
RANDOM WALKS IN RANDOM LABYRINTHSG. R. Grimmett, M. V. Menshikov, S. E. VolkovAbstract. A random labyrinth is a disordered environment of scatterers on a lat-tice. A beam of light travels through the medium, and is re
ected o� the scatterers.The set of illuminated vertices is studied, under the assumption that there is a posi-tive density of points, called `normal points', at which the light behaves in the mannerof a simple symmetric random walk. The ensuing `random walk in a labyrinth' isfound to be recurrent in two dimensions, and also non-localised under certain extraassumptions on the underlying probability distribution. The walk is shown to betransient (with strictly positive probability) in three and higher dimensions, subjectto the assumption that the density of `non-trivial' scatterers is su�ciently small. Theprincipal arguments used in deriving such results originate in percolation theory. Inaddition, we utilise the relationship between random walks and electrical networks,namely that a random walk is recurrent if and only if a certain electrical network hasin�nite resistance.1. IntroductionSuppose that we distribute obstacles within a Euclidean space Rd , and then weshine light through the space. If the light is re
ected by the obstacles, then itstrajectory can be tortuous. When the placements of the obstacles are disordered(or `random') then it seems di�cult to derive rigorous results concerning the pathfollowed by the light. The problem is di�cult even in restricted versions, such aswhen the light is constrained to a lattice, and when the obstacles have a limitednumber of possible shapes. The combination of the disordered medium and the(conditionally) deterministic 
ow leads apparently to mathematical complicationsof substantial di�culty (but great appeal).Let us recall one version of such a question which has gained a certain notoriety.Let 0 � p � 1. At each vertex of the square lattice is placed, with probability p, aplane two-sided mirror. Each mirror is placed in one of two possible orientations,termed `NW' and `NE', each such possibility having probability 12 . The e�ect of aNW or NE mirror is illustrated in Figure 1. Now we place a candle at the origin, andlight rays emanate outwards from the origin in the four axial directions. This lightis de
ected by the mirrors, and we ask whether or not the light remains `localised',in the sense that it illuminates only �nitely many vertices.Writing �(p) for the probability that the light is not localised (i.e., that it illu-minates in�nitely many vertices), we may wish to determine for which values of pit is the case the �(p) is strictly positive. It is elementary that �(0) = 1, and it is1991 Mathematics Subject Classi�cation. 60J15, 60K35, 82C44.Key words and phrases. Random walk, random environment, random labyrinth, scatterer,mirror, percolation, electrical network.This version was prepared on 7 May 1997. 1
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NE NW

Fig. 1. NE and NW mirrors re
ect rays of light thus.known that �(1) = 0 (the latter statement is in the folklore of the problem). Webelieve that it is unknown whether or not � is monotone in p, and whether �(p) = 0for p (6= 1) su�ciently close to 1. We remark that there is short proof that �(1) = 0using a percolation argument. (This method is referred to by Grimmett (1989, p.240), and is closely related to the proof of the forthcoming Theorem 4(b); see alsoBunimovitch and Troubetzkoy (1992).)In this paper we consider a variant of the above problem of mirrors. In thisvariant, there is a positive density of vertices at which the light behaves as a randomwalk. This extra randomness makes possible an analysis of certain properties ofthe model, including partial results on non-localisation and recurrence/transience.The ensuing process is a type of `random walk in a random environment', but theenvironment is su�ciently rigid that we prefer to use the term `labyrinth' ratherthan `environment'.In advance of giving a formal de�nition of the labyrinths of this paper, wepresent a brief discussion of an important two-dimensional example. Let p =(p?; p� ; pNW; pNE) be a vector of non-negative numbers with sum 1, and write Sfor the set f?; �;NW;NEg of possible vertex-states. The vertices of the squarelattice L2 are (independently) allocated states, so that the vertex x is in state swith probability ps (for each s 2 S). We write Zx for the (random) state of x, andwe call the family Z = (Zx : x 2 Z2) a random labyrinth. A vertex x is called:(a) a normal point (or normal vertex ), if Zx = ?,(b) a tunnel , if Zx = � ,(c) a north-west (NW) mirror , if Zx = NW,(d) a north-east (NE) mirror , if Zx = NE.The physical meanings of these designations are as follows. At a normal point, aray of light behaves as a symmetric random walk (that is, on arriving at the point,it leaves in a random direction, each possibility having probability 14 , and beingindependent of the labyrinth and all previous steps). At a tunnel, a ray of light isunde
ected (that is, it leaves the vertex in the same direction as it was travellingjust before it arrived). At a NW or NE mirror, the ray is de
ected according tothe type of mirror (see Figure 1).We now construct a (random) sequence X = (X0; X1; : : : ) of vertices as in thefollowing informal description. Let x be a normal point. We set X0 = x, thestarting point of the sequence. Next we choose X1 uniformly at random from theset of neighbours of x. Subsequent values of the Xj are those visited by a light rayobeying the above rules in the labyrinth Z.Let the labyrinth Z be sampled according to the above rules. We call the point
