PERCOLATION

GEOFFREY R. GRIMMETT

1. A brief history of percolation theory

A child of the 1950s, percolation theory has grown to mature adulthood over the
intervening 45 years. It lies at the heart of an intense development within proba-
bility theory directed at a coherent theory of ‘random spatial processes’. It finds
applications in all areas of science, while continuing to provide a source of beautiful
and provoking problems for mathematicians and physicists.

Following the presentation by Hammersley and Morton of a paper [40] on Monte
Carlo methods to the Royal Statistical Society in 1954, Simon Broadbent con-
tributed the following discussion [17]:

“Another problem of excluded volume, that of the random maze, may be
defined as follows: A square (in two dimensions) or cubic (in three) lattice
consists of “cells” at the interstices joined by “paths” which are either open
or closed, the probability that a randomly-chosen path is open being p. A
“liquid” which cannot flow upwards or a “gas” which flows in all directions
penetrates the open paths and fills a proportion A.(p) of the cells at the
rth level. The problem is to determine A,.(p) for a large lattice. Clearly
it is a non-decreasing function of p and takes the values 0 at p = 0 and 1
at p = 1. Its value in the two-dimension case is not greater than in three
dimensions.

It appears likely from the solution of a simplified version of the problem
that as r — 0o A.(p) tends strictly monotonically to A(p), a unique and
stable proportion of cells occupied, independent of the way the liquid or
gas is introduced into the first level. No analytical solution for a general
case seems to be known.

It is not difficult to express this problem for a finite lattice in a form
suitable for Monte Carlo work by an electronic computer. The capacity of
computers is, however, insufficient for any but very small lattices. That
is another example of the authors’ remark that pen and paper might be
better than machine work. ...”

These words were stimulated by Broadbent’s work at the British Coal Utilization
Research Association, where he was involved in the design of gas masks for coal
miners. One of the authors of the RSS paper was John Hammersley!, and he
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2 GEOFFREY R. GRIMMETT

e L

Fig. 1.1. Tllustrations of bond and site percolation on the two-dimensional square
1

lattice, with p = 3.
recognised the potential of Broadbent’s model?. Their subsequent collaboration
led to a clear formulation of the percolation model, and to a striking series of early
papers containing several of the principal methods to be discovered.

Here is the model in its basic form. We start with a ‘crystalline lattice’, and
for the sake of simplicity we shall consider here only the hypercubic lattice L¢ =
(Z4,E%) in d dimensions. (The vertex set Z< is the set of all d-vectors of integers,
and the edge set E? contains all unordered pairs (z,y) of vertices z,y € Z? separated
by unit Euclidean distance.) Let 0 < p < 1, and suppose we are provided with a
coin which shows heads on each toss with probability p. We flip this coin once
for each edge e, and we call e open if the coin shows heads; the edge e is called
closed if tails are shown. The outcome of the entire experiment is a subgraph of
L¢ having vertex set Z¢ together with all open edges. Bond percolation theory is
the theory of the geometry of this open graph. See Figure 1.1 for an illustration of
two-dimensional bond percolation with p = %

The words ‘open/closed’ indicate that each edge is in one of exactly two available
states, and these words have an appealing physical motivation. We may think of
an open edge as being open to the transmission of fluid, and of a closed edge as
being blocked. If fluid is supplied at a given vertex z, then it wets exactly the set
C,, of vertices y having the property that there exists a path of open edges from z
to y. We call C; the open cluster at x, and we write C' = Cj for the open cluster
at the origin 0.

There are many physical situations to which the percolation model is relevant,
of which the following is a naive example. A porous stone is immersed in a bucket
of water. What is the probability that water reaches the centre of the stone? We
may choose to model a porous stone as a large finite subset S of the lattice L%.
Assuming that water flows along open edges but not along closed edges, we are asked
to calculate the probability that the centre of the stone (the origin of L%, say) is
joined by a path of open edges to some vertex on its surface 95, or alternatively
that CNoS # @. If S is large, or, alternatively expressed, the structure of edges is

2Hammersley and Morton replied with foresight to Broadbent’s discussion: “Mr. Broadbent’s
problem is very fascinating and difficult ...”.
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Fig. 1.2. A sketch of the percolation probability 6(p). Not all the obvious features
of this function have been proved rigorously. Note the existence of a critical point
pe. Perhaps the principal open conjecture is that 6 is continuous at the critical point
pe in all dimensions; this has been proved so far only when either d = 2 or d > 19.

exceedingly fine, then this probability is close to the probability that C is infinite.
This crude physical argument leads to the central question of percolation theory:
what is the probability 8(p) that the origin lies in an infinite open cluster? Subject
to an appropriate interpretation of Broadbent’s model, the quantity 6(p) is exactly
the function A(p) occurring in the quotation at the beginning of this section. The
quantity 0(p) is called the percolation probability, and is sketched in Figure 1.2.

An exact calculation of f(p) seems inconceivable. The marriage of geometry and
probability is challenging and often uncomfortable; exact results are rare, and exist
apparently only when there exists special structure. However, many properties
of the function # have been discovered. Its principal property is that of phase
transition. Clearly 6 is non-decreasing, since the addition of open edges may create
infinite paths but cannot destroy them. Therefore there exists a critical value pc
for p, defined by the statement that

=0 ifp<p
9(19){ . ‘
>0 if p> pe.

The fundamental property of percolation is that p. is non-trivial if d > 2, which is
to say that
0<p. <1 if d > 2.

This was proved in [18, 37, 38]; the proof is so important ‘beyond percolation’ that
some details will be presented in Section 2.1. (It is elementary that p. = 1 if d = 1,
and we assume henceforth that d > 2.)

One of the principal targets of modern probability theory and statistical physics
is to understand phase transitions and critical phenomena. Although the physical
theory is largely well developed and widely accepted, the rigorous mathematical
theory contains major open challenges. The percolation model contains a maxi-
mum of (statistical) independence, and has proved a superb testing ground for new
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methodology. Notwithstanding the large amount of effort expended on the percola-
tion phase transition, many of the central questions remain opaque (see Section 2.4).
For example, it is unknown whether 6(p;) = 0 or 6(p.) > 0 in general, although it is
widely believed that 6(p.) = 0. The corresponding property of branching processes,
namely that a critical branching process is almost surely finite, is fully understood
and relatively elementary. A proof that 6(p.) = 0 for all d > 2 would, on the other
hand, answer a long-standing open question, and will probably require new ideas.
The interested reader is challenged to prove that 6(p.) = 0 when d = 3. We note
that 6(p.) = 0 was proved by Harris [44] and Kesten [49] when d = 2, and by Hara
and Slade [42, 43] when d is sufficiently large (d > 19 is certainly enough).

