denoted φn,pd,d, on the dual of Λn with free
boundary condition. The event Hk,m occurs if and only if there is no dual
open path traversing the dual of Bk,m from top to bottom. We may therefore
apply the above argument to the dual process, obtaining thus that

J1
k,m,n(e) ≤

φn,pd,d(Vu)

φn,pd,d(1e)
, (6.8)

where Vu is the event that Cu intersects both the top and bottom sides of the
dual of Bk,m.

On the event Vu, the radius of the open cluster at u is at least 1
2
(m + 1).

Since φn,pd,d ≤st φpd,q,

φn,pd,d(Vu) ≤ φpd,q(u ↔ u+ ∂Λ(m+1)/2) = φpd,q(0 ↔ ∂Λ(m+1)/2).

As above, by (2.4),

φpd,q(0 ↔ ∂Λ(m+1)/2) ≤ φ0
psd(q),q(0 ↔ ∂Λ(m+1)/2) = ηm+1,

and this completes the proof when p ≥ psd(q). �

Proof of Theorem 3.10. This follows immediately from Corollary 5.5 by (6.2)
and Lemma 6.3. �

Proof of Theorem 3.4. By planar duality,

φ0
p,q(Hk) = 1 − φ1

pd,q(Hk),
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where p, pd are related by (2.3), see [19, Thms 6.13, 6.14]. Since φ0
psd(q),q ≤st

φ1
psd(q),q,

φ0
psd(q),q(Hk) ≤ 1

2
≤ φ1

psd(q),q(Hk),

and Theorem 3.4 follows from Theorem 3.10. �

7. Proof of Theorems 4.1 and 4.3

Only an outline of the proof of Theorem 4.1 is included here, since it fol-
lows the ‘usual’ route (see [18, Sect. 11.3] or [19, Sect. 6.2], for examples of
the argument). The measure πβ,h is automorphism-invariant, ergodic, and
has the finite-energy property. By the main result of [12], the number N+

(respectively, N−) of infinite + clusters (respectively, infinite − ∗-connected
clusters) satisfies

either πβ,h(N
± = 0) = 1 or πβ,h(N

± = 1) = 1.

Assume that θ+(β, h)θ−(β, h) > 0, which is to say that πβ,h(N
+ = N− = 1) =

1. One may find a box Λ sufficiently large that, with πβ,h-probability at least
1
2
: the top and bottom of its boundary ∂Λ are + connected to infinity off Λ,

and the left and right sides are − ∗-connected to infinity off Λ. Since N+ = 1
almost surely, there is a + path connecting the two infinite + paths above,
and this contradicts the fact that N− = 1 almost surely.

We turn to the proof of Theorem 4.3. For the moment, let πβ,h be the Ising
measure on a finite graph G = (V,E) with parameters β ≥ 0 and h ≥ 0. It is
well known than πβ,0 satisfies the FKG lattice condition (3.2) on the partially
ordered set ΣV = {−1,+1}V . We identify ΣV with {0, 1}V via the mapping
σx 7→ ωx = 1

2
(σx + 1), and we choose p by

p

1 − p
= e2h. (7.1)

Then πβ,h may be expressed in the form (5.1), and we may thus apply the
results of Section 5. By conditioning on the states of the neighbours of x,

e2h−∆β

e∆β + e2h−∆β
≤ πβ,h(1x) ≤

e2h+∆β

e−∆β + e2h+∆β
, (7.2)

where ∆ is the degree of the vertex x, and 1x is the indicator function that
σx = +1. Therefore,

πβ,h(1x)[1 − πβ,h(1x)] ≥ min

{

e2h

(e∆β + e2h−∆β)2
,

e2h

(e−∆β + e2h+∆β)2

}

=
e2h+2∆β

(1 + e2h+2∆β)2
. (7.3)
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This bound will be useful with ∆ = 4, and we write

ξβ,h =
e2h+8β

(1 + e2h+8β)2
. (7.4)

Note that ξβ,h is decreasing in h.
We follow the argument of the proof of Theorem 5.3. Let β ∈ [0, βc), h > 0,

and 1 ≤ k,m ≤ r < n, and consider the Ising measure πn,h = πΛn,β,h on the
box Λn = [−n, n]2. For x ∈ Z

2, write Jk,m,n(x) for the (conditional) influence
of x on the event Hk,m under the measure πn,h. We set Jk,m,n(x) = 0 for
x /∈ Λn.