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p?pc(site) 1Fig. 2. Suppose that the only scatterers in L2 are tunnels and NW/NE mirrors. Thedotted region and the heavy lines of the �gure indicate the part of (p?; p� ) space forwhich non-localisation is proved. The labyrinth is a.s. localised when p? = p� = 0.x Z-recurrent if x is normal and in addition there exists a.s. N (> 0) such thatXN = x. We call the labyrinth Z recurrent if all normal points are Z-recurrent,otherwise we call the labyrinth transient . We shall prove that, if p? > 0, then theabove two-dimensional random labyrinth Z is a.s. recurrent.Remembering that irreducible Markov chains on �nite state spaces are neces-sarily recurrent, we turn our attention to a question of `localisation'. We call therandom labyrinth Z non-localised if there exists a starting point x such that thesequence X visits (almost surely) in�nitely many vertices, and localised otherwise.We shall show that the above two-dimensional labyrinth Z is a.s. non-localisedif one of the following holds:(a) p? exceeds the critical probability of site percolation on L2 ,(b) p? > 0 and p� = 0,(c) p? > 0 and p? + p� > 1� A, for some prescribed A > 0.See Figure 2 for an illustration of these conditions.We turn next to higher-dimensional labyrinths. Our main conclusion will be thatsuch labyrinths are a.s. transient, so long as the density p? of normal points satis�esp? > 0, and additionally the density of scatterers (other than tunnels) is su�cientlysmall. We present formal statements of our results in two and more dimensions inSection 2, after giving a proper de�nition of a labyrinth. This de�nition will allowscatterers of more general geometry than the simple mirrors referred to above.In Section 3, we present a proof of recurrence in two-dimensional labyrinths. Acomparison with percolation appears in Section 4, and this is exploited in Sections5 and 6 to obtain partial results concerning non-localisation in two dimensions, andtransience in higher dimensions.2. Random labyrinthsConsider the d-dimensional cubic lattice Ld = (Zd; Ed) with vertex-set Zd and withedges joining all pairs of vertices which are (Euclidean) distance 1 apart. An edge



4 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVjoining two vertices u; v is written as hu; vi. The origin is denoted as 0. For anyset A of vertices, we de�ne the surface @A to be the set of x (2 A) at least one ofwhose neighbours does not lie in A. Throughout, we assume that d � 2.Let I = fu1; u2; : : : ; udg be the set of unit vectors, and let I� = f�1;+1g � I.Members of I� are written as �uj .We de�ne a scatterer to be a mapping � : I� ! I� satisfying �(��(u)) = �ufor all u 2 I�. The set of all such scatterers is denoted as �. The identity scatterer(i.e., the identity map on I�) is called a tunnel and denoted by � .The physical interpretation of a scatterer is as follows. If light impinges on ascatterer �, heading in the direction u (2 I�) then it departs the scatterer in direc-tion �(u). The requirement that �(��(u)) = �u is in response to the reversibilityof re
ections. For any given � 2 � and u 2 I� exactly one of three possibilitiesoccurs for a light ray incident at the scatterer in direction u, namely:(a) �(u) = �u, the light is re
ected back on itself,(b) �(u) = u, the light passes through unde
ected,(c) �(u) 6= �u, the light is de
ected through 90�.For each �, there will be an even number of u (2 I�) belonging to each category.Next we introduce randomness. Let p?, p� be non-negative reals satisfyingp? + p� � 1, and let � be a probability mass function on �nf�g. let Z = (Zx :x 2 Zd) be independent random variables taking values in �[f?g having commondistribution given by(2.1) P(Z0 = �) = 8><>: p? if � = ?;p� if � = � ;(1� p? � p� )�(�) if � = � 2 �nf�g:The family Z is termed a labyrinth. We call a vertex x a tunnel if Zx = � , and anormal point if Zx = ?. (Throughout, we use P to denote the probability measureassociated with the labyrinth.)We now construct a random walk X = (X0; X1; : : : ) within the labyrinth Z. Letx be a normal point, and let X0 = x. We choose X1 at random from the set ofneighbours of x in Ld , each of its 2d neighbours having equal probability. Havingde�ned vertices X0; X1; : : : ; Xn, we de�ne Xn+1 by:(a) if Xn is a normal point, then Xn+1 is chosen uniformly from the neighbour-setof Xn, independently of all earlier choices and of the scatterers at other pointsof the labyrinth,(b) if Xn is occupied by the scatterer � (2 �) then Xn+1�Xn = �(Xn�Xn�1).Such a sequence X = (X0; X1; : : : ) conforms to the scatterers which it encounters,and behaves as a symmetric random walk at normal points. It is called a `randomwalk in the labyrinth Z'.As described in the last section, we call a normal point x (2 Zd)(2.2) Z-recurrentZ-transient� if PZx �XN = x for some N � 1�� = 1< 1;where PZx denotes the law of X conditional on the labyrinth Z (and X0 = xas before). We call Z a recurrent labyrinth if all normal points are Z-recurrent;otherwise we call Z a transient labyrinth. The event fZ is recurrentg is invariantwith respect to translations of the underlying lattice Ld , and in addition P is aproduct measure. Therefore, Z is either P-a.s. recurrent or P-a.s. transient.



