RANDOM WALKS IN RANDOM LABYRINTHS

G. R. GRIMMETT, M. V. MENSHIKOV, S. E. VOLKOV

ABsTRACT. A random labyrinth is a disordered environment of scatterers on a lat-
tice. A beam of light travels through the medium, and is reflected off the scatterers.
The set of illuminated vertices is studied, under the assumption that there is a posi-
tive density of points, called ‘normal points’, at which the light behaves in the manner
of a simple symmetric random walk. The ensuing ‘random walk in a labyrinth’ is
found to be recurrent in two dimensions, and also non-localised under certain extra
assumptions on the underlying probability distribution. The walk is shown to be
transient (with strictly positive probability) in three and higher dimensions, subject
to the assumption that the density of ‘non-trivial’ scatterers is sufficiently small. The
principal arguments used in deriving such results originate in percolation theory. In
addition, we utilise the relationship between random walks and electrical networks,
namely that a random walk is recurrent if and only if a certain electrical network has
infinite resistance.

1. Introduction

Suppose that we distribute obstacles within a Euclidean space R?, and then we
shine light through the space. If the light is reflected by the obstacles, then its
trajectory can be tortuous. When the placements of the obstacles are disordered
(or ‘random’) then it seems difficult to derive rigorous results concerning the path
followed by the light. The problem is difficult even in restricted versions, such as
when the light is constrained to a lattice, and when the obstacles have a limited
number of possible shapes. The combination of the disordered medium and the
(conditionally) deterministic flow leads apparently to mathematical complications
of substantial difficulty (but great appeal).

Let us recall one version of such a question which has gained a certain notoriety.
Let 0 < p < 1. At each vertex of the square lattice is placed, with probability p, a
plane two-sided mirror. Each mirror is placed in one of two possible orientations,
termed ‘NW’ and ‘NE’, each such possibility having probability % The effect of a
NW or NE mirror is illustrated in Figure 1. Now we place a candle at the origin, and
light rays emanate outwards from the origin in the four axial directions. This light
is deflected by the mirrors, and we ask whether or not the light remains ‘localised’,
in the sense that it illuminates only finitely many vertices.

Writing 7(p) for the probability that the light is not localised (i.e., that it illu-
minates infinitely many vertices), we may wish to determine for which values of p
it is the case the n(p) is strictly positive. It is elementary that 7(0) = 1, and it is
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'

Fig. 1. NE and NW mirrors reflect rays of light thus.

known that n(1) = 0 (the latter statement is in the folklore of the problem). We
believe that it is unknown whether or not 7 is monotone in p, and whether n(p) = 0
for p (# 1) sufficiently close to 1. We remark that there is short proof that n(1) =0
using a percolation argument. (This method is referred to by Grimmett (1989, p.
240), and is closely related to the proof of the forthcoming Theorem 4(b); see also
Bunimovitch and Troubetzkoy (1992).)

In this paper we consider a variant of the above problem of mirrors. In this
variant, there is a positive density of vertices at which the light behaves as a random
walk. This extra randomness makes possible an analysis of certain properties of
the model, including partial results on non-localisation and recurrence/transience.
The ensuing process is a type of ‘random walk in a random environment’, but the
environment is sufficiently rigid that we prefer to use the term ‘labyrinth’ rather
than ‘environment’.

In advance of giving a formal definition of the labyrinths of this paper, we
present a brief discussion of an important two-dimensional example. Let p =
(pe, pr,PNW, PNE) De a vector of non-negative numbers with sum 1, and write S
for the set {@,7, NW,NE} of possible vertex-states. The vertices of the square
lattice IL? are (independently) allocated states, so that the vertex x is in state s
with probability ps (for each s € S). We write Z, for the (random) state of =, and
we call the family 7 = (Z, : x € Z?) a random labyrinth. A vertex z is called:

(a) a normal point (or normal vertex), if Z, = &,

(b) a tunnel, if Z, =T,

(¢) a north-west (NW) mirror, if Z, = NW,

(d) a north-east (NE) mirror, if Z, = NE.
The physical meanings of these designations are as follows. At a normal point, a
ray of light behaves as a symmetric random walk (that is, on arriving at the point,
it leaves in a random direction, each possibility having probability %, and being
independent of the labyrinth and all previous steps). At a tunnel, a ray of light is
undeflected (that is, it leaves the vertex in the same direction as it was travelling
just before it arrived). At a NW or NE mirror, the ray is deflected according to
the type of mirror (see Figure 1).