Percolation theory has earned a reputation as a source of hard problems which are
easy to state and whose solutions require new methods. The most provocative such
problem was the conjecture that p, = % for bond percolation on the square lattice
L2. Originally conjectured around 1955, the simplicity of the statement provoked
many to attempt a solution. In a beautiful paper [44] dated 1960, Theodore Harris
proved that 9(%) = 0 for I, thereby deriving that p. > % Numerical simulations
suggested that p. was a little less than %, and what better evidence could support
the conjecture? When, in 1963, Sykes and Essam announced a solution to this
and related problems, much interest was aroused ([70, 71]). Unfortunately their
arguments, although reasonable, lacked a totally rigorous foundation. (Even today,
we are unable to confirm or deny a key hypothesis of their approach.)

Percolation theory entered a period of recession for mathematicians, from which
it emerged in 1978 with the simultaneous and independent publications of papers
by Russo [67] and Seymour and Welsh [68] devoted to bond percolation on the
square lattice. This was the spur to Harry Kesten which led to his beautiful proof
([49]) that p. = § for the square lattice. A masterpiece of probabilistic and geo-
metrical argument, this theorem was the beginning of a percolation era of vigour
and richness.

What is the rationale for this exact calculation in two dimensions? To a planar
graph G' we may associate a planar dual G4 constructed by placing a vertex inside
each face of GG, and by joining two such vertices by a dual edge eq whenever the
corresponding faces of G share a boundary edge e. Now consider a bond percolation
process on an infinite planar graph G. This induces a percolation process on the
dual graph G4 according to the rule: a dual edge eq is open if and only if the
corresponding primal edge e is closed. It may be seen (as in Figure 1.3) that
|Cy| < oo if and only if the vertex z lies within the interior of some circuit of open
edges of the dual graph G4. This observation, taken together with the fact that
the dual of the square lattice is isomorphic to the square lattice, is at the heart
of Harris’s result that 9(%) = 0 for the square lattice. Kesten’s proof of p, = %
exploited further the self-duality of 1.2.

For a two-dimensional lattice £ and its dual L4, one may sometimes show that

pc('c) +pc(£d) =1,

whence p.(L£) = % for appropriate self-dual lattices £. In the presence of another
link between £ and Lg, then an exact calculation may sometimes be derivable. For
example, the dual of the triangular lattice is the hexagonal lattice (see Figure 1.4).
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Fig. 1.3. A finite cluster of the square lattice, surrounded by an open dual circuit
of the dual lattice.
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Fig. 1.4. The square lattice is self-dual. The dual of the triangular lattice is the
hexagonal lattice.

The so-called ‘star—triangle transformation’ provides another link between these
two lattices, and one may then conclude that the triangular lattice has critical
probability 2sin(7w/18) and the hexagonal lattice 1 — 2sin(7/18). See [71, 72].

However beautiful these exact calculations, they mark exceptions rather than
rules. In the absence of an argument such as duality, there seems no reason to
expect percolation quantities to be calculable. A vast amount of effort and ingenuity
has been invested in deriving numerical estimates of such quantities, especially of
critical probabilities. There is a variety of methods in use, from pure ‘Monte Carlo’
to the partly analytical, and the modern computer has enabled a reasonable degree
of accuracy; see [47, p. 175] for example. However, in most cases, the corresponding
rigorous upper and lower bounds are quite far apart.

In bond percolation, the randomness is associated with the edges of the lattice.
If, instead, each vertex is designated open or closed at random, then the ensuing
model is termed site percolation (illustrated in Figure 1.1). One may consider also
‘mixed’ models in which both edges and vertices are given random states. Indeed
there is a multiplicity of possible generalisations.

In another variant, called oriented (or directed) percolation, some or all of the
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edges of the lattice are assigned a particular orientation, and one asks whether
or not there exists an infinite open path from the origin which conforms to the
orientations.

We represent the probability function by P,, and expectation by F,. The letters
‘a.s.” are an abbreviation for ‘almost surely’, and mean that the corresponding
statement has probability 1. The Euclidean norm on R? is denoted as | - |.

The next section contains an account of the current mathematical theory of per-
colation, placed in a historical perspective. Ideas from percolation have proved
to be of major importance in studying a variety of disordered systems, and Sec-
tions 3-6 contain thumbnail sketches of just a few of these, namely first-passage
percolation, epidemic models, a ‘Lorentz lattice gas’, and ferromagnetism via the
random-cluster model.

The principal mathematical accounts of percolation are [28, 31, 50], and other
books include [1, 26, 47]. No serious attempt has been made here to provide a
comprehensive list of references.

2. The mathematical theory

We explore next certain themes of the rigorous theory, and attempt to summarise
the principal progress as well as future directions for research.

2.1 EXISTENCE OF PHASE TRANSITION

It is a fundamental fact that the critical probability p. satisfies the strict inequalities
0 < pc. < 1, so long as the number d of dimensions satisfies d > 2. The proof is
based on simple but beautiful ideas, and is canonical in the sense of providing a
template for proving the existence of critical phenomena in a range of disordered
systems.

In proving that p. > 0, one uses the idea of a self-avoiding walk (SAW). A
SAW is a path of the lattice which visits no vertex more than once. Let f, be
the number of SAWSs on the lattice L¢ having n edges and with the origin as an
endpoint. In their famous paper [40] referred to above, Hammersley and Morton
showed the subadditive relation f,,+n < fimfn, whence the exponential asymptotic
fn = ") follows for some constant x = x(d) called the connective constant of
the lattice. It may be shown that 1 < k < 2d — 1. (By the way, it is a problem of
great appeal to understand the behaviour of the error term o(n). Indeed the theory
of self-avoiding walks is a first cousin of percolation theory, and this last problem
has an exact analogue in percolation. For accounts of the modern theory of SAWs,
see [60].)

