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Abstract: This paper is dedicated in friendship and respect to Michael Keane.
The Burton-Keane theorem for the almost-sure uniqueness of infinite clusters
is a landmark of stochastic geometry. Let p be a translation-invariant probabil-
ity measure with the finite-energy property on the edge-set of a d-dimensional
lattice. The theorem states that the number I of infinite components satisfies
(I € {0,1}) = 1. The proof is an elegant and minimalist combination of zero—
one arguments in the presence of amenability. The method may be extended
(not without difficulty) to other problems including rigidity and entanglement
percolation, as well as to the Gibbs theory of random-cluster measures, and to
the central limit theorem for random walks in random reflecting labyrinths. It
is a key assumption on the underlying graph that the boundary/volume ratio
tends to zero for large boxes, and the picture for non-amenable graphs is quite
different.

1. Introduction

The Burton—Keane proof of the uniqueness of infinite clusters is a landmark in
percolation theory and stochastic geometry. The general issue is as follows. Let w
be a random subset of Z¢ with law p, and let T = I(w) be the number of unbounded
components of w. Under what reasonable conditions on p is it the case that: either
uw(I =0) =1, or (I = 1) = 17 This question arose first in percolation theory
with g = p,, where p, denotes product measure (on either the vertex-set or the
edge-set of Z4) with density p. It was proved in [2] that u,(I = 1) = 1 for any
value of p for which p,(I > 1) > 0, and this proof was simplified in [9]. Each of
these two proofs utilized a combination of geometrical arguments together with a
large-deviation estimate.

The true structure of the problem emerged only in the paper of Robert Burton
and Michael Keane, [5]. Their method is elegant and beautiful, and rests on the
assumptions that the underlying measure p is translation-invariant with a certain
‘finite-energy property’, and that the underlying graph is amenable (that is, the
boundary/volume ratio tends to zero in the limit for large boxes). The Burton—
Keane method is canonical of its type, and is the first port of call in any situation
where such a uniqueness result is needed. It has found applications in several areas
beyond connectivity percolation, and the purpose of this paper is to summarize
the method, and to indicate some connections to other problems in the theory of
disordered media.
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Michael Keane’s contributions to the issue of uniqueness are not confined to [5].
The results of that paper are extended in [10] to long-range models (see also [33]),
and to models on half-spaces. In a further paper, [6], he explored the geometrical
properties of infinite clusters in two dimensions, and in [11] the existence of circuits.
He wrote in the earlier paper [21] of uniqueness in long-range percolation.

The Burton—Keane approach to uniqueness is sketched in Section 2 in the context
of percolation. Its applications to rigidity percolation and to entanglement perco-
lation are summarized in Sections 3 and 4. An application to the random-cluster
model is described in Section 5, and another to random walks in random reflecting
labyrinths in Section 6. The reader is reminded in Section 7 that infinite clusters
may be far from unique when the underlying graph is non-amenable. We shall make
periodic references to lattices, but no formal definition is given here.

2. Uniqueness of infinite percolation clusters

The Burton—Keane argument is easiest described in the context of percolation, and
we begin therefore with a description of the bond percolation model. Let G = (V, E)
be a countably infinite connected graph with finite vertex-degrees. The configura-
tion space of the model is the set Q2 = {0, 1} of all 0/1-vectors w = (w(e) : € € E).
An edge e is called open (respectively, closed) in the configuration w if w(e) = 1
(respectively, w(e) = 0). The product space 2 is endowed with the o-field F gener-
ated by the finite-dimensional cylinder sets. For p € [0, 1], we write p, for product
measure with density p on (€, F).

The percolation model is central to the study of disordered geometrical systems,
and a reasonably full account may be found in [16].

Let w € Q, write n(w) = {e € E : w(e) = 1} for the set of open edges of w, and
consider the open subgraph G, = (V,n(w)) of G. For z,y € V, we write x < y if
2 and y lie in the same component of G,. We write z < oo if the component of
G, containing x is infinite, and we let 6, (p) = pp(z < 00). The number of infinite
components of G, is denoted by I = I(w).