We now construct a (random) sequence X = (Xg, X1,...) of vertices as in the
following informal description. Let z be a normal point. We set Xy = x, the
starting point of the sequence. Next we choose X; uniformly at random from the
set of neighbours of z. Subsequent values of the X; are those visited by a light ray
obeying the above rules in the labyrinth 7.

Let the labyrinth Z be sampled according to the above rules. We call the point
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Fig. 2. Suppose that the only scatterers in IL? are tunnels and NW /NE mirrors. The
dotted region and the heavy lines of the figure indicate the part of (pg,pr) space for
which non-localisation is proved. The labyrinth is a.s. localised when pg = pr = 0.

x Z-recurrent if x is normal and in addition there exists a.s. N (> 0) such that
Xn = z. We call the labyrinth Z recurrent if all normal points are Z-recurrent,
otherwise we call the labyrinth transient. We shall prove that, if pg > 0, then the
above two-dimensional random labyrinth Z is a.s. recurrent.

Remembering that irreducible Markov chains on finite state spaces are neces-
sarily recurrent, we turn our attention to a question of ‘localisation’. We call the
random labyrinth Z non-localised if there exists a starting point x such that the
sequence X visits (almost surely) infinitely many vertices, and localised otherwise.

We shall show that the above two-dimensional labyrinth Z is a.s. non-localised
if one of the following holds:

(a) pg exceeds the critical probability of site percolation on L2,

(b) pe > 0 and p; =0,

(¢) pg >0 and py + p; > 1 — A, for some prescribed A > 0.
See Figure 2 for an illustration of these conditions.

We turn next to higher-dimensional labyrinths. Our main conclusion will be that
such labyrinths are a.s. transient, so long as the density py of normal points satisfies
pe > 0, and additionally the density of scatterers (other than tunnels) is sufficiently
small. We present formal statements of our results in two and more dimensions in
Section 2, after giving a proper definition of a labyrinth. This definition will allow
scatterers of more general geometry than the simple mirrors referred to above.

In Section 3, we present a proof of recurrence in two-dimensional labyrinths. A
comparison with percolation appears in Section 4, and this is exploited in Sections
5 and 6 to obtain partial results concerning non-localisation in two dimensions, and
transience in higher dimensions.

2. Random labyrinths

Consider the d-dimensional cubic lattice L* = (Z%,E?) with vertex-set Z% and with
edges joining all pairs of vertices which are (Euclidean) distance 1 apart. An edge
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joining two vertices u,v is written as (u,v). The origin is denoted as 0. For any
set A of vertices, we define the surface A to be the set of x (€ A) at least one of
whose neighbours does not lie in A. Throughout, we assume that d > 2.

Let I = {uj,us,...,uq} be the set of unit vectors, and let I* = {—1,+1} x 1.
Members of I* are written as +u,;.

We define a scatterer to be a mapping o : [T — IT satisfying o(—o(u)) = —u
for all w € I*. The set of all such scatterers is denoted as 3. The identity scatterer
(i.e., the identity map on I*) is called a tunnel and denoted by .

The physical interpretation of a scatterer is as follows. If light impinges on a
scatterer o, heading in the direction u (€ IF) then it departs the scatterer in direc-
tion o(u). The requirement that o(—o(u)) = —u is in response to the reversibility
of reflections. For any given o € ¥ and u € I* exactly one of three possibilities
occurs for a light ray incident at the scatterer in direction u, namely:

(a) o(u) = —u, the light is reflected back on itself,
(b) o(u) = u, the light passes through undeflected,
(c) o(u) # tu, the light is deflected through 90°.
For each o, there will be an even number of u (€ IT) belonging to each category.

Next we introduce randomness. Let pg, pr be non-negative reals satisfying
Pz + pr < 1, and let 7 be a probability mass function on ¥\{7}. let Z = (Z, :
r € Z%) be independent random variables taking values in XU {@} having common
distribution given by

Pz ifa= <,
(2.1) P(Zy=a)=<% p, ifa=r,
(1—pe —p;)m(o) ifa=0ceX\{7}.

The family Z is termed a labyrinth. We call a vertex x a tunnel if Z, = 7, and a
normal point if Z, = &. (Throughout, we use P to denote the probability measure
associated with the labyrinth.)

We now construct a random walk X = (X, X1,...) within the labyrinth Z. Let
x be a normal point, and let Xg = x. We choose X; at random from the set of
neighbours of = in L, each of its 2d neighbours having equal probability. Having
defined vertices X, X1,...,X,, we define X,, 11 by:

(a) if X,, is a normal point, then X, 1 is chosen uniformly from the neighbour-set
of X,,, independently of all earlier choices and of the scatterers at other points
of the labyrinth,

(b) if X,, is occupied by the scatterer o (€ X) then X, 11 — X,, = 0(X,, — Xp—1).
Such a sequence X = (Xp, X1,...) conforms to the scatterers which it encounters,
and behaves as a symmetric random walk at normal points. It is called a ‘random
walk in the labyrinth Z°.