RANDOM WALKS IN RANDOM LABYRINTHS 5Lemma 1. Assume p? > 0. Then Z is a.s. recurrent if and only ifP�0 is Z-recurrent j 0 is normal� = 1:Proof. If P�0 is Z-recurrent j 0 is normal� = 1, thenP(Z is transient) � Xx2ZdP(x is normal and Z-transient) = 0:Conversely, if P�0 is Z-recurrent j 0 is normal� < 1, thenP(Z is transient) � P(0 is normal and Z-transient) > 0;and the claim follows by the above zero{one observation. �In advance of a discussion of localisation, we introduce some further notation. AZd-path is a sequence x0; e0; x1; e1; : : : of alternating vertices xi and distinct edgesej such that ej = hxj; xj+1i for all j. If the path has a �nal vertex xn, then it issaid to have length n and to join x0 to xn. If the path is in�nite, then it is said tojoin x0 to 1. We allow a Zd-path to visit vertices more than once. A Z-path is aZd-path x0; e0; x1; e1; : : : with the property that, for all j,xj+1 � xj = Zxj (xj � xj�1) whenever Zxj 6= ?;which is to say that the path conforms to the scatterers at all non-normal points.Let N be the set of normal points. We de�ne an equivalence relation $ on Nby x $ y if and only if there exists a Z-path with endpoints x and y. We denoteby Cx the equivalence class of (N;$) containing the normal point x, and by C theset of equivalence classes of (N;$).For any Z-path with vertex sequence V = (v0; v1; : : : ), let N(V ) = (vi1 ; vi2 ; : : : )be the (ordered) sequence of normal points lying in V . Now consider a randomwalk X = (X0; X1; : : : ) in Z, beginning at the normal point x. It is not di�cult tosee that the normal subsequence N(X) constitutes an irreducible Markov chain onthe equivalence class Cx. Also, X is recurrent if and only if N(X) is a recurrentMarkov chain. Certainly N(X) is recurrent if jCxj < 1, but it may generally bethe case that jCxj =1 for some x.Let x be a normal point of the labyrinth Z. A random walk in the labyrinth,starting at x, gives rise to an irreducible Markov chain on the equivalence class Cx.We call x Z-localised if jCxj < 1, and Z-non-localised otherwise. We have, byelementary Markov chain theory, that(2.3) PZx �X visits in�nitely many vertices� = � 0 if jCxj <1;1 if jCxj =1:We call the labyrinth localised if all its normal points are Z-localised, and otherwisewe call it non-localised . The proof of the following lemma is very similar to that ofLemma 1, and is omitted.Lemma 2. Assume p? > 0. Then Z is a.s. non-localised if and only ifP�0 is Z-localised j 0 is normal� = 1:Next we state our main results, beginning with the case d = 2.