Let N,, be the number of open self-avoiding walks (i.e., SAWs of open edges)
with length n and having the origin as an endpoint. If |C| = oo, then N,, > 1 for
all n, whence

(2.1) 0(p) < Py(Ny > 1) < Bp(Ny) = fup™

Since f, = &"t°(™ we deduce that 6(p) = 0 if px < 1, whence p, > r~! as
required.

In proving that p. < 1, we note first that p. = p.(L%) is non-increasing in d
(since L? may be viewed as a subgraph of L*+1). Therefore it will suffice to prove



PERCOLATION 7

Harry Kesten, Rudolf Peierls, and Roland Dobrushin in the Front Quadrangle of New
College, Oxford, November 1993.

John Hammersley and Harry Kesten in the Mathematical Institute, Oxford,
November 1993.
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pe < 1 for the square lattice 2. To achieve this we require an additional idea,
namely that of two-dimensional duality. Such a method as the following is often
called a ‘Peierls argument’, after Rudolf Peierls who made use of it in his proof of
the existence of a phase transition for the Ising model of ferromagnetism ([63]).

Let G, be the number of open circuits in the dual lattice of L? having length n
and with the origin of .2 in their interior. As noted above, C is finite if and only
if G,, > 1 for some n. Therefore,

By(IC] < 00) Y Py(Gn 2 1) <Y Ep(Gn) =Y gn(l—p)"

where g, is the number of ‘self-avoiding’ circuits of the dual lattice having length n
and with the origin in their interior. We require an upper bound for g,. It is ‘easy’
to see that g, < nf,_1, and that g, = 0 if n < 3. Hence,

1—-0(p Z nk"oMm (1 — p)m.

The summation may be made strictly smaller than 1 by a sufficiently small (but
positive) choice of 1 — p. For such p, we have that 6(p) > 0, whence p. < 1.
With a little extra work, one may obtain that (1 — p.)x > 1, which is to say that
De S 1- H_l-

Since 0 < p. < 1, a percolation model has a subcritical phase (when p < p¢), a
supercritical phase (when p > p.), and a critical point (when p = p.). The sub-
critical and supercritical phases are now fairly well understood. In contrast, there
are substantial open questions concerning the nature of the phase transition. The
physical picture provided by so called ‘scaling theory’ is widely accepted by both
mathematicians and physicists, but it remains a major challenge to mathematicians
to provide a rigorous foundation. The following three subsections are devoted re-
spectively to the subcritical and supercritical phases, and to the critical behaviour
of percolation.

2.2 THE SUBCRITICAL PHASE

We define the radius of the open cluster C' at the origin by rad(C) = max{|z]| :
x € C}. Already in [37], Hammersley sought a proof of ‘exponential decay’ when
p < pe, or more precisely that

(2.2) P,(rad(C) > n) < e7e) for n > 1, where a(p) > 0.

Exponential decay turns out to be the key to understanding the subcritical phase.
It provides a tool for estimating the probabilities of large open clusters with given
properties. For example, it implies that the largest open cluster intersecting the
cube [—n,n]? has cardinality of order {d/a(p)}log(2n), for large n.

Exponential decay turns out to be linked to the superficially weaker statement
that the mean cluster size

x(p) = Ey|C| = ZnP (IC) =n)
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satisfies
(2.3) x(p) < o0 when p < pe.

It is not difficult to show that exponential decay implies x(p) < oo, and Hammersley
[37] demonstrated the converse as early as 1957.

There has been a concrete objective for proving that x(p) < oo when p < pe.
Using delicate path-intersection properties of L2, Russo, Seymour, and Welsh [67,
68] proved in 1978 that p.(L?) = % if (2.3) holds for L?. This provoked Kesten’s
proof [49] of (2.3) for the square lattice, and hence his famous exact calculation of
Dc-

The natural generalisation of Kesten’s theorem was therefore (2.3) for general
lattices, or equivalently that exponential decay is valid for p < p.. Two separate
proofs of this emerged in 1986, from independent and distinct sources. At a confer-
ence in Minneapolis, Aizenman and Barsky [4] announced a family of differential
inequalities whose solution yielded (2.3). A special feature of their method was
that it was capable of adaptation to other models; indeed the Ising model has been
studied similarly [2, 5].

Almost simultaneously in Moscow, and working in relative isolation, Menshikov
proved exponential decay when p < p., by a direct argument. In those days,
communication between East and West was fragmented and problematic. Aided
by the First World Congress of the Bernoulli Society, held in Tashkent in September
1986, Menshikov’s results reached the West, albeit in Russian.

The 1980s were a wonderful period for percolation. The decade opened with the
long awaited resolution of the conjecture that p.(L?) = % Through the subsequent
work of Aizenman, Barsky, Chayes, Chayes, Kesten, Menshikov, Newman and their
colleagues, the general theory developed to encompass more general questions and
dimensions, and then exponential decay emerged in total generality. At the end
of the decade, the principal structure of the supercritical phase was established, as
summarised next.

2.3 THE SUPERCRITICAL PHASE

Suppose that p is such that 6(p) > 0, and let I denote the number of infinite open
clusters. There is an easy argument using Kolmogorov’s zero—one law which implies
that P,(/ > 1) = 1, which is to say that there exists a.s. an infinite open cluster.
Could there exist two or more such clusters? Intuition suggests not, within the
confines of a finite-dimensional space, but proof was required. Further stimulation
for the question was provided by the realisation ([14]) that 6 is continuous at any
point p (> p.) so long as I =1 a.s. for that value of p.

The a.s. uniqueness of the infinite open cluster was finally established in 1987
([7]), by an arguably mysterious method involving ‘boundary conditions’ and a
quantitative estimate of ‘large deviation’ type. Any mystery was removed by the
subsequent work of Burton and Keane [21], who decoupled the geometry from the
probability in a transparent manner, thus achieving a proof of uniqueness which
uses no estimate, but only the ‘ergodicity’ of the ‘product measure’ P,. Their
beautiful argument proceeds by the following sequence of steps.
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Fig. 2.1. Anillustration of the map of trifurcations inside a box. Note the forest-like
structure.