Lemma 7.5. Uniformly in x ∈ Z
2,

Jk,m,n(x) ≤ (1 + e8β−2h)

[

πn,h(Bk,m
+↔ ∂Λr) + sup

x∈Λr

πn,h(x
+↔ x+ ∂Λk/2)

]

,

(7.6)

Jk,m,n(x) ≤ (1 + e8β+2h)

[

πn,h(Bk,m
−↔∗ ∂Λr) + sup

x∈Λr

πn,h(x
−↔∗ x+ ∂Λm/2)

]

.

(7.7)

Proof. Let h > 0. Let C+
x be the set of all vertices joined to x by a path

of vertices all of whose states are +1 (thus, C+
x = ∅ if σx = −1). We may

couple the conditioned measures πn,h(· | σx = b), b = ±1, such that the Ising
equivalents of (a)–(c) hold as in Section 6. As in (6.7),

Jk,m,n(x) ≤
πn,h(D

+
x )

πn,h(1x)
, (7.8)

where D+
x is the event that C+

x intersects both the left and right sides of Bk,m.
On D+

x , the radius of C+
x is at least 1

2
k.

For x /∈ Λr,

πn,h(D
+
x ) ≤ πn,h(Bk,m

+↔ ∂Λr).

For x ∈ Λr, we shall use the bound

πn,h(D
+
x ) ≤ πn,h(x

+↔ x+ ∂Λk/2).

Combining the above inequalities with (7.2), we obtain (7.6).
Let C−

x be the set of all vertices joined to x by a ∗-connected path of vertices
all of whose states are −1. The event Hk,m occurs if and only if there is no − ∗-
connected path from the top to the bottom of Bk,m. Therefore, the conditional
influence of x on Hk,m equals that of x on this new event. As in (7.8),

Jk,m,n(x) ≤
πn,h(V

−
x )

πn,h(1 − 1x)
, (7.9)

where V −
x is the event that C−

x intersects both the top and bottom of Bk,m.
The above argument leads now to (7.7). �
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Proof of Theorem 4.3. Let R > hc and δ > 0, and let k,m ≤ r < n. We set

κδ
n,r,+ = 2(1 + e8β)

[

πn,hc−δ(Bk,m
+↔ ∂Λr) + sup

x∈Λr

πn,hc−δ(x
+↔ x+ ∂Λk/2)

]

,

κδ
n,r,− = 2(1 + e8β+2R)

[

πn,hc+δ(Bk,m
−↔∗ ∂Λr) + sup

x∈Λr

πn,hc+δ(x
−↔∗ x+ ∂Λm/2)

]

.

Let 0 < h1 < hc < h2 ≤ R, and choose δ < min{hc − h1, h2 − hc}. By (7.1),
(7.3), Lemma 7.5, and Theorem 5.3, fn(h) = πn,h(Hk,m) satisfies

1

fn(h)(1 − fn(h))
· dfn

dh
≥ B+ log(1/κδ

n,r,+), h1 ≤ h ≤ hc − δ, (7.10)

where B+ = 2cξβ,hc, see (7.4). The corresponding inequality for hc+δ ≤ h ≤ R
holds with κδ

n,r,+ replaced by κδ
n,r,−, and B+ replaced by B− = 2cξβ,R.

We integrate (7.10) over the intervals (h1, hc − δ) and (hc + δ, h2), add the
results, and use the fact that fn(h) is non-decreasing in h, to obtain that

log
fn(h)

1 − fn(h)

∣

∣

∣

∣

h2

h1

≥ (hc−δ−h1)B+ log(1/κδ
n,r,+)+(h2−hc−δ)B− log(1/κδ

n,r,−).

Take the limits as n → ∞, r → ∞, and δ → 0 in that order, and use the
monotonicity in h of πβ,h, to obtain the theorem. �

8. The coloured random-cluster model

There is a well known coupling of the random-cluster and Potts models that
provides a transparent explanation of how the analysis of the former aids that
of the latter. Formulated as in [14] (see also the historical account of [19]),
this is as follows. Let p ∈ (0, 1) and q ∈ {2, 3, . . .}. Let ω be sampled from
the random-cluster measure φp,q on the finite graph G = (V,E). To each open
cluster of ω we assign a uniformly chosen element of {1, 2, . . . , q}, these random
spins being independent between clusters. The ensuing spin-configuration σ
on G is governed by a Potts measure, and pair-spin correlations in σ are
coupled to open connections in ω. This coupling has inspired a construction
that we describe next.