6 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVTheorem 3. Suppose that d = 2 and p? > 0. Then the two-dimensional randomlabyrinth Z is a.s. recurrent.Theorem 4. Suppose that d = 2. There exists a constant A (> 0) such that Z isa.s. non-localised whenever one of the following conditions holds:(a) p? > pc(site),(b) p? > 0 and p� = 0 for � 2 � n fNW;NEg,(c) p? > 0 and p? + p� > 1� A.Here, pc(site) denotes the critical probability of site percolation on L2 . We donot know whether or not the inequality p? > 0 is su�cient for Z to be a.s. non-localised. The scatterers NW and NE in (b) are those introduced in Section 1 andsketched in Figure 1. More precisely, NW is the scatterer � with �(u1) = �u2,�(�u2) = u1, where u1 and u2 are unit vectors in the increasing axial directions.(A similar de�nition holds for NE.)In Figure 2 is sketched a picture of the part of (p?; p� ) space for which non-localisation is proved, in the case when the only scatterers are tunnels, NW mirrors,and NE mirrors (cf. condition (b) above). For a �xed probability measure � onfNW;NEg, let NL = n(p?; p� ) : Z is a.s. non-localisedo:It is easy to see that (p0?; p0� ) 2 NL if (p?; p� ) 2 NL and p0? � p?, p0� � p� ,p0? + p0� � p? + p� . This is so since the labyrinth with such parameters (p0?; p0� )may be obtained from that with parameters (p?; p� ) by replacing each NW/NEmirror by a normal point with probability �, and each tunnel by a normal pointwith probability �, where � and � satisfyp0? = p? + (1� p? � p� )�+ p��; p0� = p� (1� �);which is to say that � = p0? + p0� � p? � p�1� p? � p� ; � = 1� p0�p� :Such conversions to normality can only make the labyrinth `more non-localised'.We now turn to the question of transience in three and more dimensions.Theorem 5. Assume that d � 3. There exists a constant A = A(d) > 0 such thatZ is a.s. transient when p? > 0 and p? + p� > 1�A.It is reasonable to ask whether transience is valid under weaker assumptions onthe pair p?; p� .Our basic strategy in proving recurrence and transience is to relate the labyrinthto a certain electrical network, and to estimate the e�ective resistance of this net-work. When d = 2, this e�ective resistance will be in�nite, which will in turnimply recurrence. When d � 3, we shall show that the e�ective resistance is atmost a bounded multiple of that of the in�nite open cluster in a certain percola-tion model; this is known to be a.s. �nite (see Grimmett, Kesten, Zhang (1993)),and therefore the labyrinth is a.s. transient. Such comparisons constitute a fairlystandard method for understanding certain properties of random walks and, moregenerally, time-reversible Markov chains. For further details, see Nash-Williams(1959), Lyons (1983), and Doyle and Snell (1984).



RANDOM WALKS IN RANDOM LABYRINTHS 73. Recurrence in two dimensionsAssume that d = 2 and p? > 0. We shall concentrate on a random walk beginningat the origin, and therefore we assume also that the origin is a normal point.Let e = hu; vi be an edge of L2 . We call e a normal edge if there exists a Z-path�(e) = (x0; e0; x1; : : : ; xn), with the properties that:(3.1) x0 (resp. xn) is either a normal point or is such that Zx0(x0 � x1) = x1 � x0(resp. Zxn(xn � xn�1) = xn�1 � xn), and(3.2) no xj with 0 < j < n is a normal point.If e is normal, we write L(e) for the number of edges in �(e), and de�ne(3.3) �(e) = � L(e)�1 if x0 and xn are distinct normal points,1 otherwise.If e is not normal, we set �(e) =1.The �(e) are used to de�ne an electrical network E(L2 ; �) in the following way.Consider the square lattice L2 , and think of each edge e as an electrical resistorhaving resistance �(e). Let R(Z) be the e�ective resistance of this network betweenthe origin and in�nity. (More rigorously, let Rn(Z) be the resistance between 0 anda composite vertex obtained by identifying all the vertices of L2 at distance n fromthe origin. Then R(Z) = limn!1 Rn(Z).)Lemma 6. It is the case that(3.4) P�R(Z) =1 j 0 is normal� = 1:Once this lemma is proved, Theorem 3 follows easily, as follows. Let X be arandom walk in the labyrinth with X0 = 0, and consider the Markov chain N(X)on the equivalence class C0. There is a corresponding electrical network E(C0) withvertex set C0 and with resistors arranged as follows. Between any two normal pointsn1; n2 in C0 there is placed a unit resistor if and only if there is a Z-path � joiningn1 to n2 of which no other vertex is normal. Such a Z-path � has some length, Lsay, and the required unit resistance may be obtained by replacing each edge of �by a resistor of resistance L�1. The e�ective resistance of E(C0), between 0 