
PERCOLATIONGeoffrey R. Grimmett
1. A brief history of percolation theoryA child of the 1950s, percolation theory has grown to mature adulthood over theintervening 45 years. It lies at the heart of an intense development within proba-bility theory directed at a coherent theory of `random spatial processes'. It �ndsapplications in all areas of science, while continuing to provide a source of beautifuland provoking problems for mathematicians and physicists.Following the presentation by Hammersley and Morton of a paper [40] on MonteCarlo methods to the Royal Statistical Society in 1954, Simon Broadbent con-tributed the following discussion [17]:\Another problem of excluded volume, that of the random maze, may bede�ned as follows: A square (in two dimensions) or cubic (in three) latticeconsists of \cells" at the interstices joined by \paths" which are either openor closed, the probability that a randomly-chosen path is open being p. A\liquid" which cannot 
ow upwards or a \gas" which 
ows in all directionspenetrates the open paths and �lls a proportion �r(p) of the cells at therth level. The problem is to determine �r(p) for a large lattice. Clearlyit is a non-decreasing function of p and takes the values 0 at p = 0 and 1at p = 1. Its value in the two-dimension case is not greater than in threedimensions.It appears likely from the solution of a simpli�ed version of the problemthat as r ! 1 �r(p) tends strictly monotonically to �(p), a unique andstable proportion of cells occupied, independent of the way the liquid orgas is introduced into the �rst level. No analytical solution for a generalcase seems to be known.It is not di�cult to express this problem for a �nite lattice in a formsuitable for Monte Carlo work by an electronic computer. The capacity ofcomputers is, however, insu�cient for any but very small lattices. Thatis another example of the authors' remark that pen and paper might bebetter than machine work. : : :"These words were stimulated by Broadbent's work at the British Coal UtilizationResearch Association, where he was involved in the design of gas masks for coalminers. One of the authors of the RSS paper was John Hammersley1, and he1991 Mathematics Subject Classi�cation. 60K35, 82B43.This version was prepared on 15 September 1997.1Hammersley is also the author of [39], from which some of this historical material is drawn.1
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Fig. 1.1. Illustrations of bond and site percolation on the two-dimensional squarelattice, with p = 12 .recognised the potential of Broadbent's model2. Their subsequent collaborationled to a clear formulation of the percolation model, and to a striking series of earlypapers containing several of the principal methods to be discovered.Here is the model in its basic form. We start with a `crystalline lattice', andfor the sake of simplicity we shall consider here only the hypercubic lattice Ld =(Zd; Ed ) in d dimensions. (The vertex set Zd is the set of all d-vectors of integers,and the edge set E d contains all unordered pairs hx; yi of vertices x; y 2 Zd separatedby unit Euclidean distance.) Let 0 � p � 1, and suppose we are provided with acoin which shows heads on each toss with probability p. We 
ip this coin oncefor each edge e, and we call e open if the coin shows heads; the edge e is calledclosed if tails are shown. The outcome of the entire experiment is a subgraph ofLd having vertex set Zd together with all open edges. Bond percolation theory isthe theory of the geometry of this open graph. See Figure 1.1 for an illustration oftwo-dimensional bond percolation with p = 12 .The words `open/closed' indicate that each edge is in one of exactly two availablestates, and these words have an appealing physical motivation. We may think ofan open edge as being open to the transmission of 
uid, and of a closed edge asbeing blocked. If 
uid is supplied at a given vertex x, then it wets exactly the setCx of vertices y having the property that there exists a path of open edges from xto y. We call Cx the open cluster at x, and we write C = C0 for the open clusterat the origin 0.There are many physical situations to which the percolation model is relevant,of which the following is a naive example. A porous stone is immersed in a bucketof water. What is the probability that water reaches the centre of the stone? Wemay choose to model a porous stone as a large �nite subset S of the lattice Ld .Assuming that water 
ows along open edges but not along closed edges, we are askedto calculate the probability that the centre of the stone (the origin of Ld , say) isjoined by a path of open edges to some vertex on its surface @S, or alternativelythat C \ @S 6= ?. If S is large, or, alternatively expressed, the structure of edges is2Hammersley and Morton replied with foresight to Broadbent's discussion: \Mr. Broadbent'sproblem is very fascinating and di�cult : : : ".



PERCOLATION 3�(p)1
pc 1 pFig. 1.2. A sketch of the percolation probability �(p). Not all the obvious featuresof this function have been proved rigorously. Note the existence of a critical pointpc. Perhaps the principal open conjecture is that � is continuous at the critical pointpc in all dimensions; this has been proved so far only when either d = 2 or d � 19.exceedingly �ne, then this probability is close to the probability that C is in�nite.This crude physical argument leads to the central question of percolation theory:what is the probability �(p) that the origin lies in an in�nite open cluster? Subjectto an appropriate interpretation of Broadbent's model, the quantity �(p) is exactlythe function �(p) occurring in the quotation at the beginning of this section. Thequantity �(p) is called the percolation probability , and is sketched in Figure 1.2.An exact calculation of �(p) seems inconceivable. The marriage of geometry andprobability is challenging and often uncomfortable; exact results are rare, and existapparently only when there exists special structure. However, many propertiesof the function � have been discovered. Its principal property is that of phasetransition. Clearly � is non-decreasing, since the addition of open edges may createin�nite paths but cannot destroy them. Therefore there exists a critical value pcfor p, de�ned by the statement that�(p)� = 0 if p < pc> 0 if p > pc:The fundamental property of percolation is that pc is non-trivial if d � 2, which isto say that 0 < pc < 1 if d � 2:This was proved in [18, 37, 38]; the proof is so important `beyond percolation' thatsome details will be presented in Section 2.1. (It is elementary that pc = 1 if d = 1,and we assume henceforth that d � 2.)One of the principal targets of modern probability theory and statistical physicsis to understand phase transitions and critical phenomena. Although the physicaltheory is largely well developed and widely accepted, the rigorous mathematicaltheory contains major open challenges. The percolation model contains a maxi-mum of (statistical) independence, and has proved a superb testing ground for new



