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Introduction

Readers who know little or no physics should not be deterred by the many
mentions of physics in this chapter, for most of the required physics is
spelt out in Appendix A. The chapter has two parts. Part 1 is an updat-
ing of Good (1988b) in which a quantal hypothesis is discussed concerning
the rest masses of ‘elementary particles’. The discussion depends, perhaps
necessarily, on subjective probabilities. The hypothesis is largely numero-
logical in the non-occult sense to be described more fully in Part 2. That
part deals with the difficult topic of judging more general numerological
assertions. Both parts might shed some light on how we choose between
scientific theories in general. The chapter is somewhat speculative and this
is appropriate in a Festschrift for John Hammersley. Moreover some of his
early work (Hammersley 1950, 1954) dealt in part with a quantal hypothe-
sis. Quantal hypotheses have occurred in physics, chemistry, genetics, and
archaeology.

Warning. This chapter contains subjectively oriented material.

Part 1. Numerology for the Masses of Hadrons

A new edition of the Review of Particle Properties was issued in mid-
February, 1989: see Particle Data Group (1988/89), abbreviated here as
PDG89. Using this edition, and Cohen and Taylor (1987), together with
information from Cohen (1989), who also drew my attention to Kinoshita
(1989), I have recomputed some of the numbers, based on PDG86, pub-
lished in Good (1988b); see also Good (1989c). In the present account,
which is self-contained, I report the revised implications. The concept of
the relativistic fine structure constant might have independent interest.
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The first formula was
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m(n) − m(p)

m(p)
≈ 136α

720
=

[

(

4

2

)

−1

+

(

10

2

)

−1
]

α (1.1)

where R(p, n) may be described as a ‘proportional bulge’, m(n) and m(p)
denote the rest masses of the neutron and proton, and α denotes the fine
structure constant (Sommerfeld 1916, p. 91; PDG89, p. 51; Cohen and
Taylor 1987, p. 1139; updated by Kinoshita 1989),

α = e2/(~c) = 1/137.0359914(1± 8.1 × 10−9).

(For the sake of a simple and familiar formula for α, I have assumed elec-
trostatic units, in which the permittivity of empty space is unity, but α has
the same numerical value, whatever units are used, because it is a dimen-
sionless constant.) Here e denotes the charge on the electron, c denotes the
velocity of light, and ~ = h/(2π) where h denotes Planck’s constant. (The
expressions h and ~ are equally simple because energy = h × frequency =
~ × angular frequency, while frequency and angular frequency are equally
natural concepts. In other words, angles could be measured in circumfians
instead of radians.) The constant α is generally regarded as measuring
the strength of the electromagnetic forces. Kinoshita (1989) argues that
α ‘may be regarded as the most fundamental parameter of the physical
world’.

A very similar conjecture is

R(p, n) =
m(n) − m(p)

m(p)
≈ 136α′

720
(1.1′)

where
α′ = tanh−1(α) = 1/137.0335589(1± 8.1 × 10−9)

which may be regarded as the relativistic fine-structure constant. The idea
of this minor adjustment to α is that whereas (i) α = v/c where v is the
velocity of the electron in the lowest Bohr orbit (for example, Allen 1928,
p. 56, or Whittaker 1953, p. 120), and (ii) if we replace the ratio v/c by
its rapidity in the sense of A.A. Robb (Eddington 1930, p. 22), namely
tanh−1(v/c), then α is replaced by α′. Unlike two velocities, in the same
direction, rapidities are strictly additive (in the Special Theory of Relativ-
ity). It does not seem too ad hoc to regard α′ as a fundamental constant
of nature, perhaps as fundamental as α athough the familiar formula for
α, mentioned above, is simpler than that for α′.

The expression in (1.1) containing binomial coefficients (‘triangula-
tions’) is included partly because 4 and 10 are two of the prominent integers
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in Eddington’s Fundamental Theory, namely 4, 6, 10, 16, 120, 136, and 256.
Moreover 4 is the number of dimensions of ordinary space-time whereas 10
is the number of dimensions in the currently most fashionable form of string
theory when the six coiled up dimensions are included (see, for example,
Schwarz 1988, p. 72). But the binomial expression in (1.1) will not be
mentioned again in this chapter. Observe that the Eddingtonian integers
are closely related to one another; for example, 6 and 10 are the lower and
upper triangulations of 4, while 120 and 136 bear the same relationships to
16 and the reader will see other even more obvious relationships. It might
not be necessary to rely on Eddington’s judgement because, for example, a
16-dimensional torus occurs prominently in ‘heterotic’ string theory (Gross
et al. 1985, p. 260). The 16 dimensions are described as ‘internal’.

I am going to argue that (1.1) or (1.1′), and some allied assertions, are
very probably ‘correct’. Of course a convincing physical explanation would
be much better. The meaning of correctness will be discussed in Part 2.