It is standard that, for any given p € [0, 1],

for all z,y € V, 02 (p) = 0 if and only if 6,(p) = 0, (1)
and that
=0 ifp<p.(G),
RR R ©)
>0 if p> pe(G),

where the critical probability p.(G) is given by
pe(G) = sup{p : pp(I = 0) = 1}. (3)

The event {I > 1} is independent of the states of any finite collection of edges.
Since the underlying measure is product measure, it follows by the Kolmogorov
zero—one law that p,(I > 1) € {0,1}, and hence

=0 if p<p(G),
=1 ifp>Pc(G)‘

pp(L > 1) {

It is a famous open problem to determine for which graphs it is the case that
tp. (I > 1) =0, see Chapters 8-10 of [16].
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We concentrate here on the case when G is the d-dimensional hypercubic lattice.
Let Z = {...,—1,0,—1,...} be the integers, and Z? the set of all d-vectors z =
(x1,22,...,24) of integers. We turn Z? into a graph by placing an edge between
any two vertices x, y with |z — y| = 1, where

d

‘Z‘:Z|Zl|a Zezd'

i=1

We write E for the set of such edges, and L¢ = (Z¢,E) for the ensuing graph.
Henceforth, we let d > 2 and we consider bond percolation on the graph L. Similar
results are valid for any lattice in two or more dimensions, and for site percolation.
A bozx A is a subset of Z? of the form H?zl[mi, y;] for some x,y € Z%. The boundary
0§ of the set S of vertices is the set of all vertices in S which are incident to some
vertex not in S.

A great deal of progress was made on percolation during the 1980s. Considerable
effort was spent on understanding the subcritical phase (when p < p.) and the
supercritical phase (when p > p.). It was a key discovery that, for any p with
wp(L > 1) = 1, we have that u,(I = 1) = 1; that is, the infinite cluster is (almost
surely) unique whenever it exists.

Theorem 1. [2] For any p € [0,1], either u,(I =0)=1 or pp,(I =1)=1.

This was first proved in [2], and with an improved proof in [9]. The definitive
proof is that of Burton and Keane, [5], and we sketch this later in this section.
Examination of the proof reveals that it relies on two properties of the product
measure f,, namely translation-invariance and finite-energy. The first of these is
standard, the second is as follows. A probability measure p on (£2,F) is said to
have the finite-energy property if, for all e € E,

0 < p(eisopen|7T.) <1 p-almost-surely,

where 7, denotes the o-field generated by the states of edges other than e. The
following generalization of Theorem 1 may be found in [5].

Theorem 2. [5] Let i be a translation-invariant probability measure on (2, F) with
the finite-energy property. Then u(I € {0,1}) = 1.

If, in addition, p is ergodic, then I is py-almost-surely constant, and hence: either
w(I =0)=1or u(l =1)=1. A minor complication arises for translation-invariant
non-ergodic measures, and this is clarified in [6] and [12], page 42.

Proof of Theorem 1. The claim is trivial if p = 0,1, and we assume henceforth that
0 < p < 1. There are three steps. Since I is a translation-invariant function and p,
is ergodic, I is pp-almost-surely constant. That is, there exists i, € {1,2,... }U{oco}
such that

pp(f = ip) = 1. (4)

Secondly, let us assume that 2 < i, < co. There exists a box A such that
tp(A intersects 7, infinite clusters) > 0.
By replacing the state of every edge in A by 1, we deduce by finite-energy that

AU‘P(I = 1) > Oa
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in contradiction of (4). Therefore, i, € {0, 1, 00}.

In the third step we prove that i, # co. Suppose on the contrary that i, = oo.
We will derive a contradiction by a geometrical argument. A vertex x is called a
trifurcation if:

(i) « lies in an infinite open cluster,
(ii) there exist exactly three open edges incident to z, and
(iii) the deletion of = and its three incident open edges splits this infinite cluster
into exactly three disjoint infinite clusters and no finite clusters.

We write T, for the event that x is a trifurcation.

By translation-invariance, the probability of T, does not depend on the choice
of z, and thus we set 7 = p,(T,). Since i, = oo by assumption, there exists a box
A such that

tp(A intersects three or more infinite clusters) > 0.

On this event, we may alter the configuration inside A in order to obtain the event
Ty. We deduce by the finite-energy property of y, that 7 > 0.