4 GEOFFREY R. GRIMMETTmethodology. Notwithstanding the large amount of e�ort expended on the percola-tion phase transition, many of the central questions remain opaque (see Section 2.4).For example, it is unknown whether �(pc) = 0 or �(pc) > 0 in general, although it iswidely believed that �(pc) = 0. The corresponding property of branching processes,namely that a critical branching process is almost surely �nite, is fully understoodand relatively elementary. A proof that �(pc) = 0 for all d � 2 would, on the otherhand, answer a long-standing open question, and will probably require new ideas.The interested reader is challenged to prove that �(pc) = 0 when d = 3. We notethat �(pc) = 0 was proved by Harris [44] and Kesten [49] when d = 2, and by Haraand Slade [42, 43] when d is su�ciently large (d � 19 is certainly enough).Percolation theory has earned a reputation as a source of hard problems which areeasy to state and whose solutions require new methods. The most provocative suchproblem was the conjecture that pc = 12 for bond percolation on the square latticeL2 . Originally conjectured around 1955, the simplicity of the statement provokedmany to attempt a solution. In a beautiful paper [44] dated 1960, Theodore Harrisproved that �( 12 ) = 0 for L2 , thereby deriving that pc � 12 . Numerical simulationssuggested that pc was a little less than 12 , and what better evidence could supportthe conjecture? When, in 1963, Sykes and Essam announced a solution to thisand related problems, much interest was aroused ([70, 71]). Unfortunately theirarguments, although reasonable, lacked a totally rigorous foundation. (Even today,we are unable to con�rm or deny a key hypothesis of their approach.)Percolation theory entered a period of recession for mathematicians, from whichit emerged in 1978 with the simultaneous and independent publications of papersby Russo [67] and Seymour and Welsh [68] devoted to bond percolation on thesquare lattice. This was the spur to Harry Kesten which led to his beautiful proof([49]) that pc = 12 for the square lattice. A masterpiece of probabilistic and geo-metrical argument, this theorem was the beginning of a percolation era of vigourand richness.What is the rationale for this exact calculation in two dimensions? To a planargraph G we may associate a planar dual Gd constructed by placing a vertex insideeach face of G, and by joining two such vertices by a dual edge ed whenever thecorresponding faces of G share a boundary edge e. Now consider a bond percolationprocess on an in�nite planar graph G. This induces a percolation process on thedual graph Gd according to the rule: a dual edge ed is open if and only if thecorresponding primal edge e is closed . It may be seen (as in Figure 1.3) thatjCxj <1 if and only if the vertex x lies within the interior of some circuit of openedges of the dual graph Gd. This observation, taken together with the fact thatthe dual of the square lattice is isomorphic to the square lattice, is at the heartof Harris's result that �(12 ) = 0 for the square lattice. Kesten's proof of pc = 12exploited further the self-duality of L2 .For a two-dimensional lattice L and its dual Ld, one may sometimes show thatpc(L) + pc(Ld) = 1;whence pc(L) = 12 for appropriate self-dual lattices L. In the presence of anotherlink between L and Ld, then an exact calculation may sometimes be derivable. Forexample, the dual of the triangular lattice is the hexagonal lattice (see Figure 1.4).
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Fig. 1.3. A �nite cluster of the square lattice, surrounded by an open dual circuitof the dual lattice.

Fig. 1.4. The square lattice is self-dual. The dual of the triangular lattice is thehexagonal lattice.The so-called `star{triangle transformation' provides another link between thesetwo lattices, and one may then conclude that the triangular lattice has criticalprobability 2 sin(�=18) and the hexagonal lattice 1� 2 sin(�=18). See [71, 72].However beautiful these exact calculations, they mark exceptions rather thanrules. In the absence of an argument such as duality, there seems no reason toexpect percolation quantities to be calculable. A vast amount of e�ort and ingenuityhas been invested in deriving numerical estimates of such quantities, especially ofcritical probabilities. There is a variety of methods in use, from pure `Monte Carlo'to the partly analytical, and the modern computer has enabled a reasonable degreeof accuracy; see [47, p. 175] for example. However, in most cases, the correspondingrigorous upper and lower bounds are quite far apart.In bond percolation, the randomness is associated with the edges of the lattice.If, instead, each vertex is designated open or closed at random, then the ensuingmodel is termed site percolation (illustrated in Figure 1.1). One may consider also`mixed' models in which both edges and vertices are given random states. Indeedthere is a multiplicity of possible generalisations.In another variant, called oriented (or directed) percolation, some or all of the



6 GEOFFREY R. GRIMMETTedges of the lattice are assigned a particular orientation, and one asks whetheror not there exists an in�nite open path from the origin which conforms to theorientations.We represent the probability function by Pp, and expectation by Ep. The letters`a.s.' are an abbreviation for `almost surely', and mean that the correspondingstatement has probability 1. The Euclidean norm on Rd is denoted as j � j.The next section contains an account of the current mathematical theory of per-colation, placed in a historical perspective. Ideas from percolation have provedto be of major importance in studying a variety of disordered systems, and Sec-tions 3{6 contain thumbnail sketches of just a few of these, namely �rst-passagepercolation, epidemic models, a `Lorentz lattice gas', and ferromagnetism via therandom-cluster model.The principal mathematical accounts of percolation are [28, 31, 50], and otherbooks include [1, 26, 47]. No serious attempt has been made here to provide acomprehensive list of references.2. The mathematical theoryWe explore next certain themes of the rigorous theory, and attempt to summarisethe principal progress as well as future directions for research.2.1 Existence of phase transitionIt is a fundamental fact that the critical probability pc satis�es the strict inequalities0 < pc < 1, so long as the number d of dimensions satis�es d � 2. The proof isbased on simple but beautiful ideas, and is canonical in the sense of providing atemplate for proving the existence of critical phenomena in a range of disorderedsystems.In proving that pc > 0, one uses the idea of a self-avoiding walk (SAW). ASAW is a path of the lattice which visits no vertex more than once. Let fn bethe number of SAWs on the lattice Ld having n edges and with the origin as anendpoint. In their famous paper [40] referred to above, Hammersley and Mortonshowed the subadditive relation fm+n � fmfn, whence the exponential asymptoticfn = �n+o(n) follows for some constant � = �(d) called the connective constant ofthe lattice. It may be shown that 1 < � < 2d� 1. (By the way, it is a problem ofgreat appeal to understand the behaviour of the error term o(n). Indeed the theoryof self-avoiding walks is a �rst cousin of percolation theory, and this last problemhas an exact analogue in percolation. For accounts of the modern theory of SAWs,see [60].)Let Nn be the number of open self-avoiding walks (i.e., SAWs of open edges)with length n and having the origin as an endpoint. If jCj = 1, then Nn � 1 forall n, whence(2.1) �(p) � Pp(Nn � 1) � Ep(Nn) = fnpn:Since fn = �n+o(n), we deduce that �(p) = 0 if p� < 1, whence pc � ��1 asrequired.In proving that pc < 1, we note �rst that pc = pc(Ld) is non-increasing in d(since Ld may be viewed as a subgraph of Ld+1). Therefore it will su�ce to prove
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Harry Kesten, Rudolf Peierls, and Roland Dobrushin in the Front Quadrangle of NewCollege, Oxford, November 1993.