When trying to estimate the prior probability of (1.1) or (1.1′) it is
appropriate to take a little physics into account; because the formulae
are not purely numerological. The numerator m(n) − m(p) on the left
depends only on electromagnetic forces: see, for example, Rowlatt (1966 p.
viii). It is therefore natural to have α or α′ in the numerator on the right.
Since α−1 = 137.0359914(8), and since 136 is so prominent in Eddington
(1946), and is the closest nice integer to α−1 (see the ranking in Part
2), it is natural to introduce the number β′ = 1/(136α) in preference to
Eddington’s β = 137/136 (Bond’s factor).

Eddington even had names for 136 and 120. He called 136 ‘the basal
multiplicity’ and called 120 ‘the number of dormant components in the
extended energy tensor’. In his theory (Eddington 1946, p. 30) 136 is
expressed as 102 + 62, and 120 occurs as 2 × 6 × 10.

According to Slater (1957 p. 5), 136 is the number of mechanical
degrees of freedom of the hydrogen atom and presumably of any similar two-
particle system. We can also think of 136 and 120 as the numbers of real
and imaginary components of a 16 by 16 Hermitian matrix or equivalently
as the upper and lower triangulations of 16. These ways of expressing 136
and 120 come to much the same thing as Eddington’s expressions, from a
numerical point of view, because, for all n,
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See also Eddington (1946, pp. 30 and 111) to obtain a further impres-
sion of why he liked the number 136. Of course 120 = 5! but I don’t think
Eddington was concerned with this fact.

If a formula contains both 120 and 136 it should not on that account
be given independent complexity scores (or independent probabilities), one
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for 120 and one for 136. (See equation (2.7) below.) There should be an
‘interaction term’ subtracted from the total complexity (or divided into the
product of the probabilities) to allow for the close relationship of these two
numbers.

If there is any sense whatever in Eddington (1946), then the num-
ber 136 is very probably ‘fundamental’ (prominent in a good theory: see
Part 2), more so than is suggested by its good ‘ranking’ in Table 2 in Part
2. I think the prior probability that it is physically fundamental is not
more than 1

4 , because the testable predictions of Eddington’s Fundamental
Theory have been refuted, but I think the probability is at least 1

10 be-
cause his intuition had been outstanding in other problems of physics, and
also because of the current interest in the 16-dimensional torus mentioned
above. (My subjective probabilities are my estimates of logical probabil-
ities. There are scientists and statisticians who believe they do not use
subjective probabilities. We can ask them for their subjective probabili-
ties of these beliefs.) If 136 deserves to be called fundamental then 136α
or 136α′ very probably deserves to be regarded as a fundamental physical
constant because α occurs in Sommerfeld’s theory of the hydrogen atom
and so does 136 in Eddington’s theory.

Again, [m(n) − m(p)]/m(p) (which is of course dimensionless) seems
like a reasonable measure of the ratio of the electromagnetic forces to the
strong forces although a priori a denominator of m(n) or 1

2 [m(p) + m(n)]
would be about as good as m(p). We should therefore pay a factor of 3 (or
a little less because the proton is the ‘ground state’) for ‘special selection’ of
m(p). Conditional on 136α or 136α′ making sense, we need to decide how
impressed we should be by the denominator 720 on the right of (1.1). I think
it is the simplest integer in the range of say [600, 800], 625 and 729 being
‘runners up’. In accordance with the comment (viii) to Table 2 (in Part 2),
I assume that the first stage of information is that the denominator lies in
this interval. This ‘forces’ about log10(700/100) = 0.8 correct significant
digits. But the following Bayesian argument makes no use of the number
of correct significant digits so it is fair to count 0.8 neither as a penalty nor
as a reward.

There are only nine integers other than 720 in the range [600, 800] that
are of the simple form 2a3b5c, namely 600, 625, 640, 648, 675, 729, 750,
768, and 800. Moreover 720 = 6!, it is a ‘highly composite number’ in the
sense of Ramanujan (1915) (that is, it has more factors than any smaller
number), and is also the product, 6×120, of two Eddingtonian integers, and
one of the two is the ‘twin’ of 136. Of course 6! is the order of the symmetric
group of degree six and the theory of finite groups is already basic to the
theory of elementary particles. (See Appendix E for a distinctive property
of this group.) So a physical explanation of the number 720 might depend
on a theory entirely different from Eddington’s. Perhaps it is relevant that
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480 bosons occur in the heterotic string theory (Gross et al. 1985, p. 265)
and we can think of 720 as sesqui-480. Moreover, 720 occurs prominently
in Green et al. (1985, pp. 339, 340, 344) and in Candelas et al. (1985, p.
1123).