Let us call a vertex x a trifurcation if: |Cy| = oo, but the removal of z turns C,
into three disjoint infinite open clusters and no finite clusters. Suppose henceforth
that 0 < p < 1.

1.

There erists a constant m, depending on p, such that P,(I = m) = 1.
(Proof by ergodicity.)

It must be the case that m € {0,1,00}. (Proof by contradiction: Suppose
that m > 2. Find a large box B which intersects two or more infinite
open clusters. By making all edges within B open, we may obtain that
P,(I <m —1)> 0. This is a contradiction unless m = m — 1, which is to
say that m = o0.)

Suppose m = oc (so that m > 3, in particular). It follows that m =
P,(0 is a trifurcation) > 0. (Proof: Find a large box B which intersects
three or more infinite open clusters, and ‘re-define’ the states of edges inside
B in such a way that the origin becomes a trifurcation.)

It is the case that m € {0,1}. (There follows the geometrical part of the
proof. Suppose that m = oo. By Step 3 and the ergodic theorem, the
number of trifurcations inside the box B,, = [~n,n)% has order of magnitude
7|By|. We draw a map of these trifurcations, and the paths between them
(see Figure 2.1), thereby obtaining a forest-like graph of degree 3 having
boundary vertices lying in the surface 0B,, of B,,. It is an elementary fact
of graph theory that such graphs have boundary comparable in size to their
volume, whence |0B,| > cr|B,| for some ¢ > 0. However |0B,,| and |B,,]|
have orders of magnitude (2n)?~! and (2n)? respectively. This provides a
contradiction for large n.)

The above argument is well suited for generalisations to other models, and it has
proved extremely useful in other contexts (see [16, 30] for example).

If the finiteness of x(p) is the key to the subcritical phase, what is the correspond-
ing key to the supercritical phase? Using duality, one may see that two-dimensional
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bond percolation is supercritical if and only if its dual is subcritical. This fact en-
ables a fairly full study of the supercritical phase in two dimensions. However, the
picture is much more complicated when d > 3.

Suppose d > 3. Let M be a positive integer, and let Spr = {0,1,..., M}4=2x 72
be a ‘slab’ of L? having thickness M. Interpreting Sys as a subgraph of L?, then
Sar has a critical probability p.(Sas). Since Sy € Syre1 € Z% we have that
Pc(Sn) > pe(Sms1) > pe; therefore the limit pe = limy,— o0 pe(Sar) exists and
satisfies p. > p.. We now ask whether or not

(2'4) ﬁc = Pc-

Given that p. = p¢, one may study in detail the supercritical phase. More
precisely, if p satisfies p > p., then much may be learned about the corresponding
percolation model, by exploiting and refining the following rough argument. If p >
Pe then p > p.(Sys) for some M. Now, Z¢ may be partitioned into translates of Sy;.
Each such translate is (topologically) two-dimensional, and is supercritical (since
p > pc(Sm)). Two such translates are disjoint, and therefore the corresponding
percolation processes are independent. It follows that, a.s., each translate of Sy,
possesses an (essentially) two-dimensional infinite open cluster. If required, one
may obtain estimates for the geometry of such a cluster by using two-dimensional
arguments. In this way, one gains a control over the geometry of percolation in
7%, whence estimates of value follow. If p. = p., then such estimates are valid
throughout the supercritical phase.

Here are some examples of possible conclusions. Unlike the subcritical phase,
the decay of P,(|C| = n) is not exponential. Rather, there exist positive functions
a(p), B(p) such that

exp(—a(p)n'=V/?) < By(IC| = n) < exp(=B(p)nt=1/7),

which is to say that the decay is ‘stretched exponential’. It is believed that the
limit

. 1
m {‘W log P, (|C| = n)}

exists, but this is known only when d = 2 (see [10]).

The above estimate concerns the volume of C. Turning to a one-dimensional
measure of C, we define its radius rad(C') = max{|z| : z € C'} as before. Using slab
arguments as above ([23, 28, 31]), one may obtain that

P,(n < rad(C) < 00) = e ™) Foln)

for some (p) satisfying 0 < v(p) < co.

Somewhat similar to (2.3) in the subcritical case, a completely separate argument
is necessary for the proof that p. = p., and this was provided in 1990 by Grimmett
and Marstrand [33]. Their proof uses what is known as a ‘block’ or ‘renormalisation’
argument, and such methods have proved very valuable in a variety of contexts.
The basic idea is as follows. We partition Z? into a union of (disjoint) translates
of the cube [0, M]?. We now construct a certain event for any given block with the
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property that this event has probability close to 1 (for example, this event might
be of the type ‘there exist at least R open crossings of the block, in each of the d
possible directions’). Viewing each block as a composite vertex in a new lattice,
one obtains that the good blocks (i.e., the blocks for which the event in question
occurs) form a supercritical site percolation process having density close to 1. One
now combines known facts about such a ‘renormalised’ process, together with an
appropriate choice of the event in question, in order to obtain properties of the
original system. Various difficulties arise in developing this programme, but these
may largely be overcome, thereby obtaining amongst other things that p. = pe.

The absence of a general proof that f(p.) = 0 was remarked earlier. Some
impact on this question has been made by block arguments, but they are curiously
incomplete (see [11, 33]). The following ‘absurd’ possibility has not been ruled out
for 2 < d < 19: when p = p,, there exists a.s. an infinite open cluster in Z¢, but no
half-space of Z? contains such a cluster.

2.4 AT AND NEAR THE CRITICAL POINT

It is one of the most fascinating problems of modern probability theory to build
a rigorous theory of phase transitions. Percolation has been at the forefront of
progress in recent years, but the story is far from complete. The basic question
is to understand the behaviour of the process within a finite box, in the double
limit as p — p. and as the size of the box tends to infinity. A rich picture has
emerged from the physics literature; mathematicians’ understanding of this picture
is significant but far from exhaustive (see [28, Chaps 7-8]).

Here is a mathematician’s sketch of the physical theory. The critical point p.
marks a singularity, and otherwise smooth functions behave singularly at this point.
It is believed that this singularity is of ‘power’ type. More precisely, it is believed
that there exist non-trivial critical exponents 3, such that

e(p) ~ (p _pc)ﬁ as p ~L Dc,

x()=[p—p|”7  aspTpe.