John Hammersley and Harry Kesten in the Mathematical Institute, Oxford,November 1993.



8 GEOFFREY R. GRIMMETTpc < 1 for the square lattice L2 . To achieve this we require an additional idea,namely that of two-dimensional duality. Such a method as the following is oftencalled a `Peierls argument', after Rudolf Peierls who made use of it in his proof ofthe existence of a phase transition for the Ising model of ferromagnetism ([63]).Let Gn be the number of open circuits in the dual lattice of L2 having length nand with the origin of L2 in their interior. As noted above, C is �nite if and onlyif Gn � 1 for some n. Therefore,Pp(jCj <1) �Xn Pp(Gn � 1) �Xn Ep(Gn) =Xn gn(1� p)n;where gn is the number of `self-avoiding' circuits of the dual lattice having length nand with the origin in their interior. We require an upper bound for gn. It is `easy'to see that gn � nfn�1, and that gn = 0 if n � 3. Hence,1� �(p) � 1Xn=4n�n+o(n)(1� p)n:The summation may be made strictly smaller than 1 by a su�ciently small (butpositive) choice of 1 � p. For such p, we have that �(p) > 0, whence pc < 1.With a little extra work, one may obtain that (1 � pc)� � 1, which is to say thatpc � 1� ��1.Since 0 < pc < 1, a percolation model has a subcritical phase (when p < pc), asupercritical phase (when p > pc), and a critical point (when p = pc). The sub-critical and supercritical phases are now fairly well understood. In contrast, thereare substantial open questions concerning the nature of the phase transition. Thephysical picture provided by so called `scaling theory' is widely accepted by bothmathematicians and physicists, but it remains a major challenge to mathematiciansto provide a rigorous foundation. The following three subsections are devoted re-spectively to the subcritical and supercritical phases, and to the critical behaviourof percolation.2.2 The subcritical phaseWe de�ne the radius of the open cluster C at the origin by rad(C) = maxfjxj :x 2 Cg. Already in [37], Hammersley sought a proof of `exponential decay' whenp < pc, or more precisely that(2.2) Pp�rad(C) � n� � e�n�(p) for n � 1, where �(p) > 0.Exponential decay turns out to be the key to understanding the subcritical phase.It provides a tool for estimating the probabilities of large open clusters with givenproperties. For example, it implies that the largest open cluster intersecting thecube [�n; n]d has cardinality of order fd=�(p)g log(2n), for large n.Exponential decay turns out to be linked to the super�cially weaker statementthat the mean cluster size�(p) = EpjCj = 1Xn=1nPp(jCj = n)



PERCOLATION 9satis�es(2.3) �(p) <1 when p < pc.It is not di�cult to show that exponential decay implies �(p) <1, and Hammersley[37] demonstrated the converse as early as 1957.There has been a concrete objective for proving that �(p) < 1 when p < pc.Using delicate path-intersection properties of L2 , Russo, Seymour, and Welsh [67,68] proved in 1978 that pc(L2) = 12 if (2.3) holds for L2 . This provoked Kesten'sproof [49] of (2.3) for the square lattice, and hence his famous exact calculation ofpc.The natural generalisation of Kesten's theorem was therefore (2.3) for generallattices, or equivalently that exponential decay is valid for p < pc. Two separateproofs of this emerged in 1986, from independent and distinct sources. At a confer-ence in Minneapolis, Aizenman and Barsky [4] announced a family of di�erentialinequalities whose solution yielded (2.3). A special feature of their method wasthat it was capable of adaptation to other models; indeed the Ising model has beenstudied similarly [2, 5].Almost simultaneously in Moscow, and working in relative isolation, Menshikovproved exponential decay when p < pc, by a direct argument. In those days,communication between East and West was fragmented and problematic. Aidedby the First World Congress of the Bernoulli Society, held in Tashkent in September1986, Menshikov's results reached the West, albeit in Russian.The 1980s were a wonderful period for percolation. The decade opened with thelong awaited resolution of the conjecture that pc(L2) = 12 . Through the subsequentwork of Aizenman, Barsky, Chayes, Chayes, Kesten, Menshikov, Newman and theircolleagues, the general theory developed to encompass more general questions anddimensions, and then exponential decay emerged in total generality. At the endof the decade, the principal structure of the supercritical phase was established, assummarised next.2.3 The supercritical phaseSuppose that p is such that �(p) > 0, and let I denote the number of in�nite openclusters. There is an easy argument using Kolmogorov's zero{one law which impliesthat Pp(I � 1) = 1, which is to say that there exists a.s. an in�nite open cluster.Could there exist two or more such clusters? Intuition suggests not, within thecon�nes of a �nite-dimensional space, but proof was required. Further stimulationfor the question was provided by the realisation ([14]) that � is continuous at anypoint p (> pc) so long as I = 1 a.s. for that value of p.The a.s. uniqueness of the in�nite open cluster was �nally established in 1987([7]), by an arguably mysterious method involving `boundary conditions' and aquantitative estimate of `large deviation' type. Any mystery was removed by thesubsequent work of Burton and Keane [21], who decoupled the geometry from theprobability in a transparent manner, thus achieving a proof of uniqueness whichuses no estimate, but only the `ergodicity' of the `product measure' Pp. Theirbeautiful argument proceeds by the following sequence of steps.
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Fig. 2.1. An illustration of the map of trifurcations inside a box. Note the forest-likestructure.Let us call a vertex x a trifurcation if: jCxj =1, but the removal of x turns Cxinto three disjoint in�nite open clusters and no �nite clusters. Suppose henceforththat 0 < p < 1.1. There exists a constant m, depending on p, such that Pp(I = m) = 1.(Proof by ergodicity.)2. It must be the case that m 2 f0; 1;1g. (Proof by contradiction: Supposethat m � 2. Find a large box B which intersects two or more in�niteopen clusters. By making all edges within B open, we may obtain thatPp(I � m � 1) > 0. This is a contradiction unless m = m � 1, which is tosay that m =1.)3. Suppose m = 1 (so that m � 3, in particular). It follows that � =Pp(0 is a trifurcation) > 0. (Proof: Find a large box B which intersectsthree or more in�nite open clusters, and `re-de�ne' the states of edges insideB in such a way that the origin becomes a trifurcation.)4. It is the case that m 2 f0; 1g. (There follows the geometrical part of theproof. Suppose that m = 1. By Step 3 and the ergodic theorem, thenumber of trifurcations inside the box Bn = [�n; n)d has order of magnitude�jBnj. We draw a map of these trifurcations, and the paths between them(see Figure 2.1), thereby obtaining a forest-like graph of degree 3 havingboundary vertices lying in the surface @Bn of Bn. It is an elementary factof graph theory that such graphs have boundary comparable in size to theirvolume, whence j@Bnj � c�jBnj for some c > 0. However j@Bnj and jBnjhave orders of magnitude (2n)d�1 and (2n)d respectively. This provides acontradiction for large n.)The above argument is well suited for generalisations to other models, and it hasproved extremely useful in other contexts (see [16, 30] for example).If the �niteness of �(p) is the key to the subcritical phase, what is the correspond-ing key to the supercritical phase? Using duality, one may see that two-dimensional