andin�nity, is at least that of E(L2 ; �), since E(C0) may be obtained from E(L2 ; �) bythe device of separating Z-paths whenever they intersect at a non-normal vertex.However, by Lemma 6, E(L2 ; �) a.s. has in�nite resistance, and therefore so hasE(C0). This in turn implies (see Doyle and Snell (1984)) that the Markov chainN(X) is recurrent. Theorem 3 now follows by Lemma 1.Next we prove Lemma 6.Proof of Lemma 6. For x = (x1; x2) 2 Z2 we de�ne kxk = jx1j+ jx2j. Let B(n) =fx 2 Z2 : kxk � ng and @B(n) = B(n)nB(n� 1). We de�ne the `edge-boundary'�eB(n) to be the set of edges e = hx; yi for which x 2 @B(n) and y 2 @B(n+ 1).We claim that there exists a positive constant c and a random M = M(Z) (� 1)such that(3.5) �(e) � clogn for all e 2 �eB(n) and n �M:To show this, we argue as follows. Let e = hx; yi be a normal edge, and let� = (x0; e0; x1; : : : ; eL�1; xL) be the unique Z-path containing e and satisfying (3.1)



8 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVand (3.2); we may assume that x0 and xL are normal, since otherwise �(e) = 1.Assume that e = eK for 0 � K < L, so that e `splits' � into the two sub-paths�1 = (x0; e0; : : : ; xK) and �2 = (xK+1; eK+1; : : : ; xL). These sub-paths may beconstructed in the following sequential manner. Imagine a ray of light proceedingalong e from x to y. If y is normal, we cease the construction. If y is not normal, weallow the light to proceed according to the scatterer at y. We iterate this procedureuntil the light meets a normal point, obtaining thereby the subpath of � lying on`one side' of the edge e.Write �1 for the number of edges (excepting e) which are traversed by the paththus constructed. We now repeat the construction but in the other direction, be-ginning with a light ray which proceeds along e in the direction from y to x. Inthis way we obtain a path of length �2.Each of the two paths obtained above may contain self-intersections, but it iseasily seen that no vertex may appear more than twice in the union of the twopaths.Now, if �1 � k, then the �rst k vertices in the corresponding path �1 mustbe non-normal, implying that the �rst b 12kc distinct vertices encountered in theconstruction are non-normal. Therefore,P�L(e) > 2k; e is normal� = P��1 + �2 � 2k; e is normal�(3.6) � 2P��1 � k; e is normal�� 2(1� p?) 12 (k�1)for k � 0. It follows by (3.3) that, for c > 0 and all n � 2,P��(e) < clogn for some e 2 �eB(n)� � j�eB(n)jP�L(e) > lognc ; e is normal�� �j�eB(n)jn��(c)where �(c) = �(4c)�1 log(1� p?) and � = �(c; p?) is a �nite constant. We choosec such that �(c) > 52 , whenceXn�2P��(e) < clogn for some e 2 �eB(n)� <1:Statement (3.5) now follows by the Borel{Cantelli lemma.The fact that R(Z) =1 a.s. is a fairly immediate consequence of (3.5), using theusual argument which follows. From the electrical network E(L2 ; �) we constructanother network with no larger resistance. This we do by, for each n � 1, identifyingall vertices contained in @B(n). In this new network there are j�eB(n)j parallelconnections between @B(n) and @B(n+1), each of which has (for n �M =M(Z))a resistance exceeding c= logn (by (3.5)). The e�ective resistance from the originto in�nity is therefore at least1Xn=M cj�eB(n)j logn � 1Xn=M c12n logn =1;and the proof is complete. �



RANDOM WALKS IN RANDOM LABYRINTHS 94. A comparison with a percolation modelIn this section we compare the random labyrinth Z with a certain percolationprocess. It will follow that there exists an in�nite equivalence class of normalpoints whenever the percolation process has an in�nite cluster.The �rst application of this comparison is to the case of two dimensions. Weshall deduce that the labyrinth is a.s. non-localised in two dimensions, for certainparameter values. See Section 5 for more details.The second application is to the case of three or more dimensions. It will emergethat a random walk on the above in�nite equivalence class is transient whenevera random walk on the in�nite percolation cluster is transient. The latter fact isknown to hold a.s. when d � 3 (see Grimmett, Kesten, Zhang (1993)), and thereforecertain higher-dimensional labyrinths are a.s. transient; see Section 6 for a full proof.There is more than one way of performing the required comparison, and wechoose here to proceed by a block argument. Let d � 2, and let V be a positiveinteger to be chosen later. Consider the box S = [0; V � 1]d. For x; y 2 @S, wede�ne M(x; y) to be the event that there exists a Z-path joining x to y, usingvertices in S only, and having length not exceeding 2(d+ 1)V .We declare the box S to be occupied if the two following conditions hold:(a) S