Let p ∈ (0, 1), q ∈ (0,∞), and α ∈ (0, 1). Let ω have law φp,q. To the
vertices of each open cluster of ω we assign a random spin chosen according to
the Bernoulli measure on {0, 1} with parameter α. These spins are constant
within clusters, and independent between clusters. We call this the coloured
random-cluster model (CRCM). With σ the ensuing spin-configuration, we
write κp,q,α for the measure governing the pair (ω, σ), and πp,q,α for the mar-
ginal law of σ. When q ∈ {2, 3, . . .} and qα and q(1 − α) are integers, the
CRCM is a vertex-wise contraction of the Potts model from the spin-space
{1, 2, . . . , q}V to Σ = {0, 1}V .
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The CRCM has been studied in [26] under the name ‘fractional fuzzy Potts
model’, and it is inspired in part by the earlier work of [13, 21, 22], as well as
the study of the so-called ‘divide-and-colour model’ of [5].

The following seems to be known, see [13, 21, 22, 26], but the short proof
given below may be of value.

Theorem 8.1. The measure πp,q,α is monotone for all finite graphs G and all
p ∈ (0, 1) if and only if qα, q(1 − α) ≥ 1.

We identify the spin-vector σ ∈ Σ with the set A = {v ∈ V : σv = 1}. Let
πh = πp,q,α,h be the probability measure obtained from πp,q,α by including an
external field with strength h ∈ R,

πh(A) ∝ eh|A|πp,q,α(A), A ⊆ V. (8.2)

It is an elementary consequence of Theorem 8.1 and (8.2) that, when qα, q(1−
α) ≥ 1, πh is a monotone measure, and πh is increasing in h. When q = 2 and
α = 1

2
, πh is the Ising measure with external field. The purpose of this section

is to extend the arguments of Section 4 to the CRCM with external field.
There is a special case of the CRCM with an interesting interpretation. Let

ω be sampled from φp,q as above, and let σ = (σv : v ∈ V ) be a vector of
independent Bernoulli (γ) variables. Let B be the event that σ is constant
on each open cluster of ω. The pair (ω, σ), conditional on B, is termed the
massively coloured random-cluster measure (MCRCM). The law of σ is simply
πp,2q, 1

2
,h where h = log[γ/(1 − γ)].

Just as πp,q,α and φp,q may be coupled via κp,q,α, so we can couple πh with
an ‘edge-measure’ φh = φp,q,α,h via the following process. With B given as
above, and (ω, σ) ∈ B, denote by σ(C) the common spin-value of σ on an
open cluster C of ω. Let κh = κp,q,α,h be the probability measure on Ω × Σ
given by

κh(ω, σ) ∝ φp,q(ω)1B(ω, σ)
∏

C

[

(αeh|C|)σ(C)(1 − α)1−σ(C)
]

, (8.3)

where the product is over the open clusters C of ω, and |C| is the number
of vertices of C. The marginal and conditional measures of κh are easily
calculated. The marginal on Σ is πh, and the marginal on Ω is φh = φp,q,α,h

given by

φh(ω) ∝ φp,q(ω)
∏

C

[

αeh|C| + 1 − α
]

, ω ∈ Ω. (8.4)

Note that φ0 = φp,q. Given ω, we obtain σ by labelling the open clusters with
independent Bernoulli spins in such a way that the odds of cluster C receiving
spin 1 are αeh|C| to 1 − α.

By (8.2), or alternatively by summing κh(ω, σ) over ω, we find that

πh(A) ∝ eh|A|(1 − p)|∆A|ZA,qαZA,q(1−α), A ⊆ V, (8.5)
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where ∆A is the set of edges of G with exactly one endvertex in A, and ZB,q is
the partition function of the random-cluster measure on the subgraph induced
by B ⊆ V with edge-parameter p and cluster-weight q. It may be checked
as in the proof of Theorem 8.1 that, for given p, q, α, the measure πh is
bounded above (respectively, below) by a product measure with parameter
a(h) (respectively, b(h)) where

a(−h) → 0, b(h) → 1, as h→ ∞. (8.6)

The measure φh has a number of useful properties, following.