The mean number of trifurcations inside A is 7|A|. This implies a contradiction,
as indicated by the following rough argument. Select a trifurcation (¢1, say) of A,
and choose some vertex y; (€ JA) which satisfies t; < y;1 in A. We now select a new
trifurcation t5 € A. By the definition of the term ‘trifurcation’, there exists yo € OA
such that y1 # y2 and to < yo in A. We continue similarly, at each stage picking a
new trifurcation t; € A and a new vertex yi € OA. If there exist N trifurcations in
A, then we obtain N distinct vertices yi lying in A. Therefore |OA| > N. We take
expectations to find that |0A| > 7|A|, which is impossible with 7 > 0 for large A.
We deduce by this contradiction that i, # co. The necessary rigour may be found
in [5, 16]. O

3. Rigidity percolation

Theorems 1 and 2 assert the almost-sure uniqueness of the infinite connected com-
ponent. In certain other physical situations, one is interested in topological prop-
erties of subgraphs of L other than connectivity, of which two such properties are
‘rigidity’ and ‘entanglement’. The first of these properties may be formulated as
follows.

Let G = (V, E) be a finite graph and let d > 2. An embedding of G into R? is an
injection f : V — R%. A framework (G, f) is a graph G together with an embedding
f- A motion of a framework (G, f) is a differentiable family f = (f; : 0 <t <1) of
embeddings of GG, containing f, which preserves all edge-lengths. That is to say, we
require that f = fr for some T, and that

[fe(u) = fr()]| = [l fo(uw) = fo()] (5)

for all edges (u,v) € E, where | - || is the Euclidean norm on R?. We call the
motion f rigid if (5) holds for all pairs u,v € V rather than adjacent pairs only. A
framework is called rigid if all its motions are rigid motions.

The above definition depends on the value of d and on the initial embedding f.
For given d, the property of rigidity is ‘generic’ with respect to f, in the sense that
there exists a natural measure 7 (generated from Lebesgue measure) on the set of
embeddings of G such that: either (G, f) is rigid for m-almost-every embedding f,
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or (G, f) is not rigid for m-almost-every embedding. We call G rigid if the former
holds. Further details concerning this definition may be found in [13, 14, 27]. Note
that rigid graphs are necessarily connected, but that there exist connected graphs
which are not rigid.

We turn now to the rigidity of infinite graphs. Let G be a countably infinite graph
with finite vertex-degrees. The graph G is called rigid if every finite subgraph of G
is contained in some finite rigid subgraph of G.

Next we introduce probability. Let £ be a lattice in d dimensions, and consider
bond percolation on £ having density p. The case £ = L% is of no interest in the
context of rigidity, since the lattice L. is not itself rigid. Let R be the event that
the origin belongs to some infinite rigid subgraph of £ all of whose edges are open.
The rigidity probability is defined by

0" (p) = pip(R).

Since R is an increasing event, §™8 is a non-decreasing function, whence

0% () =0 ifp<pie(L),
P> 0 itp>pris(e),

where the rigidity critical probability p&8(L) is given by
(L) = sup{p : 6"8(p) = 0}.

The study of the rigidity of percolation clusters was initiated by Jacobs and Thorpe,
see [30, 31].

Since rigid graphs are connected, we have that 6"8(p) < 6(p), implying that
pi&(L) > pe(L). The following is basic.

Theorem 3. [16, 27] Let L be a d-dimensional lattice, where d > 2.

(i) We have that p.(L) < ptie(L).
(i) ptie(L) < 1 if and only if L is rigid.

How many (maximal) infinite rigid components may exist in a lattice £7 Let
J be the number of such components. By the Kolmogorov zero—one law, for any
given value if p, J is pp-almost-surely constant. It may be conjectured that ,(J =
1) = 1 whenever p,(J > 1) > 0. The mathematical study of rigidity percolation
was initiated by Holroyd in [27], where it was shown amongst other things that,
for the triangular lattice T in two dimensions, p,(J = 1) = 1 for almost every
p € (pi&(T),1]. The proof was a highly non-trivial development of the Burton—
Keane method. The main extra difficulty lies in the non-local nature of the property
of rigidity. See also [29].