(The asymptotic relation ~ should be interpreted in an appropriate manner, for
example in the manner of ‘logarithmic asymptotics’.) In fact, any ‘macroscopic
quantity’ should have a power law singularity; one may postulate thus at least five
critical exponents, of which 4 and ~ are but two.

Now fix p = p., and look on increasing ‘length scales’. Tt is believed that there
exist further critical exponents 9, p such that

P, (IC|=n) ~n~'71/° as n — 0o,

P, (rad(C) =n) ®n~ 77 asn — .
Another exponent 7 is postulated in a similar manner.

Appealing but non-rigorous methods suggest that these eight critical exponents
satisfy a collection of four ‘scaling relations’. Further arguments suggest that, if d is
not too large, then they satisfy two further relations called ‘hyperscaling relations’.
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It is generally the case that, for a given model of statistical mechanics, eight
numbers can be defined in manners analogous to those alluded to above for per-
colation. Although these numbers will generally depend on the model, they are
expected to satisfy the same scaling and hyperscaling relations. In addition, for any
given model and number d of dimensions, their values should not depend on the
particular lattice in use. For example, the values of 8 and ¢ should be the same for
both bond and site percolation on both the square and triangular lattices. Such
statements are referred to under the title of ‘universality’.

Furthermore, for a two-dimensional percolation model, some individuals find
reason to believe that 3 = ;’—6, v = %, 0= %, and so on. Such predictions are
so distant from mathematical rigour that mathematicians tend to be shy of words
such as ‘believe’ and ‘accept’ in this context.

Just as d = 2 is special, so is the case of ‘large d’. The idea is that, when d
is large, then the singularity should have the same qualities as when the lattice is
replaced by a binary tree. Percolation on a tree is an old friend, namely a branching
process. Exact calculations for a branching process lead to the prediction of exact
values for critical exponents ‘for large d’, namely the ‘mean-field values’ = 1,
v =1, =2, and so on. In a remarkable series of papers, Hara and Slade [42, 43]
have proved results of this type, based in part on work of Aizenman and Newman [§]
and others. Their method is known as the ‘lace expansion’, and they have wielded
it with virtuosity in their solutions to many models for large d, including lattice
animals, self-avoiding walks, and percolation.

In order to be concrete, we state here some of the results of Hara and Slade:
they have proved that § and « exist and satisfy § = v = 1, under the assumption
that d > 19. It is believed that such calculations may be extendable to values of d
satisfying d > 7, or even perhaps d > 6. For 2 < d < 6, critical exponents are not
expected to take their mean-field values.

One of the most remarkable families of conjectures of stochastic geometry to
have emerged recently is that of ‘conformal invariance’. It concerns two-dimensional
percolation, and is supported by numerical evidence (see [57]). Roughly speaking,
part of the conjecture is that crossing probabilities for critical percolation are in-
variant under conformal maps of R2. More precisely, let C' be a simple closed curve
of R?, and let o and 3 be arcs of C. Let r > 0, and consider the probability
P,.(ra <> rf in rC) that the interior of the dilated copy rC' of C' contains an open
path joining the dilated arcs ra and rf3. First, it is believed that the limit

(2.5) (e, 5;C) = lim P, (ra < rfin rC)
00

exists for all o, 3, C.
Now, let ¢ be a conformal mapping on the interior C' which is bijective up to its
boundary. The principle of conformal invariance predicts that

m(pa, pB; ¢C) = (e, 55 C).

Extensive numerical simulation supports this conjecture. For fuller discussion of
this principle and for recent results, see [3, 57].

A prospective relationship with conformal field theory had led to a startling
prediction for exact values of crossing probabilities known as Cardy’s formula [22].
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For simplicity, let us consider site percolation on the square lattice 2. Take C' to
be a rectangle with side-lengths a and b, and consider the event that there exists
an open crossing between its opposite sides having length a. When p = p., the
corresponding quantity 7 (a, b; C') given in (2.5) is conjectured to equal

5)
)2

where I' is the gamma function, o Fy is a hypergeometric function, and 8 is a known
function of the ratio a/b.

3T
I'(

—~

. 2/3 12 4 2
sin?/ 0 2Fi(3,35,3,sin"0)

Wl

3. First-passage percolation

First-passage percolation is the half-brother of percolation. It was formulated by
Hammersley and Welsh [41] in 1965 as a time-dependent model for the flow of liquid
through a porous body. Motivated by a need to understand the concept of the
velocity of this flow, Hammersley and Welsh were led to the idea of a ‘subadditive
stochastic process’. Subadditive processes are now a standard tool of much power
in probability theory.

We begin with the lattice L? where d > 2. To each edge e we assign a random
variable T'(e) (called the time coordinate of e), which we interpret as the time
required for liquid to traverse e; we assume that the T'(e) are non-negative and
independent, with some common distribution function F.

For any path 7, the corresponding passage time T'(w) is the sum of the time
coordinates of the edges in m. The first-passage time a(x,y) between two vertices
x and y is defined as the infimum of the passage times of all paths from z to y. If
we supply liquid at x, then it will arrive at y after an elapsed time a(x,y).

How fast does liquid spread through the medium? It is a basic observation that
the a(x,y) satisfy the subadditive inequality,

a(z,y) < a(z,z)+a(z,y) for all z,

and many interesting facts may be deduced from such inequalities and their ramifi-
cations. In particular, it follows by the subadditive ergodic theorem (see [53]) that
the limiting velocity lim,,_, o a(0,nz)/n exists in every direction .

One of the principal objects of study is the wet region at time ¢t when liquid
is supplied at the origin, i.e., the set W(t) = {z : a(0,2) < t}. The easiest way
to describe the asymptotic behaviour of W (t) for large ¢ begins by ‘filling in the
holes’. Thus we define W(t) = W(t)+[—2, 1], aregion in R?. The set W(t) grows

202
linearly as time passes, in the following sense. Subject to an appropriate moment

condition on F', there exists a non-random set L having non-empty interior such
that either

a) L is compact and
(a)

1~
(1—-¢)LC n W(t) C (1+¢€)L eventually, a.s.,

for all € > 0, or
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(b) L =R?, and
1 — 4
n Wi(t) 2 [-M, M] eventually, a.s.,

for all M > 0.

