
Theorem 2.3 of The Random-Cluster Model corrected

This replaces the correction dated 30 Sep 2006

I am grateful to Kenshi Hosaka for pointing out a serious problem with Theorem
2.3. This theorem is used at three places later in the book (RCM), and an alternative
argument suffices at each such place. The details follow.

Inequalities (2.4)–(2.5) do not in general imply (2.2), and Hosaka’s counterex-
ample is as follows. Take S = {1, 2, 3} and � = {0, 1}S. Let

µ2(100) = µ2(010) = µ2(001) = 1
8 ,

µ2(110) = µ2(101) = µ2(011) = 7
48 ,

µ2(000) = 1
16 , µ2(111) = 1

8 ,

and define µ1 symmetrically by µ1(xyz) = µ2([1 − x][1 − y][1 − z]). It may be
checked that µ1, µ2 satisfy (2.4)–(2.5), whereas

µ2(111)µ1(000) < µ1(001)µ2(110).

The alleged ‘proof’ of Theorem 2.3 contains a mathematical error (as well as
a spelling error) near the middle of page 24 of RCM, where it is claimed that it
suffices to consider the case b ≥ 2. One must in fact consider the other case as
well, and this is where the problem lies.

Here is a corrected version of Theorem 2.3.

Theorem 2.3′′. Let µ1, µ2 be a pair of strictly positive probability measures on
(�, F ) such that

(2.4) µ2(ω
e)µ1(ωe) ≥ µ1(ω

e)µ2(ωe), ω ∈ �, e ∈ E .

If, in addition, either µ1 or µ2 satisfies

(2.5′) µ(ωe f )µ(ωe f ) ≥ µ(ωe
f )µ(ω

f
e ), ω ∈ �, e, f ∈ E,

then (2.2) holds.

Proof. Let µ be a strictly positive probability measure satisfying (2.5′). We show
first that µ satisfies (2.2) with µ1 = µ2 = µ, that is

(2.6′) µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2).

We shall prove this by induction on the Hamming distance H (ω1, ω2). Inequality
(2.6′) is a triviality when: either H (ω1, ω2) = 1, or the ωi are ordered (in that
either ω1 ≤ ω2, or vice versa). The only non-trivial case with H (ω1, ω2) = 2 is
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of the form: ω1 = ωe
f , ω2 = ω

f
e where e, f are distinct edges. This is handled

by assumption (2.5′).
Let h ≥ 3 and suppose that (2.6′) holds for all pairsω1, ω2 satisfying H (ω1, ω2) <

h. Let ω1, ω2 ∈ � be such that H (ω1, ω2) = h, and furthermore such that neither
ω1 ≤ ω2 nor ω1 ≥ ω2. There exist integers a, b such that a, b ≥ 1 and a +b = h,
and disjoint subsets A, B ⊆ E with cardinalities a and b respectively, such that:

if e ∈ A, (ω1(e), ω2(e)) = (1, 0),

if e ∈ B, (ω1(e), ω2(e)) = (0, 1),

if e ∈ E \ (A ∪ B), ω1(e) = ω2(e).

We fix an ordering (ei : i = 1, 2, . . . , |E|) of the set E in which edges in A
are indexed 1, 2, . . . , a, and edges in B are indexed a + 1, a + 2, . . . , a + b. A
configuration ω may be written as a ‘word’ ω(e1) · ω(e2) · . . . · ω(e|E|); we write
0x for a sub-word of length x every entry of which is 0, with a similar meaning for
1y . Since the entries of the configurations ω1, ω2, ω1 ∨ ω2, ω1 ∧ ω2 are constant
off A ∪ B, we shall omit explicit reference to these values. Thus, for example,
ω1 = 1a · 0b and ω2 = 0a · 1b.

Since h = a + b ≥ 3, either a ≥ 2 or b ≥ 2, and it suffices by symmetry to
assume a ≥ 2. By the induction hypothesis,

µ(1a+b)µ(0a−1 · 1 · 0b) ≥ µ(1a · 0b)µ(0a−1 · 1b+1)

since H (1a · 0b, 0a−1 · 1b+1) = h − 1,

µ(0a−1 · 1b+1)µ(0a+b) ≥ µ(0a−1 · 1 · 0b)µ(0a · 1b)

since H (0a−1 · 1 · 0b, 0a · 1b) = b + 1 < h,

whence

µ(1a+b)µ(0a−1 · 1 · 0b)µ(0a+b) ≥ µ(1a · 0b)µ(0a−1 · 1b+1)µ(0a+b)

≥ µ(1a · 0b)µ(0a−1 · 1 · 0b)µ(0a · 1b).