PERCOLATION 11bond percolation is supercritical if and only if its dual is subcritical. This fact en-ables a fairly full study of the supercritical phase in two dimensions. However, thepicture is much more complicated when d � 3.Suppose d � 3. LetM be a positive integer, and let SM = f0; 1; : : : ;Mgd�2�Z2be a `slab' of Ld having thickness M . Interpreting SM as a subgraph of Ld , thenSM has a critical probability pc(SM ). Since SM � SM+1 � Zd, we have thatpc(SM ) � pc(SM+1) � pc; therefore the limit epc = limm!1 pc(SM ) exists andsatis�es epc � pc. We now ask whether or not(2.4) epc = pc:Given that epc = pc, one may study in detail the supercritical phase. Moreprecisely, if p satis�es p > epc, then much may be learned about the correspondingpercolation model, by exploiting and re�ning the following rough argument. If p >epc then p > pc(SM ) for someM . Now, Zd may be partitioned into translates of SM .Each such translate is (topologically) two-dimensional, and is supercritical (sincep > pc(SM )). Two such translates are disjoint, and therefore the correspondingpercolation processes are independent. It follows that, a.s., each translate of SMpossesses an (essentially) two-dimensional in�nite open cluster. If required, onemay obtain estimates for the geometry of such a cluster by using two-dimensionalarguments. In this way, one gains a control over the geometry of percolation inZd, whence estimates of value follow. If epc = pc, then such estimates are validthroughout the supercritical phase.Here are some examples of possible conclusions. Unlike the subcritical phase,the decay of Pp(jCj = n) is not exponential. Rather, there exist positive functions�(p); �(p) such thatexp���(p)n(d�1)=d� � Pp(jCj = n) � exp���(p)n(d�1)=d�;which is to say that the decay is `stretched exponential'. It is believed that thelimit limn!1�� 1n(d�1)=d logPp(jCj = n)�exists, but this is known only when d = 2 (see [10]).The above estimate concerns the volume of C. Turning to a one-dimensionalmeasure of C, we de�ne its radius rad(C) = maxfjxj : x 2 Cg as before. Using slabarguments as above ([23, 28, 31]), one may obtain thatPp�n � rad(C) <1� = e�n
(p)+o(n)for some 
(p) satisfying 0 < 
(p) <1.Somewhat similar to (2.3) in the subcritical case, a completely separate argumentis necessary for the proof that epc = pc, and this was provided in 1990 by Grimmettand Marstrand [33]. Their proof uses what is known as a `block' or `renormalisation'argument, and such methods have proved very valuable in a variety of contexts.The basic idea is as follows. We partition Zd into a union of (disjoint) translatesof the cube [0;M ]d. We now construct a certain event for any given block with the



12 GEOFFREY R. GRIMMETTproperty that this event has probability close to 1 (for example, this event mightbe of the type `there exist at least R open crossings of the block, in each of the dpossible directions'). Viewing each block as a composite vertex in a new lattice,one obtains that the good blocks (i.e., the blocks for which the event in questionoccurs) form a supercritical site percolation process having density close to 1. Onenow combines known facts about such a `renormalised' process, together with anappropriate choice of the event in question, in order to obtain properties of theoriginal system. Various di�culties arise in developing this programme, but thesemay largely be overcome, thereby obtaining amongst other things that epc = pc.The absence of a general proof that �(pc) = 0 was remarked earlier. Someimpact on this question has been made by block arguments, but they are curiouslyincomplete (see [11, 33]). The following `absurd' possibility has not been ruled outfor 2 < d < 19: when p = pc, there exists a.s. an in�nite open cluster in Zd, but nohalf-space of Zd contains such a cluster.2.4 At and near the critical pointIt is one of the most fascinating problems of modern probability theory to builda rigorous theory of phase transitions. Percolation has been at the forefront ofprogress in recent years, but the story is far from complete. The basic questionis to understand the behaviour of the process within a �nite box, in the doublelimit as p ! pc and as the size of the box tends to in�nity. A rich picture hasemerged from the physics literature; mathematicians' understanding of this pictureis signi�cant but far from exhaustive (see [28, Chaps 7{8]).Here is a mathematician's sketch of the physical theory. The critical point pcmarks a singularity , and otherwise smooth functions behave singularly at this point.It is believed that this singularity is of `power' type. More precisely, it is believedthat there exist non-trivial critical exponents �; 
 such that�(p) � (p� pc)� as p # pc,�(p) � jp� pcj�
 as p " pc.(The asymptotic relation � should be interpreted in an appropriate manner, forexample in the manner of `logarithmic asymptotics'.) In fact, any `macroscopicquantity' should have a power law singularity; one may postulate thus at least �vecritical exponents, of which � and 
 are but two.Now �x p = pc, and look on increasing `length scales'. It is believed that thereexist further critical exponents �; � such thatPpc(jCj = n) � n�1�1=� as n!1,Ppc�rad(C) = n� � n�1�1=� as n!1.Another exponent � is postulated in a similar manner.Appealing but non-rigorous methods suggest that these eight critical exponentssatisfy a collection of four `scaling relations'. Further arguments suggest that, if d isnot too large, then they satisfy two further relations called `hyperscaling relations'.