contains only normal points and tunnels, and(b) M(x; y) occurs for all x; y 2 @S.More generally, for k = (k1; k2; : : : ; kd) 2 Zd, we declare k to be occupied if thebox Bk = kV + S satis�es conditions (a) and (b). Since these conditions involvethe states of vertices lying inside the box only, the set of occupied vertices of Zdconstitutes a site percolation process. This percolation process is supercritical ifP(S is occupied) is su�ciently large, and we therefore seek a lower bound for thisprobability.Theorem 7. Let d � 2 and p? > 0. There exists an integer V and a strictlypositive constant A = A(d) such that(4.1) P(S is occupied) > pc(site) if p? + p� > 1�Awhere pc(site) is the critical probability of site percolation on Ld .We shall see applications of this block comparison in the next sections, to thecases d = 2 and d � 3 respectively.Proof. First, the event NT = fS contains only normal points and tunnelsg hasprobability(4.2) P(NT) = (p? + p� )V d :Suppose now that NT occurs, and turn to condition (b) above. We claim that(4.3) P�M(x; y) for all x; y 2 @S j NT� � 1� 2dV d�1(1� epd�1? )V�1where(4.4) ep? = p?p? + p� ;



10 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVand we prove this as follows.Consider a plane face of @S containing the origin, say the faceF = �(m1;m2; : : : ;md�1; 0) : 0 � mj < V for 1 � j < d	:For m = (m1;m2; : : : ;md�1; 0) 6= (0; 0; : : : ; 0) and an integer k satisfying 1 � k <V , we let Tk(m) be the set of pointsTk(m) = �(0; : : : ; 0; k); (m1; 0; : : : ; 0; k);(m1;m2; 0; : : : ; 0; k); : : : ; (m1;m2; : : : ;md�1; k)	:Note that jTk(m)j = d � z (� d) where z = jfi : 1 � i < d and mi = 0gj. LetUk(m) be the event that all vertices in Tk(m) are normal. Since Tk(m)\T`(m) = ?when k 6= `, the events Uk(m), 1 � k < V , are independent. Furthermore Uk(m) �M 0(0;m), whereM 0(x; y) is the event that vertices x; y 2 @S are joined by a Z-pathof S having length not exceeding (d+ 1)V . ThereforeP�M 0(0;m) j NT� � P�V�1[k=1 Uk(m) ����NT�= 1� V�1Yk=1n1� P�Uk(m) j NT�o� 1� (1� epd�1? )V�1where(4.5) ep? = P�Z0 = ? j Z0 2 f?; �g� = p?p? + p� :It follows that(4.6) P�M 0(0;m) for all m 2 F j NT� � 1� V d�1(1� epd�1? )V�1:Inequality (4.6) is valid for any face F of @S containing the origin, of whichthere are exactly d. It is similarly valid with M 0(0;m) replaced by M 0(u;m) whereu = (V � 1; V � 1; : : : ; V � 1), and with F replaced by any face of @S containing u(of which there are exactly d). If all the corresponding events M 0(0;m); M 0(u;m0)occur for all appropriate m, m0, then so does M(x; y) for all x; y 2 @S. Inequality(4.3) follows, as promised earlier.Combining (4.2) and (4.3), we obtain that(4.7) P(S is occupied) � �1� 2dV d�1(1� epd�1? )V�1	(p? + p� )V d :Let pc = pc(site) be the critical probability of site percolation on Ld , and assumethat p? > 0 (so that ep? > 0). Pick V large enough that2dV d�1(1� epd�1? )V�1 < 12(1� pc);and then pick A small enough that(1�A)V d > 12(1 + pc):It follows from (4.7) that(4.8) P(S is occupied) > �1 + pc2 �2 > pc if p? + p� > 1�A:The proof is complete. �
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Fig. 3. The heavy lines form the lattice L2A , and the dashed lines form the latticeL2B . The central point is the origin of L2 .5. Non-localisation in two dimensionsNext we prove Theorem 4, and we begin with part (a). If p? > pc(site), then thereexists a.s. a unique in�nite cluster I of normal points having density at least �(p?)(> 0), where � is the percolation probability function; see Grimmett (1989). If avertex x lies in I, then I � Cx, implying that the labyrinth is lon-localised.Moving to part (b), we assume next that the only types of point are normalpoints, NW mirrors, and NE mirrors, occurring with respective probabilities p?,pNW, pNE, where p? > 0. From L2 we construct two interlaced copies of L2 , asfollows. LetA = n(m+ 12 ; n+ 12) : m+ n is eveno; B = n(m+ 12 ; n+ 12 ) : m+ n is oddo:On the respective sets A and B we de�ne the relation (m+ 12 ; n+ 12 ) � (r+ 12 ; s+ 12 )if and only if jm�rj = 1 and jn�sj = 1, obtaining thereby two copies of L2 denotedrespectively as L2A and L2B . See Figure 3.We now use the labyrinth Z to de�ne bond percolation processes on L2A andL2B . Here are the rules for L2A , exactly similar rules are valid for L2B . We declarethe edge of L2A joining (m � 12 ; n � 12 ) to (m + 12 ; n + 12) to be open if there isa NE mirror at (m;n); similarly we declare the edge joining (m � 12 ; n + 12 ) to(m + 12 ; n � 12 ) to be open if there is a NW mirror at (m;n). Edges which arenot open are designated closed . This de�nes percolation models on L2A and L2B inwhich north-easterly edges (resp. north-westerly edges) are open with probabilitypNE (resp. pNW). These processes are subcritical since pNE + pNW = 1 � p? < 1.Therefore, there exists a.s. no in�nite open path in either L2A or L2B , and we assumehenceforth that no such in�nite open path exists.Let N(A) (resp. N(B)) be the number of open circuits in L2A (resp. L2B ) whichcontain the origin in their interiors. Since the above percolation processes aresubcritical, there exists � = �(pNW; pNE) > 0 such that(5.1) P�x lies in an open cluster of L2A of size at least n� � e��n for all n;