Proposition 8.7. Let qα, q(1− α) ≥ 1.

(i) The probability measure φh is monotone.
(ii) The marginal measure of κh on Ω, conditional on σx = b, satisfies

κh( · | σx = 1) ≥st κh( · | σx = 0), h ≥ 0,

κh( · | σx = 1) ≤st κh( · | σx = 0), h ≤ 0.

(iii) If p1 ≤ p2 and the ordered three-item sequence (0, h1, h2) is monotonic,
then φp1,q,α,h1 ≤st φp2,q,α,h2.

(iv) We have that φp,q,α,h ≤st φp,Q, where Q = Q(h) is defined by

Q(h) =











qα, h > 0,

q, h = 0,

q(1 − α), h < 0.

We assume henceforth that qα, q(1 − α) ≥ 1, and we consider next the
infinite-volume limits of the above measures. Let G be a subgraph of the
square lattice Z

2 induced by the vertex-set V , and label the above measures
with the subscript V . By standard arguments (see [19, Chap. 4]), the limit
measure

φh = lim
V ↑Z2

φV,h

exists, is independent of the choice of the V , and is translation-invariant and
ergodic. By an argument similar to that of [19, Thm 4.91], the measures πV,h

have a well-defined infinite-volume limit πh as V ↑ Z
2. Furthermore, the pair

(φh, πh) may be coupled in the same manner as on a finite graph. That is, a
finite cluster C of ω receives spin 1 with probability αeh|C|/[αeh|C|+1−α]. An
infinite cluster receives spin 1 (respectively, 0) if h > 0 (respectively, h < 0).
When h = 0, the spin of an infinite cluster has the Bernoulli distribution with
parameter α.

Since φh is translation-invariant, so is πh. As in [19, Thm 4.10], πh is
positively associated, and the proof of [19, Thm 4.91] may be adapted to
obtain that πh is ergodic. By a simple calculation, the πV,h have the finite-
energy property, with bounds that are uniform in V (see [19, eqn (3.4)]), and
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therefore so does πh. Adapting the notation used in Section 4 for the Ising
model, let

θ1(p, q, α, h) = πh(0
1↔ ∞),

θ0(p, q, α, h) = πh(0
0↔∗ ∞).

As in Theorem 4.1, and with an essentially identical proof,

θ1(p, q, α, h)θ0(p, q, α, h) = 0. (8.8)

By the remark after (8.2) and [19, Thm 4.10], πh is stochastically increasing
in h, whence there exists hc = hc(p, q, α) ∈ R ∪ {±∞} such that

θ1(p, q, α, h)

{

= 0 if h < hc,

> 0 if h > hc.

By comparisons with product measures (see the remark prior to (8.6)), we
have that |hc| <∞.

We call a probability measure µ on Σ subcritical (respectively, supercritical)
if the µ-probability of an infinite 1-cluster is 0 (respectively, strictly greater
than 0); we shall use the corresponding terminology for measures on Ω. There
is a second type of phase transition, namely the onset of percolation in the
measure φh. An infinite edge-cluster under φh forms part of an infinite vertex-
cluster under πh. Let pc(q) be the critical point of the random-cluster measure
φp,q on Z

2, as usual. By Proposition 8.7(iv), φh is subcritical for all h when
p < pc(qmin{α, 1 − α}); in particular, for such p, φh is subcritical for h lying
in some open neighbourhood of hc. On the other hand, suppose that φ0 = φp,q

is supercritical. By the remarks above, θ1 > 0 for h > 0, and θ0 > 0 for h < 0.
By (8.8), θ1 is discontinuous at h = hc = 0. By Proposition 8.7(iii), φh ≥st φ0,
whence θ1 is discontinuous at h = hc = 0 whenever p > pc(q).

With k,m ∈ N, let Hk,m be the event that there exists a left–right 1-crossing
of the box Bk,m. A result corresponding to Theorem 4.3 holds, subject to a
condition on φh with h near hc. This condition has not, to our knowledge,
been verified for the Ising model, although it is expected to hold. In this sense,
the next theorem does not quite generalize Theorem 4.3.