As described in the last section, we call a normal point x (€ Z9)

=1
<1,

Z -recurrent

(2.2) Z -transient

}imeZ(XN:x for some N > 1){
where PZ denotes the law of X conditional on the labyrinth Z (and X, = z
as before). We call Z a recurrent labyrinth if all normal points are Z-recurrent;
otherwise we call Z a transient labyrinth. The event {Z is recurrent} is invariant
with respect to translations of the underlying lattice L?, and in addition P is a
product measure. Therefore, Z is either P-a.s. recurrent or P-a.s. transient.
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Lemma 1. Assume pg > 0. Then Z is a.s. recurrent if and only if

]P’(O is Z-recurrent | 0 is normal) =1

Proof. If IF’(O is Z-recurrent | 0 is normal) =1, then

P(Z is transient) < Z P(z is normal and Z-transient) = 0.
z€L

Conversely, if ]P’(O is Z-recurrent | 0 is normal) < 1, then
P(Z is transient) > P(0 is normal and Z-transient) > 0,

and the claim follows by the above zero—one observation. O

In advance of a discussion of localisation, we introduce some further notation. A
Z%-path is a sequence xg, e, T1,€1,... of alternating vertices z; and distinct edges
e;j such that e; = (x;,z;41) for all j. If the path has a final vertex z,, then it is
said to have length n and to join x(y to x,. If the path is infinite, then it is said to
join xg to co. We allow a Z9%path to visit vertices more than once. A Z-path is a
Z%-path g, eq, 1, €1, ... with the property that, for all j,

Tjy1 — 2 = Zy;(xj —wj_1) Whenever Z,, # @,

which is to say that the path conforms to the scatterers at all non-normal points.

Let N be the set of normal points. We define an equivalence relation < on N
by x <> y if and only if there exists a Z-path with endpoints z and y. We denote
by C, the equivalence class of (N, <) containing the normal point z, and by C the
set of equivalence classes of (IV, ).

For any Z-path with vertex sequence V = (vg,v1,...), let N(V) = (v;y, vy, - .)
be the (ordered) sequence of normal points lying in V. Now consider a random
walk X = (Xo, X1,...) in Z, beginning at the normal point z. It is not difficult to
see that the normal subsequence N (X) constitutes an irreducible Markov chain on
the equivalence class C,. Also, X is recurrent if and only if N(X) is a recurrent
Markov chain. Certainly N(X) is recurrent if |Cy| < oo, but it may generally be
the case that |Cy| = oo for some z.

Let z be a normal point of the labyrinth Z. A random walk in the labyrinth,
starting at x, gives rise to an irreducible Markov chain on the equivalence class C';.
We call  Z-localised if |C,| < oo, and Z-non-localised otherwise. We have, by
elementary Markov chain theory, that

7 e _ [0 O] < oo,
(2.3) P; (X visits infinitely many vertices) = )
1 if |Cy] = oc.

We call the labyrinth localised if all its normal points are Z-localised, and otherwise
we call it non-localised. The proof of the following lemma is very similar to that of
Lemma 1, and is omitted.

Lemma 2. Assume pg > 0. Then Z is a.s. non-localised if and only if
P(0 is Z-localised | 0 is normal) = 1.

Next we state our main results, beginning with the case d = 2.
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Theorem 3. Suppose that d = 2 and pg > 0. Then the two-dimensional random
labyrinth Z is a.s. recurrent.

Theorem 4. Suppose that d = 2. There exists a constant A (> 0) such that Z is
a.s. non-localised whenever one of the following conditions holds:

(a) pe > pe(site),

(b) pz >0 and p, =0 for o € ¥\ {NW,NE},

(¢) pg >0 and pg +pr > 1— A.

Here, p.(site) denotes the critical probability of site percolation on 1.2. We do
not know whether or not the inequality pgy > 0 is sufficient for Z to be a.s. non-
localised. The scatterers NW and NE in (b) are those introduced in Section 1 and
sketched in Figure 1. More precisely, NW is the scatterer o with o(u1) = —us,
o(—usz) = uy1, where u; and uy are unit vectors in the increasing axial directions.
(A similar definition holds for NE.)