PERCOLATION 13It is generally the case that, for a given model of statistical mechanics, eightnumbers can be de�ned in manners analogous to those alluded to above for per-colation. Although these numbers will generally depend on the model, they areexpected to satisfy the same scaling and hyperscaling relations. In addition, for anygiven model and number d of dimensions, their values should not depend on theparticular lattice in use. For example, the values of � and � should be the same forboth bond and site percolation on both the square and triangular lattices. Suchstatements are referred to under the title of `universality'.Furthermore, for a two-dimensional percolation model, some individuals �ndreason to believe that � = 536 , 
 = 4318 , � = 915 , and so on. Such predictions areso distant from mathematical rigour that mathematicians tend to be shy of wordssuch as `believe' and `accept' in this context.Just as d = 2 is special, so is the case of `large d'. The idea is that, when dis large, then the singularity should have the same qualities as when the lattice isreplaced by a binary tree. Percolation on a tree is an old friend, namely a branchingprocess. Exact calculations for a branching process lead to the prediction of exactvalues for critical exponents `for large d', namely the `mean-�eld values' � = 1,
 = 1, � = 2, and so on. In a remarkable series of papers, Hara and Slade [42, 43]have proved results of this type, based in part on work of Aizenman and Newman [8]and others. Their method is known as the `lace expansion', and they have wieldedit with virtuosity in their solutions to many models for large d, including latticeanimals, self-avoiding walks, and percolation.In order to be concrete, we state here some of the results of Hara and Slade:they have proved that � and 
 exist and satisfy � = 
 = 1, under the assumptionthat d � 19. It is believed that such calculations may be extendable to values of dsatisfying d � 7, or even perhaps d � 6. For 2 � d < 6, critical exponents are notexpected to take their mean-�eld values.One of the most remarkable families of conjectures of stochastic geometry tohave emerged recently is that of `conformal invariance'. It concerns two-dimensionalpercolation, and is supported by numerical evidence (see [57]). Roughly speaking,part of the conjecture is that crossing probabilities for critical percolation are in-variant under conformal maps of R2 . More precisely, let C be a simple closed curveof R2 , and let � and � be arcs of C. Let r > 0, and consider the probabilityPpc(r�$ r� in rC) that the interior of the dilated copy rC of C contains an openpath joining the dilated arcs r� and r�. First, it is believed that the limit(2.5) �(�; �;C) = limr!1Ppc(r�$ r� in rC)exists for all �; �; C.Now, let � be a conformal mapping on the interior C which is bijective up to itsboundary. The principle of conformal invariance predicts that�(��; ��;�C) = �(�; �;C):Extensive numerical simulation supports this conjecture. For fuller discussion ofthis principle and for recent results, see [3, 57].A prospective relationship with conformal �eld theory had led to a startlingprediction for exact values of crossing probabilities known as Cardy's formula [22].



14 GEOFFREY R. GRIMMETTFor simplicity, let us consider site percolation on the square lattice L2 . Take C tobe a rectangle with side-lengths a and b, and consider the event that there existsan open crossing between its opposite sides having length a. When p = pc, thecorresponding quantity �(a; b;C) given in (2.5) is conjectured to equal3�(23)�(13 )2 sin2=3 � 2F1( 13 ; 23 ; 43 ; sin2 �)where � is the gamma function, 2F1 is a hypergeometric function, and � is a knownfunction of the ratio a=b.3. First-passage percolationFirst-passage percolation is the half-brother of percolation. It was formulated byHammersley and Welsh [41] in 1965 as a time-dependent model for the 
ow of liquidthrough a porous body. Motivated by a need to understand the concept of thevelocity of this 
ow, Hammersley and Welsh were led to the idea of a `subadditivestochastic process'. Subadditive processes are now a standard tool of much powerin probability theory.We begin with the lattice Ld where d � 2. To each edge e we assign a randomvariable T (e) (called the time coordinate of e), which we interpret as the timerequired for liquid to traverse e; we assume that the T (e) are non-negative andindependent, with some common distribution function F .For any path �, the corresponding passage time T (�) is the sum of the timecoordinates of the edges in �. The �rst-passage time a(x; y) between two verticesx and y is de�ned as the in�mum of the passage times of all paths from x to y. Ifwe supply liquid at x, then it will arrive at y after an elapsed time a(x; y).How fast does liquid spread through the medium? It is a basic observation thatthe a(x; y) satisfy the subadditive inequality,a(x; y) � a(x; z) + a(z; y) for all z,and many interesting facts may be deduced from such inequalities and their rami�-cations. In particular, it follows by the subadditive ergodic theorem (see [53]) thatthe limiting velocity limn!1 a(0; nx)=n exists in every direction x.One of the principal objects of study is the wet region at time t when liquidis supplied at the origin, i.e., the set W (t) = fx : a(0; x) � tg. The easiest wayto describe the asymptotic behaviour of W (t) for large t begins by `�lling in theholes'. Thus we de�ne fW (t) = W (t)+[� 12 ; 12 ]d, a region in Rd . The set fW (t) growslinearly as time passes, in the following sense. Subject to an appropriate momentcondition on F , there exists a non-random set L having non-empty interior suchthat either(a) L is compact and(1� �)L � 1t fW (t) � (1 + �)L eventually, a.s.,for all � > 0, or