Theorem 8.9. Let R ≥ 0. When hc 6= 0 we require in addition that R ≤ |hc|.
Suppose that φh is subcritical for h ∈ [hc − R, hc + R]. There exist ρi,1 =
ρi,1(p, q, α, R) and ρi,0 = ρi,0(p, q, α, R) satisfying

ρi,1ρi,0 → 0 as i→ ∞,

such that: for h1 ∈ [hc −R, hc], h2 ∈ [hc, hc +R],

πh1(Hk,m)[1 − πh2(Hk,m)] ≤ ρhc−h1
k,1 ρh2−hc

m,0 , k,m ≥ 1.
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As in the proof of Theorem 4.3, the first step is to establish bounds on
the one-point marginals of πh. This may be strengthened to a finite-energy
property, but this will not be required here. The proof is deferred to the end
of the section.

Lemma 8.10. Let G = (V,E) be a finite graph with maximum vertex-degree
∆. Then

αeh

αeh + 1 − α
(1 − p)∆ ≤ πh(σx = 1) ≤ 1 − 1 − α

αeh + 1 − α
(1 − p)∆.

Consider the subgraph of Z
2 induced by Λn = [−n, n]d, and let x ∈ Λn.

Objects associated with the finite domain Λn are labelled with the subscript
n. For b = 0, 1, let πb

n,h (respectively, φb
n,h) be the marginal measure on Σn

(respectively, Ωn) of the coupling κn,h conditioned on σx = b.
By Proposition 8.7, φ1

n,h ≥st φ
0
n,h when h ≥ 0, and φ1

n,h ≤st φ
0
n,h when

h ≤ 0. It is convenient to work with a certain coupling of the pairs (φ0
n,h, π

0
n,h)

and (φ1
n,h, π

1
n,h). Recall that Cx(ω) denotes the open cluster at x in the edge-

configuration ω ∈ Ω.

Lemma 8.11. Let h ∈ R. There exists a probability measure κ01
n,h on (Ωn ×

Σn)2 with the following properties. Let (ω0, σ0, ω1, σ1) be sampled from (Ωn ×
Σn)2 according to κ01

n,h.

(i) For b = 0, 1, ωb has law φb
n,h.

(ii) For b = 0, 1, σb has law πb
n,h.

(iii) If h ≤ 0, ω0 ≥ ω1. If h ≥ 0, ω1 ≥ ω0.
(iv) The spin configurations σ0 and σ1 agree at all vertices y /∈ Cx(ω

0) ∪
Cx(ω

1).

Proof. Assume first that h ≥ 0. There exists a probability measure φn on Ω2
n,

with support D1 = {(ω0, ω1) ∈ Ω2
n : ω0 ≤ ω1}, whose first (respectively, sec-

ond) marginal is φ0
n,h (respectively, φ1

n,h). By sampling from φn in a sequential
manner beginning at x, and proceeding via the open connections of the upper
configuration, we may assume in addition that (ω0, ω1) ∈ D2, where D2 is
the set of pairs such that ω0(e) = ω1(e) for any edge e having at most one
endpoint in Cx(ω

1). Let (ω0, ω1) ∈ D = D1 ∩D2.
The spin vectors σb may be constructed as follows:

(a) attach spin b to the cluster Cx(ω
b),

(b) attach independent Bernoulli spins to the other ωb-open clusters in
such a way that the odds of cluster C receiving spin 1 are αeh|C| to
1 − α.

We may assign spins σb to the open clusters of the ωb in such a way that: σb

has law πb
n,h, and σ0

y = σ1
y for y /∈ Cx(ω

1). Write κ01
n,h for the joint law of the

ensuing pairs (ω0, σ0), (ω1, σ1).
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When h ≤ 0, let κ01
n,h be the coupling as above, with the differences that:

ω0 ≥ ω1, and σ0
y = σ1

y for y /∈ Cx(ω
0). �

We seek next a substitute for Lemma 7.5 in the current setting. Let Jk,m,n(x)
be the conditional influence of vertex x on the event Hk,m, with reference
measure πn,h on Λn.