In Figure 2 is sketched a picture of the part of (pg,p,) space for which non-
localisation is proved, in the case when the only scatterers are tunnels, NW mirrors,
and NE mirrors (cf. condition (b) above). For a fixed probability measure 7 on
{NW,NE}, let

NL = {(pg,pT) : Z is a.s. non—localised}.

It is easy to see that (pl,p.) € NL if (pg,p,) € NL and pjy > pg, p. < pr,
Py + P > pe + pr. This is so since the labyrinth with such parameters (p, p)
may be obtained from that with parameters (pg,p;) by replacing each NW/NE
mirror by a normal point with probability «, and each tunnel by a normal point
with probability 3, where o and 3 satisfy

plg:ptz+(1_pz—p7)a+PTﬂa p{r:p’r(l_/@),
which is to say that

!/

/ !/
+ — —_
a:pz p’T P p‘r7 /le_pT
1—17@—177- Pr

Such conversions to normality can only make the labyrinth ‘more non-localised’.
We now turn to the question of transience in three and more dimensions.

Theorem 5. Assume that d > 3. There ezists a constant A = A(d) > 0 such that
7 s a.s. transient when pg > 0 and py + pr > 1 — A.

It is reasonable to ask whether transience is valid under weaker assumptions on
the pair pg, pr.

Our basic strategy in proving recurrence and transience is to relate the labyrinth
to a certain electrical network, and to estimate the effective resistance of this net-
work. When d = 2, this effective resistance will be infinite, which will in turn
imply recurrence. When d > 3, we shall show that the effective resistance is at
most a bounded multiple of that of the infinite open cluster in a certain percola-
tion model; this is known to be a.s. finite (see Grimmett, Kesten, Zhang (1993)),
and therefore the labyrinth is a.s. transient. Such comparisons constitute a fairly
standard method for understanding certain properties of random walks and, more
generally, time-reversible Markov chains. For further details, see Nash-Williams
(1959), Lyons (1983), and Doyle and Snell (1984).
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3. Recurrence in two dimensions

Assume that d = 2 and pgy > 0. We shall concentrate on a random walk beginning
at the origin, and therefore we assume also that the origin is a normal point.

Let e = (u,v) be an edge of L2. We call e a normal edge if there exists a Z-path
n(e) = (zo, €0, T1,. .. ,Tn), with the properties that:
(3.1) z¢ (resp. z,,) is either a normal point or is such that Z, (zo — z1) = 21 — o

(vesp. Zy, (X, —Tp_1) = Tp_1 — &y), and

(3.2) no x; with 0 < j < n is a normal point.
If e is normal, we write L(e) for the number of edges in 7(e), and define

(3.3)

© { L(e)™! if 2 and z,, are distinct normal points,
ple) =

o0 otherwise.

If e is not normal, we set p(e) = oc.

The p(e) are used to define an electrical network F(IL?, p) in the following way.
Consider the square lattice .2, and think of each edge e as an electrical resistor
having resistance p(e). Let R(Z) be the effective resistance of this network between
the origin and infinity. (More rigorously, let R,,(Z) be the resistance between 0 and
a composite vertex obtained by identifying all the vertices of L? at distance n from
the origin. Then R(Z) = lim,, o Ry (Z).)

Lemma 6. It is the case that
(3.4) P(R(Z) = oo | 0 is normal) = 1.

Once this lemma is proved, Theorem 3 follows easily, as follows. Let X be a
random walk in the labyrinth with Xy = 0, and consider the Markov chain N(X)
on the equivalence class Cjy. There is a corresponding electrical network E(Cy) with
vertex set Cy and with resistors arranged as follows. Between any two normal points
ni,no in Cyp there is placed a unit resistor if and only if there is a Z-path 7 joining
n1 to ny of which no other vertex is normal. Such a Z-path 1 has some length, L
say, and the required unit resistance may be obtained by replacing each edge of
by a resistor of resistance L=1. The effective resistance of E(Cj), between 0 and
infinity, is at least that of E(I?, p), since E(Cp) may be obtained from E(IL?, p) by
the device of separating Z-paths whenever they intersect at a non-normal vertex.
However, by Lemma 6, E(I?, p) a.s. has infinite resistance, and therefore so has
E(Cp). This in turn implies (see Doyle and Snell (1984)) that the Markov chain
N(X) is recurrent. Theorem 3 now follows by Lemma 1.

Next we prove Lemma 6.