Considerably more general results have been obtained since by Higgstrom. Hol-
royd’s result for almost every p was extended in [23] to for every p, by using the
two-dimensional uniqueness arguments of Keane and co-authors to be found in [11].
More recently, Héaggstrom has found an adaptation of the Burton—Keane argument
which (almost) settles the problem for general rigid lattices in d > 2 dimensions.
Theorem 4. [25] Let d > 2 and let L be a rigid d-dimensional lattice. We have
that p,(J = 1) = 1 whenever p > ptig(L).

There remains the lacuna of deciding what happens when p = pii8, that is, of
proving either that p sx(J = 0) =1 or that pme(J =1) = 1.
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4. Entanglement in percolation

In addition to connectivity and rigidity, there is the notion of ‘entanglement’. The
simplest example of a graph which is entangled but not connected comprises two
disjoint circuits which cannot be separated without one of them being broken. Such
entanglement is intrinsically a three-dimensional affair, and therefore we restrict
ourselves here to subgraphs of L2 = (Z3 E) viewed as graphs embedded in a natural
way in R3.

We begin with some terminology. For E C E, we denote by [E] the union of all
unit line-segments of R? corresponding to edges in E. The term ‘sphere’ is used to
mean a subset of R® which is homeomorphic to the 2-sphere {x € R3 : ||z = 1}.
The complement of any sphere S has two connected components; we refer to the
bounded component as the inside of S, written ins(S), and to the unbounded
component as the outside of S, written out(S).

There is a natural definition of the term ‘entanglement’ when applied to finite
sets of edges of the lattice L3, namely the following. We call the finite edge-set E en-
tangled if, for any sphere S not intersecting [E], either [E] C ins(S) or [E] C out(S).
Thus entanglement is a property of edge-sets rather than of graphs. However, with
any edge-set ¥ we may associate the graph G having edge-set E together with all
incident vertices. Graphs G arising in this way have no isolated vertices. We call
GEg entangled if F is entangled, and we note that Gg is entangled whenever it is
connected.

There are several possible ways of extending the notion of entanglement to in-
finite subgraphs of L3, and these ways are not equivalent. For the sake of being
definite, we adopt here a definition similar to that used for rigidity. Let E be an
infinite subset of E. We call E entangled if, for any finite subset F' (C E), there
exists a finite entangled subset F” of E such that F' C F’. We call the infinite graph
G, defined as above, entangled if F is entangled, and we note that G g is entangled
whenever it is connected. A further discussion of the notion of entanglement may
be found in [20].

Turning to percolation, we declare each edge of L2 to be open with probability
p. We say that the origin 0 lies in an infinite open entanglement if there exists an
infinite entangled set F of open edges at least one of which has 0 as an endvertex.
We concentrate on the event

N = {0 lies in an infinite open entanglement},
and the entanglement probability
0" (p) = pp(N).

Since N is an increasing event, 8" is a non-decreasing function, whence

=0 if p < pmt,
ecnt (p) 3 Znt
>0 ifp>pg™,

ent
c

pe™ = sup{p : 6°™(p) = 0}. (6)

where the entanglement critical probability pc™ is given by

Since every connected graph is entangled, it is immediate that 6(p) < 6°"*(p),
whence 0 < p& < p,.
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Theorem 5. [1, 28] The following strict inequalities are valid:
0 < P < pe. (7)

Entanglements in percolation appear to have been studied first in [32], where it
was proposed that
pe—ptt ~ 1.8 x 1077,

implying the strict inequality pS™* < pe. It is a curious fact that we have no rigorous
insight into the numerical value of pS™. For example, we are unable to decide on
the basis of mathematics whether p¢® is numerically close to either 0 or p.
Suppose that p is such that §°"*(p) > 0. By the zero—one law, the number K of
(maximal) infinite entangled open edge-sets satisfies p, (K > 1) = 1. The almost-
sure uniqueness of the infinite entanglement has been explored in [20, 29], and
the situation is similar to that for rigidity percolation. Haggstrom’s proof of the
following theorem uses a non-trivial application of the Burton—Keane method.

Theorem 6. [24] We have that pu,(K = 1) = 1 whenever p > p&".

As is the case with rigidity, there remains the open problem of proving either
that pipent () = 0) = 1 or that pyene (K = 1) = 1.

There are several other open problems concerning entangled graphs, of which we
mention a combinatorial question. Let n > 1, and let &, be the set of all subsets E
of E with cardinality n such that:

(i) some member of e is incident to the origin, and
(ii) E is entangled.