Case (b) holds if and only if a typical time coordinate T satisfies P(T = 0) > p.,
which is to say that the set of edges with zero time coordinate forms a bond per-
colation process which is either critical or supercritical. The earliest such ‘shape
theorem’ was proved by Richardson [65] in 1973. See [24, 51, 52] for more informa-
tion and references.

Few non-trivial facts are known about the limit set L, and much effort has
been spent, largely inconclusively, on attempting to decide whether L can ever be
a Buclidean circle. More recently, interest has been concentrated on building a
fluctuation theory for the set W (t¢): on what scale of ¢ does W (t) differ from the
dilated region tL? See [9] for example.

4. Epidemic models

It has long been realised that realistic models for the spread of disease must in-
corporate information about the interactions between individuals, and that such
interactions are often governed by a spatial distribution. In 1974, Harris intro-
duced the contact process as a model for a spatial epidemic, and he proved some
striking results (see [45]).

The model is as follows. Let us suppose that individuals are placed at the vertices
of the lattice L?* where d > 1, and let A and 6 be strictly positive constants. At
each time ¢, the individual at z is in one of two possible states labelled 1 and 2; the
state 1 means ‘ill’ or ‘infected’ and the state 2 means ‘susceptible’ (to illness). We
postulate that the disease is transmitted according to the following probabilistic
rules. If the individual at = has state 1 (i.e., is ill) at time ¢, then it becomes
susceptible during the short time interval (¢, ¢+ h) with probability 6h+o(h). Here
J is the rate of cure. If the individual at = has state 2 (i.e., is susceptible) at time ¢,
then it becomes ill during the interval (¢, t+h) with probability Anh+o(h) where n is
the number of ill neighbours of x. Here A is the rate of infection. Thus, cures occur
spontaneously at rate ¢, and infection spreads at rate A by way of contact between
infected individuals and susceptible neighbours. (A full definition of the contact
process involves a Markov process whose infinitesimal transition probabilities are
given as above.)

A main question is whether or not the disease survives over all time intervals how-
ever long. Suppose that, at time 0, all individuals are susceptible except the origin
which is ill. Does the disease spread, with strictly positive probability, throughout
the entire infinity of space? More precisely, let

P(A, 0) = Py s (infection exists at all times ¢ > 0)

where P, 5 is the appropriate probability measure. It is not hard to see, by re-
setting the speed of the clock, that (), d) is a function of the ratio A\/d only, and
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time

space

0

Fig. 4.1. The so called ‘graphical representation’ of the contact process when d = 1.
The horizontal line represents ‘space’, and the vertical line above a point z represents
the time axis at #. The marks o are the points of cure, and the arrows are the arrows
of infection. Suppose we are told that, at time 0, the origin is the unique infected
point. Then all subsequent infections may be mapped by following the evolution of
the graph in the direction of increasing time, and by conforming to the points of cure
and the arrows of infection. In this picture, the initial infective is marked 0, and the
bold lines indicate the portions of space—time which are infected.

so we may write ¥(A) = (A, 1). ‘Evidently’, 9()\) is non-decreasing in A, whence
there exists a critical value \. such that

¢()\){:0 if A< A¢
>0 if A> A

The analogy with percolation is strong, with v taking the role of the percolation
probability 6. Harris [45] proved amongst other things that A. is non-trivial, in the
sense that 0 < A < o0 if d > 1.

In Harris’s first paper, he regarded the contact process as a Markov process &
with a given structure. In a later paper [46], he exploited the fact that, suitably
reformulated, the contact process is a percolation process of a certain type. His
reformulation is as follows. We enrich the lattice L? by considering the space
S = 7% x [0,00); a typical point s = (x,t) € S represents the vertex z at time t.
We now add a collection of random marks to S, whose interpretations will be clear
soon. On each ‘time line’ z x [0,00), for x € Z%, we place a collection of marks
(which might be called ‘points of cure’) in the manner of a Poisson process with
intensity J; this requires in particular that a short interval = x (¢,¢+ h) contains a
point of cure with probability 6k + o(h) as h | 0. Next, for each ordered pair z,y
of neighbours of L%, we place arrows (called ‘arrows of infection’) directed from x
to y along the line  x [0,00) in the manner of a Poisson process with intensity .
See Figure 4.1.

Here is the interpretation of these marks. Suppose that the vertex x is ill at time
t. Then it remains infected until the first subsequent point of cure, i.e., until the
time 7' = inf{s > t : (z,s) is a point of cure}. Meanwhile, whenever there exists
an arrow oriented from x to y during the time-interval z x (¢, T'], then the infection
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at x spreads to y. (If y is already ill, the new infection has no effect.) It is a simple
matter to check that the infection spreads in the manner of the contact process.

With infection originating at the origin only, then the infection continues for-
ever if and only if S contains an infinite path which begins at the origin, moves in
the direction of increasing time only, and is permitted to traverse infection arrows.
See Figure 4.1 again. The probability of this event is nothing but the percola-
tion probability for the oriented partly-continuous percolation system constructed
above.

Once this link is made, it is not surprising that percolation technology may be
adapted in order to study the contact process. Here is a major example of this.
Two questions which remained open for some years were as follows.

e Is it the case that the critical contact process dies out, which is to say that
P(Ac) =07

e If A > )\ and infection originating at the origin continues forever, then can
one prove a ‘shape theorem’ for the manner of its spread? (Cf. the shape
theorem of first-passage percolation.)

Building on the block arguments alluded to in Section 2.3, in 1991 Bezuidenhout
and Grimmett [15] provided the final steps necessary to answer both questions
affirmatively.

Slightly more realistic epidemic models require that individuals experience a
period of ‘removal’ after being cured. Removal periods represent periods of invul-
nerability to infection, and can be of infinite length in the case of ‘death’. For a
fatal disease which invariably kills infected individuals, all removal periods are in-
finite, and such an ‘epidemic without recovery’ corresponds to the contact process
with = 0. This system is quite different from that considered above; infection
never recurs, but must either become extinct, or be driven ever onwards in the
manner perhaps of a fairy ring, or perhaps of the boundary of a forest fire which
has consumed its interior. Kuulasmaa showed in 1982 ([55]) that this system also
is percolative, but in a different sense from that above. Let Az denote the set of
all neighbours of a vertex x. For each z, we draw oriented edges from z to some
random subset of Az chosen according to a certain probability function pu. Let
0(u) denote the probability that this ‘partly dependent’ oriented percolation model
contains an infinite oriented path beginning at the origin. If y is chosen correctly,
then 0(u) equals the probability that infection originating at the origin reaches in-
finitely many vertices (in the above epidemic without recovery). Even though this
percolation process is not constructed entirely from independent events, some of
the techniques of percolation theory may be extended in order to understand its
geometry, thereby learning about the epidemic without recovery.