12 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVwhere x is any given vertex of L2A . The same fact is valid for L2B . (This followsfrom standard percolation arguments; see [3, 7].) We claim that(5.2) P�0 is normal, and N(A) = N(B) = 0� > 0;and we prove this as follows. Let �(k) = [�k; k]2, and let Nk(A) (resp. Nk(B))be the number of circuits contributing to N(A) (resp. N(B)) which contain onlypoints lying strictly outside �(k). If Nk(A) � 1 then there exists some vertex(m+ 12 ; 12) of L2A , with m � k, which belongs to an open circuit of length exceedingm. Using (5.1), P�Nk(A) � 1� � 1Xm=k e��m < 13for su�ciently large k. We pick k accordingly, whenceP�Nk(A) +Nk(B) � 1� � 23 :Now, if Nk(A) = Nk(B) = 0, and in addition all points of L2 inside �(k) are normal,then N(A) = N(B) = 0. These last events have strictly positive probabilities, and(5.2) follows.Let J be the event that there exists a normal point x = x(Z) which lies in theinterior of no open circuit of either L2A or L2B . Since J is invariant with respect totranslations of L2 , and since P is product measure, we have that P(J) equals either0 or 1. Using (5.2), we deduce that P(J) = 1. Therefore we may �nd a.s. somesuch vertex x = x(Z). We claim that x is Z-non-localised, which will imply thatthe labyrinth if a.s. non-localised as claimed.We may generate the equivalence class Cx in the following way. We allow light toleave x along the four axial directions. When a light ray hits a mirror, it is re
ected;when a ray hits a normal point, it causes light to depart the point along each ofthe other three axial directions. Following this physical picture, let F be the setof `frontier mirrors', i.e., the set of mirrors only one side of which are illuminated.Assume that F is non-empty, say F contains a mirror at some point (m;n). Nowthis mirror must correspond to an open edge e in either L2A and L2B (see Figure 3again), and we may assume without loss of generality that this open edge e is inL2A . We write e = hu; vi where u; v 2 A, and we assume that v = u + (1; 1); anexactly similar argument holds otherwise. There are exactly three other edges ofL2A which are incident to u (resp. v), and we claim that one of these is open. Tosee this, argue as follows. If none is open, thenu+ (�12 ; 12 ) either is normal or has a NE mirror,u+ (�12 ;�12 ) either is normal or has a NW mirror,u+ (12 ;�12 ) either is normal or has a NE mirror.See Figure 4 for a diagram of the eight possible combinations. By inspection, eachsuch combination contradicts the fact that e = hu; vi corresponds to a frontiermirror.Therefore, u is incident to some other open edge f of L2A , other than e. By afurther consideration of each of 23�1 possibilities, we may deduce that there existssuch an edge f lying in F . Iterating the argument, we �nd that e lies in eitheran open circuit or an in�nite open path of F lying in L2A . Since there exists (byassumption) no in�nite open path, this proves that f lies in an open circuit of F
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Fig. 4. The solid line in each picture is the edge e = hu; vi, and the central vertexis u. If all three of the other edges of L2A incident with the vertex u are closed inL2A , then there are eight possibilities for the corresponding edges of L2B . The dashedlines indicate open edges of L2B , and the crosses mark normal points of L2 . In everypicture, light incident with one side of the mirror at e will illuminate the other sidealso.in L2A . By taking the union over all e 2 F , we obtain that F is a union of opencircuits of L2A and L2B . Each such circuit has an interior and an exterior, and x lies(by assumption, above) in every exterior. There are various ways of deducing thatx is Z-non-localised, and here is such a way.Assume that x is Z-localised. Amongst the set of vertices fx + (n; 0) : n � 1g,let y be the rightmost vertex at which there lies a frontier mirror. By the aboveargument, y lies in some open circuit G of F (belonging to either L2A or L2B ),whose exterior