Since every connected graph is entangled, &, is at least as large as the family of
all connected sets of n edges touching the origin. Therefore, |£,| grows at least
exponentially in n. It may be conjectured that there exists s such that

|En| < e for all n > 1.

The best inequality known currently is of the form |&,| < exp{knlogn}. See [20].

5. The random-cluster model

The random-cluster model on a finite graph G = (V, E) is a certain parametric
family of probability measures ¢, , indexed by two parameters p € [0,1] and ¢ €
(0,00). When ¢ = 1, the measure is product measure with density p; when ¢ =
2,3, ..., the corresponding random-cluster measures correspond to the Ising and ¢-
state Potts models on G. The random-cluster model provides a geometrical setting
for the correlation functions of the ferromagnetic Ising and Potts models, and it has
proved extremely useful in studying these models. Recent accounts of the theory,
and of its impact on Ising/Potts models, may be found in [18, 19].

The configuration space is the set © = {0,1}F of 0/1-vectors indexed by the
edge-set E. The probability measure ¢, , on €2 is given by

Qsp q { H pw(e) 1 w(e) }qk(“)7 w e Q, (8)
eckE

where k(w) is the number of connected components (or ‘open clusters’) of the graph

Go = (Vin(w)).
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When G is finite, every ¢, ,-probability is a smooth function of the parameters
p and ¢. The situation is more interesting when G is infinite, since infinite graphs
may display phase transitions. For simplicity, we restrict the present discussion to
the graph L = (Z% E) where d > 2. We introduce next the concept of boundary
conditions.

Let A be a finite box, and write E, for the set of edges joining pairs of members
of A. We write 7, for the o-field generated by the states of edges in E \ E5. For
& € Q, we write Qi for the (finite) subset of Q containing all configurations w
satisfying w(e) = £(e) for e € E?\ Ep; these are the configurations which ‘agree
with € off A’. Let £ € Q, and write ¢f\,p’ 4 for the random-cluster measure on the
finite graph A ‘with boundary condition £’. That is to say, ¢4 p.q is given as in (8)
subject to w € Qf\, and with k(w) replaced by the number of open clusters of L9
that intersect A.

A probability measure ¢ on (2, F) is called a random-cluster measure with pa-
rameters p and ¢ if

for all A € F and all finite boxes A, &(A | 7Tx)(§) = qﬁf\’p,q(A) for ¢-a.e. €.

The set of such measures is denoted R, ,. The reader is referred to [18, 19] for
accounts of the existence and properties of random-cluster measures.

One may construct infinite-volume measures by taking weak limits. A probability
measure ¢ on (£, F) is called a limit random-cluster measure with parameters p
and ¢ if there exist £ € Q and a sequence A = (A, : n > 1) of boxes satisfying
A, — Z% as n — oo such that

¢f\npq:>¢ as n — oo.

The two ‘extremal’ boundary conditions are the configurations ‘all 0’ and ‘all 1,
denoted by 0 and 1, respectively. It is a standard application of positive association
that the weak limits

T
¢p,q - /gréld ¢A7qu

exist for b= 0,1 and ¢ > 1. It is an important fact that these limits belong to R 4.
Theorem 7. [15] Let p € [0,1] and q € [1,00). The limit random-cluster measures
¢Z,q: b=0,1, belong to Ry q.

The proof hinges on the following fact. Let ¢ be a limit random-cluster measure
with parameters p, ¢ such that the number I of infinite open clusters satisfies

oI €{0,1}) = 1. 9)

It may then be deduced that ¢ € R, 4. The uniqueness theorem, Theorem 2, is
used to establish (9) for the measures ¢ = qﬁ;’,’q, b=0,1.

Let ¢ > 1. The random-cluster model has a phase transition defined as follows.
For b= 0,1, let 6°(p,q) = qu(o < 00), and define the critical points

pl(q) = sup{p: 0°(p.q) = 0}.

It is standard that d)?,,q = ¢11J.,q for almost every p. It follows that p?(q) = pl(q), and
we write pc(q) for the common critical value. It is known that Qﬁg,q = ;,q when
p < pc(q), and it is an important open problem to prove that

g = Opq P> De(q).