There is an intermediate type of epidemic, in which recovery takes place after
finite time intervals. Such processes can be very much harder to study, since they
generally lack even the elementary property of monotonicity. In the contact process
with A > 0 and 6 > 0, the greater is the initial set of infectives, the more extensive
is the spread of the disease. This can fail in more general systems for the following
‘simple’ reason. By adding an extra infective, one may subsequently infect a point
which, during its removal period, prevents the infection from spreading further.
Self-protection in a forest fire may be achieved by burning a pre-emptive firebreak.
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Fig. 5.1. A labyrinth of mirrors on the square lattice. The ray of light is reflected
by the mirrors, and it is a problem is to determine, for a given density of mirrors,
whether or not the light is a.s. restricted to a finite region.

See [25, 58] for further information about contact processes, and [13] for recent
results concerning both the contact process (without recovery) and a more general
contact process incorporating temporary removals.

5. Illumination of reflecting labyrinths

An electron travels through an environment of massive particles, suffering deflec-
tions when it impacts on these particles. In three essays [59] published in 1905,
Hendrik Lorentz proposed a model sometimes referred to now as a ‘Lorentz lattice
gas’. Developed further by Ehrenfest under the name ‘wind—tree model’, and trans-
ferred to the square lattice, the physical phenomenon has given rise to a concrete
problem of probability theory having substantial appeal.

Let 0 < p < 1. We call each vertex z of the square lattice L2 a mirror with
probability p, and a crossing otherwise; different vertices receive independent des-
ignations. Given that = is a mirror, we call it a north-west (NW) mirror with
probability % and a north-east (NE) mirror otherwise. We now place two-sided
plane mirrors at vertices of L? in the prescribed configuration (see Figure 5.1). A
ray of light is shone northwards from the origin. When it strikes a crossing, it passes
through undeflected. When it strikes a mirror, it is reflected through a right angle
in the appropriate direction. It is not hard to see that: either the light traverses
a semi-infinite path beginning at the origin (possibly with self-intersections) or it
traverses a closed (finite) loop. Let {(p) be the probability of the former situation,
i.e., £(p) is the probability that the light illuminates infinitely many vertices. The
problem is to determine for which values of p (if any) it is the case that &(p) > 0.

In this lattice version of the Lorentz model, the mirrors represent the massive
particles and the light represents the electron. There are continuum versions of the
problem also (see [19, 69]).

It is apparently very difficult to determine whether or not £(p) > 0 for a given
value of p. The only trivial fact is that £(0) = 1, and the only other known value
is £(1) = 0. There are conflicting intuitions when 0 < p < 1, and numerical
simulations seem to suggest that {(p) = 0 whenever p > 0. The difficulty of the
problem seems to lie in the fact that it is a mixture of a dynamical system and a
random environment. Conditional on the environment of mirrors, the light behaves
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Fig. 5.2. When p = 1, the labyrinth of mirrors gives rise to a critical bond perco-
lation process on a certain ‘diagonal’ copy £ of the square lattice L2, drawn here in
bold and broken lines respectively.

deterministically, but its trajectory can be very sensitive to minor changes in the
positions of the mirrors.

That £(1) = 0 follows from a percolation argument. The history of this is
slightly vague. It was certainly known in 1978, but appeared first in print in
1989 ([28]); further results appeared in [20]. The argument is as follows, and is
illustrated in Figure 5.2. We work on an ancillary ‘diagonal lattice’ £ having vertex
set (m+3,n+3) for m,n € Z with m-n even; there is an edge joining (m+3,n+1)

and (r+ 3, s+ 3) if and only if [m —r| = |n—s| = 1. We now use the mirrors of L
to obtain a bond percolation process on £. An edge of £ joining (m — %, n— %) to

(m+ %, n—+ %) is declared open if the vertex (m,n) of L2 is a NE mirror; similarly
the edge of £ joining (m — 1,n+ 1) to (m+ %,n — 1) is declared open if (m,n) is
a NW mirror. Since L is isomorphic to the square lattice, the resulting process is a
bond percolation model on a square lattice at density %p. When p = 1, this density
equals %, and it is known that the percolation probability 0 satisfies 9(%) =0 (see
[44], or Section 1 of the current paper). This implies (by duality) that the origin
of I? is contained a.s. in the interior of some open circuit D of £. Now, each
edge of D corresponds to a superimposed mirror, and therefore D corresponds to
a ‘barrier’ of mirrors surrounding the origin. Light cannot escape such a barrier,
whence £(1) = 0.

There are numerous related systems which pose interesting challenges to the
physicist and mathematician. For example, there are many other reflecting bodies

than simple plane mirrors. In fact, in d (> 2) dimensions, there exist exactly

d (2d)!
Z (28)124=5(d — s)!

s=0

such bodies (see [31]). Very little indeed is known about the trajectories of light
rays illuminating general ‘random labyrinths’ of mirrors.
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In further work, Ruijgrok and Cohen [66] have proposed a study of ‘rotator’
models as well as ‘mirror’ models. In the simplest rotator model, a vertex of I? is
designated as one of three types: a ‘right’ rotator, a ‘left’ rotator, or a ‘crossing’.
As before, light traverses a crossing without deflection, but when incident on a right
(resp. left) rotator, it is deflected 90° to the right (resp. left). It is not yet clear
what methods may be used to develop a satisfactory mathematical theory of such
systems.

In another development, one introduces a little extra randomness into the en-
vironment, as follows. Let p. > 0. We designate each vertex a ‘random-walk
point’ with probability p,w; otherwise it may be a mirror or a crossing as above.
When light is incident on a random-walk point, then a fair die is thrown in order
to choose the exit direction; in dimension d, each of the 2d possible directions has
equal probability (2d)~!. Methods from percolation theory may be used in order to
control the geometry of the ensuing labyrinth, and partial results follow. We state
two of these briefly.