Proof of Lemma 6. For x = (x1,22) € Z* we define ||z|| = |z1| + |72|. Let B(n) =
{z € Z? : ||z|| < n} and 0B(n) = B(n)\B(n — 1). We define the ‘edge-boundary’
A B(n) to be the set of edges e = (x,y) for which z € 9B(n) and y € dB(n + 1).
We claim that there exists a positive constant ¢ and a random M = M(Z) (> 1)
such that

(3.5) ple) > log;n for all ee€ A.B(n) and n > M.
To show this, we argue as follows. Let e = (z,y) be a normal edge, and let

n = (xo, €0, %1, ... ,eL_1, 1) be the unique Z-path containing e and satisfying (3.1)
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and (3.2); we may assume that zy and zr are normal, since otherwise p(e) = oo.
Assume that e = ex for 0 < K < L, so that e ‘splits’ n into the two sub-paths
m = (zo,€0,...,2K) and n2 = (Txy1,€K+1,-.-,2L). These sub-paths may be
constructed in the following sequential manner. Imagine a ray of light proceeding
along e from z to y. If y is normal, we cease the construction. If y is not normal, we
allow the light to proceed according to the scatterer at y. We iterate this procedure
until the light meets a normal point, obtaining thereby the subpath of n lying on
‘one side’ of the edge e.

Write A\; for the number of edges (excepting e) which are traversed by the path
thus constructed. We now repeat the construction but in the other direction, be-
ginning with a light ray which proceeds along e in the direction from y to z. In
this way we obtain a path of length As.

Each of the two paths obtained above may contain self-intersections, but it is
easily seen that no vertex may appear more than twice in the union of the two
paths.

Now, if Ay > k, then the first k vertices in the corresponding path n; must

1

be non-normal, implying that the first |3%| distinct vertices encountered in the

construction are non-normal. Therefore,

(3.6) P(L(e) > 2k, e is normal) = P(A; + A2 > 2k, e is normal)
< 2IF’()\1 >k, eis normal)
< 2(1 — pg)z =D

for k > 0. It follows by (3.3) that, for ¢ > 0 and all n > 2,

1
P <p(e) < for some e € AeB(n)> < |AeB(n)|P <L(e) > ﬂ, e is normal)
¢

logn
< BlAeB(n)n=

where a(c) = —(4¢) Llog(l — py) and B = B(c, py) is a finite constant. We choose
c such that a(c) > 5, whence

Z P <p(€) <% forsomeec AeB(n)> < 00.
logn

n>2

Statement (3.5) now follows by the Borel-Cantelli lemma.

The fact that R(Z) = oo a.s. is a fairly immediate consequence of (3.5), using the
usual argument which follows. From the electrical network F(IL?, p) we construct
another network with no larger resistance. This we do by, for each n > 1, identifying
all vertices contained in 0B(n). In this new network there are |A.B(n)| parallel
connections between dB(n) and 0B(n+ 1), each of which has (for n > M = M(Z))
a resistance exceeding ¢/logn (by (3.5)). The effective resistance from the origin
to infinity is therefore at least

e e]

c
> - =
Z |A B(n |10gn - n:ZM 12nlogn o

and the proof is complete. O
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4. A comparison with a percolation model

In this section we compare the random labyrinth Z with a certain percolation
process. It will follow that there exists an infinite equivalence class of normal
points whenever the percolation process has an infinite cluster.

The first application of this comparison is to the case of two dimensions. We
shall deduce that the labyrinth is a.s. non-localised in two dimensions, for certain
parameter values. See Section 5 for more details.

The second application is to the case of three or more dimensions. It will emerge
that a random walk on the above infinite equivalence class is transient whenever
a random walk on the infinite percolation cluster is transient. The latter fact is
known to hold a.s. when d > 3 (see Grimmett, Kesten, Zhang (1993)), and therefore
certain higher-dimensional labyrinths are a.s. transient; see Section 6 for a full proof.

There is more than one way of performing the required comparison, and we
choose here to proceed by a block argument. Let d > 2, and let V be a positive
integer to be chosen later. Consider the box S = [0,V — 1]¢. For z,y € 95, we
define M (z,y) to be the event that there exists a Z-path joining x to y, using
vertices in S only, and having length not exceeding 2(d + 1)V

We declare the box S to be occupied if the two following conditions hold:

(a) S contains only normal points and tunnels, and

(b) M(x,y) occurs for all z,y € 0S.
More generally, for k = (ky, ko, ..., kq) € Z%, we declare k to be occupied if the
box B = kV + S satisfies conditions (a) and (b). Since these conditions involve
the states of vertices lying inside the box only, the set of occupied vertices of Z<
constitutes a site percolation process. This percolation process is supercritical if
P(S is occupied) is sufficiently large, and we therefore seek a lower bound for this
probability.