See [18, 19] for further discussion of the uniqueness of random-cluster measures.
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6. Random walks in random labyrinths

Suppose that a ball is propelled through a random environment of obstacles, off
which it rebounds with perfect reflection. We ask for information about the trajec-
tory of the ball. This classical problem is often termed the ‘Lorentz problem’, and it
has received much attention in both the mathematics and physics literature. If the
obstacles are distributed at random in R? then, conditional on their placements,
the motion of the ball is deterministic. It is a significant problem of probability
theory to develop a rigorous analysis of such a situation.
Two natural questions spring to mind.

(i) Non-localization. What is the probability that the trajectory of the ball is
unbounded?

(i1) Diffusivity. Suppose the trajectory is unbounded with a strictly positive prob-
ability. Conditional on this event, is there a central limit theorem for the ball’s
position after a large time ¢.

These questions seem to be difficult, especially when the obstacles are distributed
aperiodically. The problem is much easier when the environment of obstacles is
‘lubricated’ by a positive density of points at which the ball behaves as a random
walk.

We consider a lattice model of the following type. The obstacles are distributed
around the vertex-set of the d-dimensional hypercubic lattice L%, and they are
designed in such a way that the ball traverses the edges of the lattice. Some of the
associated mathematics has been surveyed in [4, 17], to which the reader is referred
for an account of the literature. The main result of [4] is that, subject to certain
conditions on the density of obstacles, the ball’s trajectory satisfies a functional
central limit theorem. The Burton—-Keane method plays a crucial role in the proof.

We make this more concrete as follows. Our model involves a random environ-
ment of reflecting bodies distributed around the vertices of L¢. Each vertex is des-
ignated either a ‘reflector’ (of a randomly chosen type) or a ‘random walk point’.
The interpretation of the term ‘random walk point’ is as follows: when the ball
hits such a point, it departs in a direction chosen randomly from the 2d available
directions, this direction being chosen independently of everything else.

The defining properties of a reflector p are that:

(i) to each incoming direction u there is assigned a unique outgoing direction
p(u), and
(ii) the ball will retrace its path if its direction is reversed.

Let I = {e1,e2,...,eq} be the set of positive unit vectors of Z%, and let I+ =
{aej :a==,1<j<d}. A reflector is defined to be a map p: [T — I* with the
property that

p(—p(u)) = —u for all u € I~.

We write R for the set of all reflectors. One particular reflector is special, namely
the identity map satisfying p(u) = u for all v € It; we call this the crossing, and
we denote it by +. Crossings do not deflect the ball.

The following random environment will be termed a random labyrinth. Let pyy
and p4 be non-negative reals such that p,w + p4+ < 1, and let © be a probability
mass function on the set R \ {4} of ‘non-trivial’ reflectors (that is, w(p) > 0 for
p € R\{+} and 3 cr\(437(p) = 1). Let Z = (Z, : = € 7Z%) be a family of
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independent random variables, taking values in R U {@}, with probabilities

Prw if =0,
]P)(Zzzﬁ) =\ P+ if 8=+,
(1 — Prw 7p+)77(/0) if ﬁ =pE R\{+}

A vertex z is called a crossing if Z, = +, and a random walk (rw) point if Z, = @.

We now study admissible paths in the labyrinth Z. Consider a path in L¢ which
visits (in order) the vertices zg,z1,...,T,; we allow the path to revisit a given
vertex more than once, and to traverse a given edge more than once. This path is
called admissible if it conforms to the reflectors that it meets, which is to say that

Tjy1 — T = Zy, (x5 —x5-1) for all j such that Z,, # @.

Remarkably little is known about random labyrinths when p. = 0. One notori-
ous open problem concerns the existence (or not) of infinite admissible paths in L2
when prw = 0. The problem is substantially easier when p,y > 0, and we assume
this henceforth. We explain next how the labyrinth Z generates a random walk
therein. Let = be a rw point. A walker starts at x, and flips a fair 2d-sided coin
in order to determine the direction of its first step. Henceforth, it is required to
traverse admissible paths only, and it flips the coin to determine its exit direction
from any rw point encountered. We write PZ for the law of the random walk in the
labyrinth Z, starting from a rw point z.