contains x. Since y is rightmost, we have that y0 = y + (�1; 0)is illuminated by light originating at x, and that light traverses the edge hy0; yi.Similarly, light does not traverse the edge hy; y00i, where y00 = y+(1; 0). Therefore,the point y + (12 ; 0) of R2 lies in the interior of G, which contradicts the fact thaty is rightmost. This completes the proof for part (b).Finally we turn to part (c). Assume that p? > 0 and p? + p� > 1 � A whereA is as in Theorem 7. Using that theorem, and the vocabulary of Section 4, thereexists a.s. an in�nite cluster I of occupied sites in the renormalised lattice obtainedby replacing each box Bk = kV + S by a `block site' at k = (k1; k2) 2 Z2. For eachk 2 I, the box Bk must contain some normal point n(k), and we choose such an(k) according to some rule. The equivalence class Cn(k) contains all normal pointslying in boxes B` with ` 2 I. Therefore jCn(k)j = 1, implying that the labyrinthis P-a.s. non-localised.6. Transience in three and more dimensionsFinally we prove Theorem 5, using the comparison with percolation which wasestablished in Section 4. Let d � 3, p? > 0, and p? + p� > 1 � A where A isgiven in Theorem 7. For each occupied block Bk = kV + S (where V is given as inTheorem 7), we may �nd a normal point n(k) within the block; in general there willbe many of these, and we pick one according to some arbitrary rule. If k and ` areneighbouring vertices of Zd such that Bk and B` are occupied, then, by de�nition of



14 G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOVthe `occupied' state, there exists a Z-path �(k; `) joining n(k) and n(`) and havinglength at most 4(d + 1)V . We may assume that each �(k; `) visits any vertex atmost once. We now use such paths to construct an electrical network on Ld asfollows. The nodes of the network are the set of all k for which Bk is occupied, andthere is a resistor between k and ` if and only if k and ` are adjacent in Ld , and inaddition Bk; B` are both occupied. Such a resistor is allocated resistance 4(d+1)V .On the event that S is occupied, we write R(block) for the e�ective resistance ofthe network between the vertex n(0) and the points at in�nity (this resistance isde�ned as a limit in the usual way).Writing fS occ$ 1g for the event that S belongs to an in�nite path of occupiedblocks of Ld , we have, by the above comparison and Theorem 7, that(6.1) P�R(block) <1 j S occ$ 1� � P �R(perc) <1 j 0$1�;where R(perc) is the e�ective resistance between 0 and 1 in the in�nite opencluster of a supercritical site percolation process on Ld (and P is the correspondingprobability measure). Using results of Grimmett, Kesten, and Zhang (1993), thelatter conditional probability equals 1. (Actually, the a.s. �niteness of R(perc)on the event f0 $ 1g was proved for bond percolation only, but the proof isequally valid for site percolation. Indeed it relies on two key inequalities whichwere derived for site percolation rather than bond percolation by Grimmett andMarstrand (1990).) Therefore(6.2) P�R(block) <1 j S occ$ 1� = 1:Assume that S belongs to an in�nite path of occupied blocks. Let E(Cn(0)) bethe electrical network on the equivalence class Cn(0), de�ned as was E(C0) afterthe statement of Lemma 6, but with 0 replaced by n(0) and with d � 3. We writeR(E) for the e�ective resistance from 0 to 1 in any appropriate electrical networkE . We shall alter E(Cn(0)) in certain ways, and at each stage the resistance R(�)will not decrease. First we remove all vertices, and incident resistors, not lying inthe union of the �(k; `) as k and ` vary over the index set of the cluster of occupiedblocks containing S. The ensuing electrical network is in�nite and contains thenormal point n(0). We may construct it from the lattice Ld by deleting edgesand vertices not in the �(k; `) speci�ed above, and by allocating to each edge ethe resistance �(e) = L(e)�1, as in (3.3). The paths �(k; `) may have verticesand edges in common. If two such paths intersect at a normal vertex other thanan endvertex, then we `separate' the paths at this point, thereby not decreasingthe e�ective resistance. Finally, each edge e has some resistance L(e)�1 � 1, andwe replace this edge by a unit resistor. These actions result in a network whoseresistance from n(0) to in�nity is no greater than R(block). Using (6.2), we obtainthat P�R�E(Cn(0))� <1 j S occ$ 1� � P�R(block) <1 j S occ$ 1� = 1:Since the block lattice a.s. contains an in�nite occupied cluster of blocks, we �ndthat there exists a.s. some normal vertex x such thatPZx (XN = x for some N � 1) < 1;
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