Let (ω0, σ0, ω1, σ1) be sampled according to the measure κ01
n,h of Lemma

8.11. Define random clusters CH
x , C

V
x ⊆ Z

2 as follows,

CH
x (ω0, σ0, ω1, σ1) := {z ∈ Z

2 : ∃y ∈ Cx(ω
0), y

1↔ z in σ1}
CV

x (ω0, σ0, ω1, σ1) := {z ∈ Z
2 : ∃y ∈ Cx(ω

1), y
0↔∗ z in σ0}

Notice that, if h ≥ 0 (respectively, h ≤ 0), CH
x (respectively, CV

x ) is the spin-1
cluster (respectively, spin-0 ∗-cluster) at x under σ1 (respectively, σ0). It may
be checked as before that:

Jk,m,n(x) ≤ κ01
n,h

(

CH
x contains a horizontal crossing of Bk,m

)

, (8.12)

Jk,m,n(x) ≤ κ01
n,h

(

CV
x contains a vertical ∗-crossing of Bk,m

)

. (8.13)

The notation CH
x , CV

x is introduced in order to treat the cases h > 0 and
h < 0 simultaneously.

Lemma 8.14. Let R be as in Theorem 8.9.

(i) If θ1(p, q, α, hc) = 0, and φh is subcritical for h ∈ [hc − R, hc], there
exists νk,1 satisfying νk,1 → 0 as k → ∞ such that

lim sup
n→∞

sup
h∈[hc−R,hc]

sup
x∈Λn

Jk,m,n(x) ≤ νk,1.

(ii) If θ0(p, q, α, hc) = 0, and φh is subcritical for h ∈ [hc, hc + R], there
exists νm,0 satisfying νm,0 → 0 as m→ ∞ such that

lim sup
n→∞

sup
h∈[hc,hc+R]

sup
x∈Λn

Jk,m,n(x) ≤ νm,0.

Proof. We prove part (i) only, the proof of (ii) being similar. If [hc −R, hc] ⊆
[0,∞), let φ = φhc; if [hc − R, hc] ⊆ (−∞, 0], let φ = φhc−R. By Proposition
8.7, and the assumptions of (i),

(a) φn,h ≤st φ for n ≥ 1 and h ∈ [hc −R, hc],
(b) φ is subcritical,
(c) πhc is subcritical, and πn,h ≤st πn,hc for h ∈ [hc − R, hc].

By Lemma 8.10, there exists L > 0 such that

πn,h(σx = 1)πn,h(σx = 0) ≥ L (8.15)

for all n ≥ 1, x ∈ Λn, and h ∈ [hc − R, hc +R]. Let

Ax(ω) = sup{r ≥ 0 : x ↔ x+ ∂Λr}
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denote the radius rad(Cx) of the edge cluster Cx = Cx(ω) at x, and note that
φ(Ax <∞) = 1.

Let r ≥ max{k,m} and x ∈ Λr. By (8.12) and the positive association of
π1

n,h, and as in (6.7),

Jk,m,n(x) ≤ κ01
n,h

(

rad(CH
x ) ≥ 1

2
k
)

≤
∞

∑

a=0

φ0
n,h(Ax = a)α1

n,h(x, a,
1
2
k)

≤ 1

L

∞
∑

a=0

φn,h(Ax = a)αn,h(x, a,
1
2
k),

where

αξ
n,h(x, a, b) = πξ

n,h

(

x+ Λa
1↔ x+ ∂Λb

∣

∣ σy = 1 for y ∈ x+ Λa

)

.

Since αn,h(x, a, b) is non-decreasing in a, and furthermore φn,h ≤st φ and φ is
translation-invariant,

sup
x∈Λr

Jk,m,n(x) ≤
1

L

∞
∑

a=0

φ(A0 = a) sup
x∈Λr

{

αn,h(x, a,
1
2
k)

}

. (8.16)

By (8.15) and the fact that πn,h ≤st πn,hc,

αn,h(x, a,
1
2
k) ≤ min

{

1,
1

L|Λr|
πn,hc(x+ Λa

1↔ x+ ∂Λk/2)

}

. (8.17)

Suppose now that x ∈ Λn \ Λr. Then

Jk,m,n(x) ≤ κ01
n,h(C

H
x ∩ Bk,m 6= ∅)

≤
∞

∑

a=0

φ0
n,h(Ax = a)β1

n,h(x, a)