Theorem 7. Let d > 2 and py > 0. There exists an integer V and a strictly
positive constant A = A(d) such that
(4.1) P(S is occupied) > p(site) if pg +pr >1— A

where pc(site) is the critical probability of site percolation on 1L%.

We shall see applications of this block comparison in the next sections, to the
cases d = 2 and d > 3 respectively.

Proof. First, the event NT = {S contains only normal points and tunnels} has
probability

d
(4.2) P(NT) = (po +p-)"" .

Suppose now that NT occurs, and turn to condition (b) above. We claim that
(4.3) P(M(z,y) for all z,y € S |NT) > 1 — 24V (1 —p& 1)V !

where

Pz

4.4 Py = —2—
( ) be Pz +pT
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and we prove this as follows.
Consider a plane face of 0S containing the origin, say the face
F={(mi,ma,...,mg_1,0):0<m; <Vforl<j<d}.
For m = (my, ma,... ,mg—1,0) # (0,0,...,0) and an integer k satisfying 1 < k <
V', we let Ty (m) be the set of points
Ti(m) = {(0,...,0,k), (m1,0,...,0,k),
(ml,mg,O, cee 70, k’), ceey (ml, ma,...,Mg—1, k)}

Note that |Tx(m)| = d — z (< d) where z = |[{i : 1 < i < d and m; = 0}|. Let
Uk(m) be the event that all vertices in Tj(m) are normal. Since Ty (m)NTy(m) = &
when k # £, the events Ui (m), 1 < k < V, are independent. Furthermore Uy (m) C
M'(0,m), where M'(z,y) is the event that vertices z,y € S are joined by a Z-path
of S having length not exceeding (d 4+ 1)V. Therefore

P(M'(0,m) | NT) > P(ZL:JI Us(m) ‘ NT>
V-1

=1-]] {1 — P(Ug(m) | NT)}
k=1
Z 1 (1 71/\)%—1)V—1
where
(4.5) Po=P(Zo =2 | Zy € {@,7}) = pgpfpr .

It follows that
(4.6) P(M'(0,m) for all m € F | NT) > 1 - Vo1 - pg 1V

Inequality (4.6) is valid for any face F' of 0S containing the origin, of which
there are exactly d. It is similarly valid with M'(0, m) replaced by M’(u, m) where
u=(V-1,V—-1,...,V—1), and with F replaced by any face of 9S containing u
(of which there are exactly d). If all the corresponding events M'(0,m), M'(u,m’)
occur for all appropriate m, m/, then so does M (z,y) for all z,y € 9S. Inequality
(4.3) follows, as promised earlier.

Combining (4.2) and (4.3), we obtain that
(4.7) P(S is occupied) > {1 —2dV* ( —phHv- "Hpe —|—pT)
Let p. = pc(site) be the critical probability of site percolatlon on L¢, and assume
that py > 0 (so that py > 0). Pick V large enough that

2V (1 - pE YT < 21— po),
and then pick A small enough that
d
(I_A)V %(1+pc)

It follows from (4.7) that
L+ pe

2
The proof is complete. O

2
(4.8) P(S is occupied) > < ) >pe if py+pr>1—A
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Fig. 3. The heavy lines form the lattice .2 , and the dashed lines form the lattice
IL2B. The central point is the origin of 2.

5. Non-localisation in two dimensions

Next we prove Theorem 4, and we begin with part (a). If pg > pc(site), then there
exists a.s. a unique infinite cluster I of normal points having density at least 0(pgy)
(> 0), where 6 is the percolation probability function; see Grimmett (1989). If a
vertex x lies in I, then I C C,, implying that the labyrinth is lon-localised.

Moving to part (b), we assume next that the only types of point are normal
points, NW mirrors, and NE mirrors, occurring with respective probabilities pg,
PNW, PNE, Where py > 0. From L? we construct two interlaced copies of L2, as
follows. Let

A= {(m+%,n+%):m+nis even}, B= {(m+%,n+%):m+nis odd}.

On the respective sets A and B we define the relation (m+3,n4+3) ~ (r+3,s+3)
if and only if /m—7| = 1 and |n—s| = 1, obtaining thereby two copies of L2 denoted
respectively as L% and L%. See Figure 3.