PERCOLATION 15(b) L = Rd , and 1t fW (t) � [�M;M ]d eventually, a.s.,for all M > 0.Case (b) holds if and only if a typical time coordinate T satis�es P (T = 0) � pc,which is to say that the set of edges with zero time coordinate forms a bond per-colation process which is either critical or supercritical . The earliest such `shapetheorem' was proved by Richardson [65] in 1973. See [24, 51, 52] for more informa-tion and references.Few non-trivial facts are known about the limit set L, and much e�ort hasbeen spent, largely inconclusively, on attempting to decide whether L can ever bea Euclidean circle. More recently, interest has been concentrated on building a
uctuation theory for the set fW (t): on what scale of t does fW (t) di�er from thedilated region tL? See [9] for example.4. Epidemic modelsIt has long been realised that realistic models for the spread of disease must in-corporate information about the interactions between individuals, and that suchinteractions are often governed by a spatial distribution. In 1974, Harris intro-duced the contact process as a model for a spatial epidemic, and he proved somestriking results (see [45]).The model is as follows. Let us suppose that individuals are placed at the verticesof the lattice Ld where d � 1, and let � and � be strictly positive constants. Ateach time t, the individual at x is in one of two possible states labelled 1 and 2; thestate 1 means `ill' or `infected' and the state 2 means `susceptible' (to illness). Wepostulate that the disease is transmitted according to the following probabilisticrules. If the individual at x has state 1 (i.e., is ill) at time t, then it becomessusceptible during the short time interval (t; t+h) with probability �h+o(h). Here� is the rate of cure. If the individual at x has state 2 (i.e., is susceptible) at time t,then it becomes ill during the interval (t; t+h) with probability �nh+o(h) where n isthe number of ill neighbours of x. Here � is the rate of infection. Thus, cures occurspontaneously at rate �, and infection spreads at rate � by way of contact betweeninfected individuals and susceptible neighbours. (A full de�nition of the contactprocess involves a Markov process whose in�nitesimal transition probabilities aregiven as above.)A main question is whether or not the disease survives over all time intervals how-ever long. Suppose that, at time 0, all individuals are susceptible except the originwhich is ill. Does the disease spread, with strictly positive probability, throughoutthe entire in�nity of space? More precisely, let (�; �) = P�;��infection exists at all times t � 0�where P�;� is the appropriate probability measure. It is not hard to see, by re-setting the speed of the clock, that  (�; �) is a function of the ratio �=� only, and
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0
time spaceFig. 4.1. The so called `graphical representation' of the contact process when d = 1.The horizontal line represents `space', and the vertical line above a point x representsthe time axis at x. The marks � are the points of cure, and the arrows are the arrowsof infection. Suppose we are told that, at time 0, the origin is the unique infectedpoint. Then all subsequent infections may be mapped by following the evolution ofthe graph in the direction of increasing time, and by conforming to the points of cureand the arrows of infection. In this picture, the initial infective is marked 0, and thebold lines indicate the portions of space{time which are infected.so we may write  (�) =  (�; 1). `Evidently',  (�) is non-decreasing in �, whencethere exists a critical value �c such that (�)� = 0 if � < �c> 0 if � > �c:The analogy with percolation is strong, with  taking the role of the percolationprobability �. Harris [45] proved amongst other things that �c is non-trivial, in thesense that 0 < �c <1 if d � 1.In Harris's �rst paper, he regarded the contact process as a Markov process �twith a given structure. In a later paper [46], he exploited the fact that, suitablyreformulated, the contact process is a percolation process of a certain type. Hisreformulation is as follows. We enrich the lattice Ld by considering the spaceS = Zd � [0;1); a typical point s = (x; t) 2 S represents the vertex x at time t.We now add a collection of random marks to S, whose interpretations will be clearsoon. On each `time line' x � [0;1), for x 2 Zd, we place a collection of marks(which might be called `points of cure') in the manner of a Poisson process withintensity �; this requires in particular that a short interval x� (t; t+ h) contains apoint of cure with probability �h + o(h) as h # 0. Next, for each ordered pair x; yof neighbours of Ld , we place arrows (called `arrows of infection') directed from xto y along the line x� [0;1) in the manner of a Poisson process with intensity �.See Figure 4.1.Here is the interpretation of these marks. Suppose that the vertex x is ill at timet. Then it remains infected until the �rst subsequent point of cure, i.e., until thetime T = inffs > t : (x; s) is a point of cureg. Meanwhile, whenever there existsan arrow oriented from x to y during the time-interval x� (t; T ], then the infection



PERCOLATION 17at x spreads to y. (If y is already ill, the new infection has no e�ect.) It is a simplematter to check that the infection spreads in the manner of the contact process.With infection originating at the origin only, then the infection continues for-ever if and only if S contains an in�nite path which begins at the origin, moves inthe direction of increasing time only, and is permitted to traverse infection arrows.See Figure 4.1 again. The probability of this event is nothing but the percola-tion probability for the oriented partly-continuous percolation system constructedabove.Once this link is made, it is not surprising that percolation technology may beadapted in order to study the contact process. Here is a major example of this.Two questions which remained open for some years were as follows.� Is it the case that the critical contact process dies out, which is to say that (�c) = 0?� If � > �c and infection originating at the origin continues forever, then canone prove a `shape theorem' for the manner of its spread? (Cf. the shapetheorem of �rst-passage percolation.)Building on the block arguments alluded to in Section 2.3, in 1991 Bezuidenhoutand Grimmett [15] provided the �nal steps necessary to answer both questionsa�rmatively.Slightly more realistic epidemic models require that individuals experience aperiod of `removal' after being cured. Removal periods represent periods of invul-nerability to infection, and can be of in�nite length in the case of `death'. For afatal disease which invariably kills infected individuals, all removal periods are in-�nite, and such an `epidemic without recovery' corresponds to the contact processwith � = 0. This system is quite di�erent from that considered above; infectionnever recurs, but must either become extinct, or be driven ever onwards in themanner perhaps of a fairy ring, or perhaps of the boundary of a forest �re whichhas consumed its interior. Kuulasmaa showed in 1982 ([55]) that this system alsois percolative, but in a di�erent sense from that above. Let �x denote the set ofall neighbours of a vertex x. For each x, we draw oriented edges from x to somerandom subset of �x chosen according to a certain probability function �. Let�(�) denote the probability that this `partly dependent' oriented percolation modelcontains an in�nite oriented path beginning at the origin. If � is chosen correctly,then �(�) equals the probability that infection originating at the origin reaches in-�nitely many vertices (in the above epidemic without recovery). Even though thispercolation process is not constructed entirely from independent events, some ofthe techniques of percolation theory may be extended in order to understand itsgeometry, thereby learning about the epidemic without recovery.There is an intermediate type of epidemic, in which recovery takes place after�nite time intervals. Such processes can be very much harder to study, since theygenerally lack even the elementary property of monotonicity. In the contact processwith � > 0 and � � 0, the greater is the initial set of infectives, the more extensiveis the spread of the disease. This can fail in more general systems for the following`simple' reason. By adding an extra infective, one may subsequently infect a pointwhich, during its removal period, prevents the infection from spreading further.Self-protection in a forest �re may be achieved by burning a pre-emptive �rebreak.
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0