≤ 1

L

∞
∑

a=0

φn,h(Ax = a)βn,h(x, a),

where

βξ
n,h(x, a) = πξ

n,h

(

x+ Λa
1↔ Bk,m

∣

∣σy = 1 for y ∈ x+ Λa

)

is a non-decreasing function of a. Since φn,h ≤st φ, and φ is translation-
invariant,

Jk,m,n(x) ≤
1

L

∞
∑

a=0

φ(A0 = a)βn,h(x, a).
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As above,

βn,h(x, a) ≤
1

L|Λa|
πn,h(x+ Λa

1↔ Bk,m)

≤ 1

L|Λa|
πn,h(Bk,m

1↔ ∂Λr−a) if a ≤ r,

whence

Jk,m,n(x) ≤
1

L

∞
∑

a=0

φ(A0 = a) min

{

1,
1

L|Λa|
πn,hc(Bk,m

1↔ ∂Λr−a)

}

, (8.18)

where the minimum is interpreted as 1 when a > r.
We add (8.16)–(8.17) and (8.18), and take the limit n → ∞, to obtain by

the bounded convergence theorem that

lim sup
n→∞

sup
x∈Λn

Jk,m,n(x)

≤ 1

L

[

∞
∑

a=0

φ(A0 = a) min

{

1,
1

L|Λa|
πhc(x+ Λa

1↔ ∂Λk/2)

}

+

∞
∑

a=0

φ(A0 = a) min

{

1,
1

L|Λa|
πhc(Bk,m

1↔ ∂Λr−a)

}

]

.

We now send r → ∞. Since θ1(p, q, α, hc) = 0 by assumption, the last
summand tends to 0. By the bounded convergence theorem,

lim sup
n→∞

sup
x∈Λn

Jk,m,n(x) ≤ νk,1, (8.19)

where

νk,1 =
1

L

∞
∑

a=0

φ(A0 = a) min

{

1,
1

L|Λa|
πhc(x+ Λa

1↔ ∂Λk/2)

}

.

By the bounded convergence theorem again, νk,1 → 0 as k → ∞. Since
(8.16)–(8.17) and (8.18) are uniform in h ∈ [hc − R, hc], one may include the
supremum over h in (8.19), as required for the lemma. �

Proof of Theorem 8.9. Let fn(h) = πn,h(Hk.m). By (5.4) and Lemma 8.10,

1

fn(h)[1 − fn(h)]

d

dh
fn(h) ≥ cL log

[

1

2 maxx Jk,m,n(x)

]

, (8.20)

with L as in the proof of Lemma 8.14. Let

ξn,k,1 = sup
h∈[hc−R,hc]

sup
x∈Λn

2Jk,m,n(x), ξn,m,0 = sup
h∈[hc,hc+R]

sup
x∈Λn

2Jk,m,n(x).
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By (8.20),

log
fn(h)

1 − fn(h)

∣

∣

∣

∣

h2

h1

≥ (hc − h1)cL log(ξ−1
n,k,1) + (h2 − hc)cL log(ξ−1

n,m,0),

whence
fn(h1)[1 − fn(h2)] ≤ ξ

cL(hc−h1)
n,k,1 ξ

cL(h2−hc)
n,m,0 .

Take the limit as n→ ∞ and use Lemma 8.14. �

Proof of Proposition 8.7. A strictly positive measure µ on Ω = {0, 1}E is
monotone if and only if: for all ω ∈ Ω with ω(e) = ω(f) = 0, e 6= f ,

µ(ωe,f)µ(ω) ≥ µ(ωe)µ(ωf), (8.21)

see, for example, [19, Thm 2.19]. Given two strictly positive measures µ1 and
µ2, at least one of which is monotone, it is sufficient for µ1 ≤st µ2 that:

µ1(ω
e)

µ1(ω)
≤ µ2(ω

e)

µ2(ω)
ω ∈ Ω, e ∈ E. (8.22)

This is proved in [19, Thm 2.6]. Condition (8.22) is non-trivial only when
ω(e) = 0.

We shall prove (i) by checking that φh satisfies (8.21). Write C(ω) for the
set of open clusters under ω, and let fh(k) = αehk + 1− α. Substituting (8.4)
into (8.21), we must check

φp,q(ω
e,f)φp,q(ω)

∏

C∈C(ωe,f )

fh(|C|)
∏

C∈C(ω)

fh(|C|)

≥ φp,q(ω
e)φp,q(ω

f)
∏

C∈C(ωe)

fh(|C|)
∏

C∈C(ωf )

fh(|C|). (8.23)

On using the monotonicity of φp,q, and on cancelling the factors fh(|C|) for
C ∈ C(ω) ∩ C(ωe,f), we arrive at the following three cases.