We now use the labyrinth Z to define bond percolation processes on L% and
L%. Here are the rules for L%, exactly similar rules are valid for L%. We declare
the edge of L joining (m — 3,n — 3) to (m+ 1,n+ ) to be open if there is
a NE mirror at (m,n); similarly we declare the edge joining (m — %,n + %) to
(m+ 4,n — %) to be open if there is a NW mirror at (m,n). Edges which are
not open are designated closed. This defines percolation models on L4 and L% in
which north-easterly edges (resp. north-westerly edges) are open with probability
pNE (resp. pnw). These processes are subcritical since png + pnw = 1 — pe < 1.
Therefore, there exists a.s. no infinite open path in either ]Li or ]L%, and we assume
henceforth that no such infinite open path exists.

Let N(A) (resp. N(B)) be the number of open circuits in L% (resp. L%) which
contain the origin in their interiors. Since the above percolation processes are
subcritical, there exists & = a(pnw, png) > 0 such that

an

(5.1) IP’(:L' lies in an open cluster of L% of size at least n) <e” for all n,
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where x is any given vertex of L% . The same fact is valid for L%. (This follows
from standard percolation arguments; see [3, 7].) We claim that

(5.2) P(0 is normal, and N(A4) = N(B) = 0) > 0,

and we prove this as follows. Let A(k) = [k, k]?, and let Ni(A) (resp. Ni(B))
be the number of circuits contributing to N(A) (resp. N(B)) which contain only
points lying strictly outside A(k). If Ni(A) > 1 then there exists some vertex
(m+ é, ;) of L%, with m > k, which belongs to an open circuit of length exceeding
m. Using (5.1),

P(Ni(A Z emm <

for sufficiently large k. We pick k£ accordingly, whence

Wl

P(Ni(A) + Ne(B) > 1) <

Wl

Now, if Nx(A) = Ni(B) = 0, and in addition all points of L? inside A(k) are normal,
then N(A) = N(B) = 0. These last events have strictly positive probabilities, and
(5.2) follows.

Let J be the event that there exists a normal point x = 2(Z) which lies in the
interior of no open circuit of either ]Li or IL2B. Since J is invariant with respect to
translations of .2, and since P is product measure, we have that P(J) equals either
0 or 1. Using (5.2), we deduce that P(J) = 1. Therefore we may find a.s. some
such vertex x = z(Z). We claim that z is Z-non-localised, which will imply that
the labyrinth if a.s. non-localised as claimed.

We may generate the equivalence class C, in the following way. We allow light to
leave z along the four axial directions. When a light ray hits a mirror, it is reflected;
when a ray hits a normal point, it causes light to depart the point along each of
the other three axial directions. Following this physical picture, let F' be the set
of ‘frontier mirrors’, i.e., the set of mirrors only one side of which are illuminated.
Assume that F' is non-empty, say F' contains a mirror at some point (m,n). Now
this mirror must correspond to an open edge e in either L% and L% (see Figure 3
again), and we may assume without loss of generality that this open edge e is in
L%. We write e = (u,v) where u,v € A, and we assume that v = u + (1,1); an
exactly similar argument holds otherwise. There are exactly three other edges of
L% which are incident to u (resp. v), and we claim that one of these is open. To
see this, argue as follows. If none is open, then

u+ (—— 1) either is normal or has a NE mirror,

2
u+ (—%, —1) either is normal or has a NW mirror,

2

u+ (5, —5) either is normal or has a NE mirror.

See Figure 4 for a diagram of the eight possible combinations. By inspection, each
such combination contradicts the fact that e = (u,v) corresponds to a frontier
mirror.

Therefore, u is incident to some other open edge f of %, other than e. By a
further consideration of each of 23 — 1 possibilities, we may deduce that there exists
such an edge f lying in F. Iterating the argument, we find that e lies in either
an open circuit or an infinite open path of F lying in L?%. Since there exists (by
assumption) no infinite open path, this proves that f lies in an open circuit of F'
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Fig. 4. The solid line in each picture is the edge e = (u,v), and the central vertex
is u. If all three of the other edges of ]LIZ4 incident with the vertex u are closed in
]Li, then there are eight possibilities for the corresponding edges of ]L2B. The dashed
lines indicate open edges of ]LzB, and the crosses mark normal points of L.2. In every
picture, light incident with one side of the mirror at e will illuminate the other side
also.

in L. By taking the union over all e € F, we obtain that F is a union of open
circuits of L% and L%. Each such circuit has an interior and an exterior, and =z lies
(by assumption, above) in every exterior. There are various ways of deducing that
x is Z-non-localised, and here is such a way.