There is a natural equivalence relation on the set R of rw points of Z¢, namely
x <« y if there exists an admissible path with endpoints « and y. Let C, be the
equivalence class containing the rw point . We may follow the progress of a random
walk starting at z by writing down (in order) the rw points which it visits, say
Xo (= z), X1, Xs,.... Given the labyrinth Z, the sequence X = (X,, : n > 0) is
an irreducible Markov chain on the countable state space C,. Furthermore, this
chain is reversible with respect to the measure p given by u(y) = 1 for y € C,.
We say that x is Z-localized if |Cy| < 0o, and Z-non-localized otherwise. We call Z
localized if all rw points are Z-localized, and we call Z non-localized otherwise. By
a zero—one law, we have that P(Z is localized) equals either 0 or 1.

Suppose that the origin 0 is a rw point. As before, we consider the sequence
Xo (= 0),X;1,Xs,... of rw points visited in sequence by a random walk in Z
beginning at the origin 0. For € > 0, we let

Xs(t) = €XL5—2tJ for t > 07

and we are interested in the behaviour of the process X¢(-) in the limit as € | 0. We
study X ¢ under the probability measure Py, defined as the measure P conditional
on the event {0 is a rw point, and |Cy| = oo}.

We write piitc for the critical probability of site percolation on Z<.

Theorem 8. [4] Let d > 2 and py > 0. There exists a strictly positive constant
A = A(pyw,d) such that the following holds whenever either 1 — pyw — py < A or
Prw > P2
(i) P(0 is a rw point, and |Cp| = 00) > 0, and
(ii) as € | 0, the re-scaled process X<(-) converges Po-dp to /W, where W is a
standard Brownian motion in R? and § is a strictly positive constant.
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With E denoting expectation, the convergence ‘Py-dp’ is to be interpreted as
P{(f(X9)) — E(f(W))  in Po-probability,

for all bounded continuous functions f on the Skorohod path-space D([0, c0), R%).

The proof of Theorem 8 utilizes the Kipnis—Varadhan central limit theorem, [34],
together with its application to percolation, see [7, 8]. A key step in the proof is
to show that, under the conditions of the theorem, there exists a unique infinite
equivalence class, and this is where the Burton—Keane method is key.

7. Non-uniqueness for non-amenable graphs

Let G = (V, E) be an infinite, connected graph with finite vertex-degrees. We call
G amenable if its ‘Cheeger constant’
X(G):inf{%:WgV, 0<|W|<oo} (10)
satisfies
x(G) =0,
where the infimum in (10) is over all non-empty finite subsets W of V. The graph
is called non-amenable if x(G) > 0.

We have so far concentrated on situations where infinite clusters are (almost
surely) unique, as is commonly the case for an amenable graph. The situation is
quite different when the graph is non-amenable, and a systematic study of per-
colation on such graphs was proposed in [3]. The best known example is bond
percolation on the infinite binary tree, for which there exist infinitely many infinite
clusters whenever the edge-density p satisfies % <p <1l Let G = (V,E) be an
infinite graph and let p € (0,1). For w € = {0,1}7, let I = I(w) be the number
of infinite clusters of w. It has been known since [22] that there exist graphs having
three non-trivial phases characterized respectively by I =0, I = 1, I = oo. One of
the most interesting results in this area is the existence of a critical point for the
event {I = 1}. This is striking because the event {I = 1} is not increasing. Prior
to stating this theorem, we introduce some jargon.

The infinite connected graph G = (V, E) is called transitive if, for all z,y € V,
there exists an automorphism 7 of G such that y = 7(x). The graph G is called
quasi-transitive if there exists a finite set Vj of vertices such that, for all y € V,
there exists € Vp and an automorphism 7 such that y = 7(z).

The following result was obtained by Haggstrom and Peres under a further con-
dition, subseqently lifted by Schonmann.

Theorem 9. [26, 35] Let G be an infinite, connected, quasi-transitive graph. There
exist pe,pu € [0, 1] satisfying 0 < pe < py <1 such that:

pp(I=0)=1 if 0<p<pe, (11)
pp(I =00) =1 if pc<p<pu, (12)
pp(I=1)=1 if p,<p<L. (13)

Here are some examples.

1. For an amenable graph, we have by the Burton—-Keane argument that p. = py.

2. For the binary tree, we have p. = % and p, = 1.

3. For the direct product of the binary tree and a line, we have that 0 < p. <
pu < 1, see [22].
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