(i) There are clusters C1, C2 ∈ C(ω), such that C1 ∪ C2 ∈ C(ωe) = C(ωf).
It suffices that

qfh(a)fh(b) ≥ fh(a + b), a = |C1|, b = |C2|,
and this is easily checked for a, b ≥ 0 since qα, q(1− α) ≥ 1.

(ii) There are clusters C1, C2, C3 ∈ C(ω), such that C1 ∪ C2 ∈ C(ωe) and
C2 ∪ C3 ∈ C(ωf). It suffices that

fh(a+ b+ c)fh(b) ≥ fh(a+ b)fh(b+ c), a = |C1|, b = |C2|, c = |C3|,
and this is immediate.

(iii) There are clusters C1, C2, C3, C4 ∈ C(ω) such that C1 ∪ C2 ∈ C(ωe)
and C3 ∪ C4 ∈ C(ωf). In this case, inequality (8.23) simplifies to a
triviality.
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It may be checked similarly that the marginal measure of κh( · | σx = b) on
Ω is monotone if either h ≥ 0, b = 1 or h ≤ 0, b = 0. One uses the expression

κh(ω | σx = b) ∝ φp,q(ω)ehb|Cx(ω)|
∏

C∈C(ω)\{Cx(ω)}

fh(|C|), ω ∈ Ω.

Parts (ii) and (iii) then follow by checking (8.22) with appropriate µi. Part (iv)
follows from part (iii) by taking the limit as |h| → ∞. Many of the required
calculations are rather similar to part (i), and we omit further details. �

Proof of Theorem 8.1. We identify the spin-vector σ ∈ Σ with the set A =
{v ∈ V : σv = 1}. In order that π = πp,q,α be monotone it is necessary and
sufficient (see inequality (8.21)) that

π(Axy)π(A) ≥ π(Ax)π(Ay), A ⊆ V, x, y ∈ V \ A, x 6= y. (8.24)

Let A ⊆ V , x, y ∈ V \ A, x 6= y. Let a be the number of edges of the form
〈x, z〉 with z ∈ A, let b be the number of edges of the form 〈x, z〉 with z /∈ A
and z 6= x, y, and let e be the number of edges joining x and y.

We write Ax = A ∪ {x}, etc. By (8.5) with h = 0,

π(Ax)

π(A)
= (1 − p)b+e−a

ZAx,qαZAx,q(1−α)

ZA,qZA,q(1−α)

=
α

1 − α
·
φA,q(1−α)(Ix)

φAx,qα(Ix)
,

where Ix is the event that x is isolated, and φA,q is the random-cluster measure
on the subgraph induced by vertices of A with edge-parameter p and cluster-
weight q. Similarly,

π(Axy)

π(Ay)
=

α

1 − α
·
φAy,q(1−α)(Ix)

φAxy,qα(Ix)
.

The ratio of the left to the right sides of (8.24) is

φAx(Ix)

φAxy(Ix)
· φAy(Ix)

φA(Ix)
=
φAxy,qα(Ix | Iy)
φAxy,qα(Ix)

·
φA,q(1−α)(Ix | Iy)
φA,q(1−α)(Ix)

. (8.25)

Inequality (8.24) holds by the positive association of random-cluster measures
with cluster-weights at least 1.

That the conditions are necessary for monotonicity follows by an example.
Suppose 0 < qα < 1 and q(1 − α) ≥ 1. Let G be a cycle of length four, with
vertices (in order, going around the cycle) u, x, v, y. Take A = {u, v} above, so
that e = 0. The final ratio in (8.25) equals 1, and the penultimate is strictly
less than 1. �

Proof of Lemma 8.10. By Proposition 8.7(iv) and inequality (6.1),

φh(Ix) ≥ φp,Q(Ix) ≥ (1 − p)∆,
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where Ix is the event that x is isolated. Conditional on Ix, the spin of x under
the coupling κh has the Bernoulli distribution with parameter αeh/[αeh + 1−
α]. �
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