Assume that z is Z-localised. Amongst the set of vertices {x + (n,0) : n > 1},
let y be the rightmost vertex at which there lies a frontier mirror. By the above
argument, y lies in some open circuit G of F (belonging to either L% or L%),
whose exterior contains z. Since y is rightmost, we have that y' = y + (—1,0)
is illuminated by light originating at z, and that light traverses the edge (y’,y).
Similarly, light does not traverse the edge (y,y"), where y" = y+ (1,0). Therefore,
the point y + (%, 0) of R? lies in the interior of G, which contradicts the fact that
y is rightmost. This completes the proof for part (b).

Finally we turn to part (c¢). Assume that pg > 0 and py + p, > 1 — A where
A is as in Theorem 7. Using that theorem, and the vocabulary of Section 4, there
exists a.s. an infinite cluster I of occupied sites in the renormalised lattice obtained
by replacing each box By = kV + S by a ‘block site’ at k = (k1, k2) € Z?. For each
k € I, the box By must contain some normal point n(k), and we choose such a
n(k) according to some rule. The equivalence class Cy,(;) contains all normal points
lying in boxes By with £ € I. Therefore |C),)| = oo, implying that the labyrinth
is P-a.s. non-localised.

6. Transience in three and more dimensions

Finally we prove Theorem 5, using the comparison with percolation which was
established in Section 4. Let d > 3, pg > 0, and pg + pr > 1 — A where A is
given in Theorem 7. For each occupied block By = kV 4+ S (where V is given as in
Theorem 7), we may find a normal point n(k) within the block; in general there will
be many of these, and we pick one according to some arbitrary rule. If & and £ are
neighbouring vertices of Z? such that By, and By are occupied, then, by definition of
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the ‘occupied’ state, there exists a Z-path n(k, ¢) joining n(k) and n(¢) and having
length at most 4(d + 1)V. We may assume that each n(k,£) visits any vertex at
most once. We now use such paths to construct an electrical network on L% as
follows. The nodes of the network are the set of all k& for which By, is occupied, and
there is a resistor between k and £ if and only if k¥ and ¢ are adjacent in L%, and in
addition By, By are both occupied. Such a resistor is allocated resistance 4(d+1)V.
On the event that S is occupied, we write R(block) for the effective resistance of
the network between the vertex n(0) and the points at infinity (this resistance is
defined as a limit in the usual way).

Writing {S %% oo} for the event that S belongs to an infinite path of occupied
blocks of L%, we have, by the above comparison and Theorem 7, that

(6.1) P(R(block) < 0o | § & 00) > P(R(perc) < oo | 0+ 00),

where R(perc) is the effective resistance between 0 and oo in the infinite open
cluster of a supercritical site percolation process on L? (and P is the corresponding
probability measure). Using results of Grimmett, Kesten, and Zhang (1993), the
latter conditional probability equals 1. (Actually, the a.s. finiteness of R(perc)
on the event {0 <> oo} was proved for bond percolation only, but the proof is
equally valid for site percolation. Indeed it relies on two key inequalities which
were derived for site percolation rather than bond percolation by Grimmett and
Marstrand (1990).) Therefore

(6.2) P(R(block) < oo | S & 00) = 1.

Assume that S belongs to an infinite path of occupied blocks. Let E(Cy, o)) be
the electrical network on the equivalence class Cy (g, defined as was E(Cy) after
the statement of Lemma 6, but with 0 replaced by n(0) and with d > 3. We write
R(€) for the effective resistance from 0 to oo in any appropriate electrical network
£. We shall alter E(Cy, () in certain ways, and at each stage the resistance R(-)
will not decrease. First we remove all vertices, and incident resistors, not lying in
the union of the n(k, £) as k and £ vary over the index set of the cluster of occupied
blocks containing S. The ensuing electrical network is infinite and contains the
normal point n(0). We may construct it from the lattice L¢ by deleting edges
and vertices not in the n(k,£) specified above, and by allocating to each edge e
the resistance p(e) = L(e)~!, as in (3.3). The paths n(k,£) may have vertices
and edges in common. If two such paths intersect at a normal vertex other than
an endvertex, then we ‘separate’ the paths at this point, thereby not decreasing
the effective resistance. Finally, each edge e has some resistance L(e)™! < 1, and
we replace this edge by a unit resistor. These actions result in a network whose
resistance from n(0) to infinity is no greater than R(block). Using (6.2), we obtain
that

]P’(R(E(Cn(o))) <o |8 oo) > P(R(block) < o0 | § & o0) = 1.

Since the block lattice a.s. contains an infinite occupied cluster of blocks, we find
that there exists a.s. some normal vertex = such that

PZ(Xy = x for some N > 1) < 1,
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where PZ is the law of the random walk X (starting at z) conditional on the
labyrinth Z. That is to say, Z is a.s. transient.
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