Fig. 5.1. A labyrinth of mirrors on the square lattice. The ray of light is re
ectedby the mirrors, and it is a problem is to determine, for a given density of mirrors,whether or not the light is a.s. restricted to a �nite region.See [25, 58] for further information about contact processes, and [13] for recentresults concerning both the contact process (without recovery) and a more generalcontact process incorporating temporary removals.5. Illumination of re
ecting labyrinthsAn electron travels through an environment of massive particles, su�ering de
ec-tions when it impacts on these particles. In three essays [59] published in 1905,Hendrik Lorentz proposed a model sometimes referred to now as a `Lorentz latticegas'. Developed further by Ehrenfest under the name `wind{tree model', and trans-ferred to the square lattice, the physical phenomenon has given rise to a concreteproblem of probability theory having substantial appeal.Let 0 � p � 1. We call each vertex x of the square lattice L2 a mirror withprobability p, and a crossing otherwise; di�erent vertices receive independent des-ignations. Given that x is a mirror, we call it a north-west (NW) mirror withprobability 12 and a north-east (NE) mirror otherwise. We now place two-sidedplane mirrors at vertices of L2 in the prescribed con�guration (see Figure 5.1). Aray of light is shone northwards from the origin. When it strikes a crossing, it passesthrough unde
ected. When it strikes a mirror, it is re
ected through a right anglein the appropriate direction. It is not hard to see that: either the light traversesa semi-in�nite path beginning at the origin (possibly with self-intersections) or ittraverses a closed (�nite) loop. Let �(p) be the probability of the former situation,i.e., �(p) is the probability that the light illuminates in�nitely many vertices. Theproblem is to determine for which values of p (if any) it is the case that �(p) > 0.In this lattice version of the Lorentz model, the mirrors represent the massiveparticles and the light represents the electron. There are continuum versions of theproblem also (see [19, 69]).It is apparently very di�cult to determine whether or not �(p) > 0 for a givenvalue of p. The only trivial fact is that �(0) = 1, and the only other known valueis �(1) = 0. There are con
icting intuitions when 0 < p < 1, and numericalsimulations seem to suggest that �(p) = 0 whenever p > 0. The di�culty of theproblem seems to lie in the fact that it is a mixture of a dynamical system and arandom environment. Conditional on the environment of mirrors, the light behaves
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Fig. 5.2. When p = 1, the labyrinth of mirrors gives rise to a critical bond perco-lation process on a certain `diagonal' copy L of the square lattice L2 , drawn here inbold and broken lines respectively.deterministically, but its trajectory can be very sensitive to minor changes in thepositions of the mirrors.That �(1) = 0 follows from a percolation argument. The history of this isslightly vague. It was certainly known in 1978, but appeared �rst in print in1989 ([28]); further results appeared in [20]. The argument is as follows, and isillustrated in Figure 5.2. We work on an ancillary `diagonal lattice' L having vertexset (m+ 12 ; n+ 12 ) form;n 2 Z withm+n even; there is an edge joining (m+ 12 ; n+ 12 )and (r+ 12 ; s+ 12 ) if and only if jm� rj = jn� sj = 1. We now use the mirrors of L2to obtain a bond percolation process on L. An edge of L joining (m� 12 ; n� 12 ) to(m+ 12 ; n+ 12 ) is declared open if the vertex (m;n) of L2 is a NE mirror; similarlythe edge of L joining (m� 12 ; n+ 12) to (m+ 12 ; n� 12 ) is declared open if (m;n) isa NW mirror. Since L is isomorphic to the square lattice, the resulting process is abond percolation model on a square lattice at density 12p. When p = 1, this densityequals 12 , and it is known that the percolation probability � satis�es �( 12 ) = 0 (see[44], or Section 1 of the current paper). This implies (by duality) that the originof L2 is contained a.s. in the interior of some open circuit D of L. Now, eachedge of D corresponds to a superimposed mirror, and therefore D corresponds toa `barrier' of mirrors surrounding the origin. Light cannot escape such a barrier,whence �(1) = 0.There are numerous related systems which pose interesting challenges to thephysicist and mathematician. For example, there are many other re
ecting bodiesthan simple plane mirrors. In fact, in d (� 2) dimensions, there exist exactlydXs=0 (2d)!(2s)!2d�s(d� s)!such bodies (see [31]). Very little indeed is known about the trajectories of lightrays illuminating general `random labyrinths' of mirrors.



20 GEOFFREY R. GRIMMETTIn further work, Ruijgrok and Cohen [66] have proposed a study of `rotator'models as well as `mirror' models. In the simplest rotator model, a vertex of L2 isdesignated as one of three types: a `right' rotator, a `left' rotator, or a `crossing'.As before, light traverses a crossing without de
ection, but when incident on a right(resp. left) rotator, it is de
ected 90� to the right (resp. left). It is not yet clearwhat methods may be used to develop a satisfactory mathematical theory of suchsystems.In another development, one introduces a little extra randomness into the en-vironment, as follows. Let prw > 0. We designate each vertex a `random-walkpoint' with probability prw; otherwise it may be a mirror or a crossing as above.When light is incident on a random-walk point, then a fair die is thrown in orderto choose the exit direction; in dimension d, each of the 2d possible directions hasequal probability (2d)�1. Methods from percolation theory may be used in order tocontrol the geometry of the ensuing labyrinth, and partial results follow. We statetwo of these brie
y.Consider a general re
ecting labyrinth in two or more dimensions with a strictlypositive density prw of random-walk points. If the density of non-trivial re
ectorsis su�ciently small (a re
ector is called non-trivial if it is not the crossing) then� the light illuminates an in�nite set with strictly positive probability, and� when this occurs, then the light is `di�usive' in the sense that its positionafter n steps has (asymptotically) a normal (Gaussian) distribution withmean 0 and variance �n.Here, � is a strictly positive constant, which depends on the parameters of thelabyrinth of mirrors. Further details may be found in [16, 31, 32, 34].6. Ferromagnetism and random-cluster modelsPerhaps the most famous spatial model of statistical physics is the Ising model forferromagnetism. Founded in work of Lenz and Ising [48], this process has generatedtremendous interest and has provided the setting for the development of a repertoireof techniques of wide applicability. The underlying physical phenomenon is thefollowing. Consider the experiment of placing a piece of iron in a magnetic �eld;the �eld is increased from zero to some maximum, and then reduced back to zero.The iron may retain some residual magnetisation, but only when the temperature isnot too high. There exists a critical temperature Tc marking the division betweenthe two phases. In the Ising model, the iron is modelled by a part of a lattice,each vertex of which may be in either of two states labelled + and �. The statesat neighbouring points interact in the manner of a so called `Gibbs state' (see [27,58]).One generalisation of the Ising model is that proposed by Potts [64] in 1952. Afeature of the Potts model is that each vertex may be in any of q distinct states,labelled 1; 2; : : : ; q; the Ising model is recovered when q = 2. The Potts model alsohas a phase transition at some critical temperature Tc(q).It is a remarkable fact that the Ising and Potts models, together with the percola-tion model, may be placed within a uni�ed system having a coherent methodology.This was discovered in the late 1960s by Fortuin and Kasteleyn, and led to their