Consider a general reflecting labyrinth in two or more dimensions with a strictly
positive density py, of random-walk points. If the density of non-trivial reflectors
is sufficiently small (a reflector is called non-trivial if it is not the crossing) then

e the light illuminates an infinite set with strictly positive probability, and

e when this occurs, then the light is ‘diffusive’ in the sense that its position
after n steps has (asymptotically) a normal (Gaussian) distribution with
mean 0 and variance dn.

Here, 0 is a strictly positive constant, which depends on the parameters of the
labyrinth of mirrors. Further details may be found in [16, 31, 32, 34].

6. Ferromagnetism and random-cluster models

Perhaps the most famous spatial model of statistical physics is the Ising model for
ferromagnetism. Founded in work of Lenz and Ising [48], this process has generated
tremendous interest and has provided the setting for the development of a repertoire
of techniques of wide applicability. The underlying physical phenomenon is the
following. Consider the experiment of placing a piece of iron in a magnetic field;
the field is increased from zero to some maximum, and then reduced back to zero.
The iron may retain some residual magnetisation, but only when the temperature is
not too high. There exists a critical temperature 7, marking the division between
the two phases. In the Ising model, the iron is modelled by a part of a lattice,
each vertex of which may be in either of two states labelled + and —. The states
at neighbouring points interact in the manner of a so called ‘Gibbs state’ (see [27,
58]).

One generalisation of the Ising model is that proposed by Potts [64] in 1952. A
feature of the Potts model is that each vertex may be in any of ¢ distinct states,
labelled 1,2, ... ,q; the Ising model is recovered when ¢ = 2. The Potts model also
has a phase transition at some critical temperature T¢(q).

It is a remarkable fact that the Ising and Potts models, together with the percola-
tion model, may be placed within a unified system having a coherent methodology.
This was discovered in the late 1960s by Fortuin and Kasteleyn, and led to their
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formulation of a process which they called a ‘random-cluster model’. Their con-
struction is unusual, and the reader may wonder how Fortuin and Kasteleyn were
led to it. The answer is that Kasteleyn observed that a number of different systems
enjoy ‘series and parallel laws’. The best known of these is electrical networks, in
which two resistances of size r; and r9 may be replaced by a single resistance of
size r1 + ro if in series, or (7'1_1 +7“2_1)_1 if in parallel. Percolation, Ising, and Potts
models have a similar property, and Kasteleyn wished to understand whether these
common properties indicated a more extensive common structure. A historical
account may be found in [29].

The random-cluster model is as follows. Let 0 < p < 1 and ¢ > 0: these are the
parameters of the system. Let G = (V, E) be a fixed finite graph, and let F' be a
subset of E chosen according to the following probability function ¢, ,:

(6.1) bp.a(F) = %piFi(l _ p)|E\FI gh(r)

where k(F') is the number of connected components of the graph (V, F'), and Z is
a constant which is chosen to ensure that ) g ¢p.q(F) = 1.
Let us consider some special values. First, if ¢ = 1, then

pp1(F) = plFl(1 — p)EVFI,

which is to say that different edges are present independently of one another, each
with probability p; this is bond percolation on G. If ¢ = 2,3,... then ¢, , is
related to the Potts model with ¢ states, and in which p is a certain function
of the temperature and ‘pair-interaction’. In particular, ¢, o corresponds to the
Ising model. This, and many other useful facts, were discovered by Fortuin and
Kasteleyn.

There is a difficulty which is not present for percolation, namely how to define
a random-cluster model on an infinite graph; formula (6.1) simply does not work
directly in this case. The answer, as with the Ising model, is to let ¢4 , , be the
random-cluster measure on a finite subgraph A of an infinite lattice, and to pass
to the limit as A expands to fill out the whole space. This process is known as
‘passing to the thermodynamic limit’. A full description would require a discussion
of ‘boundary conditions’, and this is not appropriate here. Let ¢, , denote the
limiting probability measure for the whole lattice, and let

0(p,q) = ¢p,q(0 belongs to an infinite cluster)

be the corresponding percolation probability. It turns out that, for fixed ¢ > 1,
there exists a critical value of p, written p¢(q), such that

( ){ZO if p < pe(q)
POV >0 ifp > pela).

Furthermore, p.(1) is the critical probability of bond percolation, and when ¢ =
2,3,... then p.(q) may be expressed in terms of the critical temperature T,(q) of
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the g-state Potts model. In this sense (and indeed further) the phase transition of
the random-cluster model generalises those of percolation, Ising, and Potts models.

Since the random-cluster model generalises so many systems of interest, it has
been natural to develop a coherent theory thereof. A body of techniques has
emerged in recent years, but many mysteries remain unresolved. For example,
two known facts are:

e if O(p,q) > 0, there exists a.s. a unique infinite cluster,
e if ¢ is large, say ¢ > Q(d), then 0(p.(q),q) > 0.

[See [30, 31, 54, 56]. Actually some technical assumptions involving boundary
conditions are needed for these conclusions.] The second fact is particularly striking,
since it implies that 0(-, q) is discontinuous at the critical point, in contrast to the
corresponding conjecture for percolation (i.e., when ¢ = 1).

In contrast, one may conjecture that

e if ¢ is small, say 1 < g < Q(d), then 0(p.(q),q) =0,
e if ¢ > 1 and p < pc(q), then ¢, 4 (rad(C) > n) decays exponentially as
n — oo (cf. (2.2)).

There is a rich family of conjectures for random-cluster models, ranging from
exact calculations, conformal invariance, and a Cardy formula when d = 2 and
1 < g < 4, to the belief that Q(2) = 4 and Q(d) = 2 when d > 6. In addition, very
little is known when 0 < g < 1.

This beautiful model is an outstanding challenge to mathematicians. It promises
a unified structure which will explain further the Ising and Potts models, and which
places them in the context of percolation. It indicates a mechanism for moving
between models which will find further applications in statistical physics, and via
methods of Monte Carlo simulation to statistical science. Further accounts include
[6, 12, 30, 31, 35, 36].
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