Therefore,
µ(1a+b)µ(0a+b) ≥ µ(1a · 0b)µ(0a · 1b),

and the induction step is complete.
We now use a telescoping argument. We identify a configuration ω ∈ � with

the set of indices η(ω) at which ω takes the value 1. Let ξ1, ξ2 ∈ �, and write
Ak = η(ξk). Let B = A1\A2 = {b1, b2, . . . , br }, and write Bs = {b1, b2, . . . , bs}

for s ≥ 1. Assume ξ1 6= ξ2, and without loss of generality that r ≥ 1. By (2.4),
µ2(ξ1 ∨ ξ2)

µ2(ξ2)
=

µ2(A2 ∪ Br)

µ2(A2 ∪ Br−1)
·
µ2(A2 ∪ Br−1)

µ2(A2 ∪ Br−2)
· · ·

µ2(A2 ∪ B1)

µ2(A2)

≥
µ1(A2 ∪ Br)

µ1(A2 ∪ Br−1)
·
µ1(A2 ∪ Br−1)

µ1(A2 ∪ Br−2)
· · ·

µ1(A2 ∪ B1)

µ1(A2)

=
µ1(ξ1 ∨ ξ2)

µ1(ξ2)
.
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If µ1 satisfies (2.5′), then it satisfies (2.6′), and (2.2) follows with ξi = ωi .
Similarly, if µ2 satisfies (2.5′), then it satisfies (2.6′), and (2.2) follows with

ξ1 ∨ ξ2 = ω1, ξ2 = ω1 ∧ ω2. �

Proof of Theorem 2.6. Theorem 2.6 is correct as stated, but the given proof refers
to Theorem 2.3 and therefore requires a small patch. As shown in RCM, (2.7) is
equivalent to

(2.14′)
µ2(ζ e)

µ2(ζe)
≥

µ1(ξ e)

µ1(ξe)
, ξ ≤ ζ.

It is elementary that (2.2) implies (2.14′).
Suppose conversely that (2.14′) holds, and use the telescoping argument at the

end of the last proof. In the notation used there, by (2.14′),

µ2(ξ1 ∨ ξ2)

µ2(ξ2)
=

µ2(A2 ∪ Br)

µ2(A2 ∪ Br−1)
·
µ2(A2 ∪ Br−1)

µ2(A2 ∪ Br−2)
· · ·

µ2(A2 ∪ B1)

µ2(A2)

≥
µ1((A1 ∩ A2) ∪ Br)

µ1((A1 ∩ A2) ∪ Br−1)
·
µ1((A1 ∩ A2) ∪ Br−1)

µ1((A1 ∩ A2) ∪ Br−2)

· · ·
µ1((A1 ∩ A2) ∪ B1)

µ1(A1 ∩ A2)

=
µ1(ξ1)

µ1(ξ1 ∧ ξ2)

as required. �

Proof of Theorem 2.19. This follows as in RCM, with the reference to Theorem
2.3 replaced by reference to Theorem 2.3′′ above. �

Proof of Theorem 3.79. In order to apply Theorem 2.3′′ on page 60 of RCM, we
must check that the law of either R or S satisfies (2.5′). Both claims are in fact
true. It is standard (and straightforward) to check this for S.

As for R, we show below that

(1) µ1(Axy)µ1(A) ≥ µ1(Ax)µ1(Ay), A ⊆ V, x, y ∈ V \ A, x 6= y.

Let A ⊆ V , x, y ∈ V \ A, x 6= y. Let a (respectively, c) be the number of edges
of the form 〈x, z〉 (respectively, 〈y, z〉) with z ∈ A, let b (respectively, d) be the
number of edges of the form 〈x, z〉 (respectively, 〈y, z〉) with z /∈ A and z 6= x, y,
and let e be the number of edges joining x and y. By (3.76),

µ1(Ax)

µ1(A)
=

(1 − p)b+e Z Ax (p, q − 1)

(1 − p)a Z A(p, q − 1)
=

φ(x is isolated)

(1 − p)a(q − 1)
,

where φ = φA,p,q−1. Similarly,

µ1(Axy)

µ1(A)
=

φ(x , y are isolated)

(1 − p)a+c+e(q − 1)2 .
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Therefore, the ratio of the left to the right sides of (1) is

(1 − p)−e φ(x , y are isolated)

φ(x is isolated)φ(y is isolated)
,

which is at least 1, by the positive association of φ. �
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