PERCOLATION 21formulation of a process which they called a `random-cluster model'. Their con-struction is unusual, and the reader may wonder how Fortuin and Kasteleyn wereled to it. The answer is that Kasteleyn observed that a number of di�erent systemsenjoy `series and parallel laws'. The best known of these is electrical networks, inwhich two resistances of size r1 and r2 may be replaced by a single resistance ofsize r1+ r2 if in series, or (r�11 + r�12 )�1 if in parallel. Percolation, Ising, and Pottsmodels have a similar property, and Kasteleyn wished to understand whether thesecommon properties indicated a more extensive common structure. A historicalaccount may be found in [29].The random-cluster model is as follows. Let 0 � p � 1 and q > 0: these are theparameters of the system. Let G = (V;E) be a �xed �nite graph, and let F be asubset of E chosen according to the following probability function �p;q:(6.1) �p;q(F ) = 1Z pjF j(1� p)jEnF jqk(F )where k(F ) is the number of connected components of the graph (V; F ), and Z isa constant which is chosen to ensure that PF�E �p;q(F ) = 1.Let us consider some special values. First, if q = 1, then�p;1(F ) = pjF j(1� p)jEnF j;which is to say that di�erent edges are present independently of one another, eachwith probability p; this is bond percolation on G. If q = 2; 3; : : : then �p;q isrelated to the Potts model with q states, and in which p is a certain functionof the temperature and `pair-interaction'. In particular, �p;2 corresponds to theIsing model. This, and many other useful facts, were discovered by Fortuin andKasteleyn.There is a di�culty which is not present for percolation, namely how to de�nea random-cluster model on an in�nite graph; formula (6.1) simply does not workdirectly in this case. The answer, as with the Ising model, is to let ��;p;q be therandom-cluster measure on a �nite subgraph � of an in�nite lattice, and to passto the limit as � expands to �ll out the whole space. This process is known as`passing to the thermodynamic limit'. A full description would require a discussionof `boundary conditions', and this is not appropriate here. Let �p;q denote thelimiting probability measure for the whole lattice, and let�(p; q) = �p;q�0 belongs to an in�nite cluster�be the corresponding percolation probability. It turns out that, for �xed q � 1,there exists a critical value of p, written pc(q), such that�(p; q)� = 0 if p < pc(q)> 0 if p > pc(q):Furthermore, pc(1) is the critical probability of bond percolation, and when q =2; 3; : : : then pc(q) may be expressed in terms of the critical temperature Tc(q) of



22 GEOFFREY R. GRIMMETTthe q-state Potts model. In this sense (and indeed further) the phase transition ofthe random-cluster model generalises those of percolation, Ising, and Potts models.Since the random-cluster model generalises so many systems of interest, it hasbeen natural to develop a coherent theory thereof. A body of techniques hasemerged in recent years, but many mysteries remain unresolved. For example,two known facts are:� if �(p; q) > 0, there exists a.s. a unique in�nite cluster,� if q is large, say q > Q(d), then �(pc(q); q) > 0.[See [30, 31, 54, 56]. Actually some technical assumptions involving boundaryconditions are needed for these conclusions.] The second fact is particularly striking,since it implies that �(�; q) is discontinuous at the critical point, in contrast to thecorresponding conjecture for percolation (i.e., when q = 1).In contrast, one may conjecture that� if q is small, say 1 � q < Q(d), then �(pc(q); q) = 0,� if q � 1 and p < pc(q), then �p;q�rad(C) � n� decays exponentially asn!1 (cf. (2.2)).There is a rich family of conjectures for random-cluster models, ranging fromexact calculations, conformal invariance, and a Cardy formula when d = 2 and1 � q < 4, to the belief that Q(2) = 4 and Q(d) = 2 when d � 6. In addition, verylittle is known when 0 < q < 1.This beautiful model is an outstanding challenge to mathematicians. It promisesa uni�ed structure which will explain further the Ising and Potts models, and whichplaces them in the context of percolation. It indicates a mechanism for movingbetween models which will �nd further applications in statistical physics, and viamethods of Monte Carlo simulation to statistical science. Further accounts include[6, 12, 30, 31, 35, 36].Acknowledgements. This essay was written in Voulangis, following work sup-ported in part by the European Union under contracts CHRX{CT93{0411 andFMRX{CT96{0075A and by the Engineering and Physical Sciences Research Coun-cil of the UK under grant GR/L15426.References1. Aharony, A. and Stau�er, D., Introduction to Percolation Theory (Second edition), Taylorand Francis, 1991.2. Aizenman, M., Geometric analysis of �4 �elds and Ising models, Communications in Mathe-matical Physics 86 (1982), 1{48.3. Aizenman, M., The geometry of critical percolation and conformal invariance, ProceedingsSTATPHYS 1995 (Xianmen) (Hao Bai-lin, ed.), World Scienti�c, 1995.4. Aizenman, M. and Barsky, D. J., Sharpness of the phase transition in percolation models,Communications in Mathematical Physics 108 (1987), 489{526.5. Aizenman, M., Barsky, D. J., and Fern�andez, R., The phase transition in a general class ofIsing-type models is sharp, Journal of Statistical Physics 47 (1987), 343{374.6. Aizenman, M., Chayes, J. T., Chayes, L., and Newman, C. M., Discontinuity of the magne-tization in one-dimensional 1=jx� yj2 Ising and Potts models, Journal of Statistical Physics50 (1988), 1{40.7. Aizenman, M., Kesten, H., and Newman, C. M., Uniqueness of the in�nite cluster and relatedresults in percolation, Percolation Theory and Ergodic Theory of In�nite Particle Systems (H.
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