We need to judge the prior probability (say between 1
20 and 1

10 ) that
there is an unknown reason why the denominator on the right of (1.1) or
(1.1′) is an integer (or very close) and the prior probability (say between 1

20
and 1

5 ) that it is 720 given that it is an integer between 600 and 800. (Read-
ers should make their own judgements.) With my judgements, the prior
probability that (1.1) or (1.1′) is ‘correct’ lies between 1/(3× 10× 20× 20)
and 1/(3×4×10×5), that is, between 1/12000 and 1/600. Estimates should
be made, together with some informal reasoning, by several particle physi-
cists, but I have given my estimates to indicate a subjectivistic Bayesian
way of thinking about the problem. For this application the approach in
Part 2 pays too little attention to the physical background. Perhaps a
reader can suggest another approach. Of course, as I said before, it would
be better to find a convincing explanation (which by definition must be
lucid) instead of just a probability estimate.

The conjectures or hypotheses that (1.1) or (1.1′) is exact, or at least
appreciably more accurate than the experiments have proved, will be called
H0 or H ′

0 respectively. A different but related hypothesis, say H ′′

0 , is that
neither is exact but that there is an unknown physical reason why they are
very good approximations. Such ‘smudging of the null hypothesis’ occurs in
science more often than not because absolutely precise null hypotheses are
rare. To save words, scientists and statisticians often omit explicit mention
of this smudging and I shall follow this fashion and usually leave it to the
reader to hold H ′′

0 in mind.
The values, based on PDG89, Cohen and Taylor (1987 p. 1142), and

Kinoshita (1989), are

136α

720
= 0.00137838890± 1 × 10−11, (1.3)

136α′

720
= 0.00137841336± 1 × 10−11, (1.3′)

and
R(p, n) = 0.001378404± 9 × 10−9, (1.4)

but Cohen (1989) updates (1.4) by

R(p, n) = 0.001378416± 6 × 10−9, (1.5)

although he believes the uncertainty might well be as large as 8 × 10−9

or as small as 3 × 10−9. To exaggerate the accuracy of H ′

0 one could say
that the numerological estimate of m(n)/m(p) is 1.0013784134 as compared
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with the current best experimental value 1.001378416(6). But it is fairer
to subtract 1 from both sides when considering the proportional accuracy.
(See Appendix C.)

We may infer that

136α

720R(p, n)
= 0.9999806± σ (1.6)

and
136α′

720R(p, n)
= 0.9999981± σ, (1.6′)

where the ‘best’ estimate of σ is 0.0000044. Thus the fate of the exactness
of conjecture H0 depends critically on whether the value of σ is appreciably
larger than its nominal value. On the other hand H ′

0 would be a good fit,
even if the uncertainty in (1.5) were, for example, only 3 × 10−9. If this
uncertainty has its nominal value of 6 × 10−9, so that σ = 0.0000044 in
(1.6′), then H ′

0 is correct to one part in at least 160, 000 (in accordance with
the natural formula (2.5) of Part 2 which allows both for discrepancies and
uncertainties), or one part in at least about 108 if we ‘add 1 to exaggerate’.
Another way to present the argument is to start with the simple observation
that

R(p, n)/α′ = 0.1888892± 0.0000008, (1.6′′)

and any schoolgirl would conjecture that 0.18̇ = 17/90 is exact. But an
objective test for ‘closeness to rationality’ (Good 1969, p. 38, with N there
taken as 90 or more) leads to an unimpressive P-value of between 0.078 and
0.098. To be impressed we must write 0.18̇ in a more interesting way, for
example, as 136/6!. We might want to judge too what fraction of rational
numbers, in their lowest terms and with denominators ‘subceeding’ say
100, and not too distant from R(p, n)/α′, can be written in at least as
interesting a manner.

Now let X and Y be any pair of hadrons differing in having a u quark
in X where there is a d quark in Y or vice versa, and let Y be the heavier.
(The ‘vice versa’ applies only to the pair Λ, Σ+.) Consider the experimental
values of 720R(X, Y )/(136α′) shown in Table 1, calculated from the data
in PDG89 combined with the latest estimate of m(n)/m(p) (see equation
(1.5)). As in Good (1989c) the Bayes factors (defined in Appendix B)
listed in the last column refer to the hypotheses that each of the ratios is
an integer. The method of calculating the factors is described in Appendix
D. The product of these factors is the overall Bayes factor in favour of the
hypothesis H1 that all the ratios are integers (at least to an extremely good
approximation). If we exclude the pair (B+, B0), which is the only pair
involving the bottom (or beauty) quarks, the product is 17,500,000. For H ′

0

alone the factor is 83,000. That H ′

0 can be extended to H1 is an example of
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‘consilience of induction’ (Whewell 1847/1967). The overall Bayes factor
of 17,500,000 does not allow for the fact that the numbers 48 etc. are
all factors of 480 and 720 and are of the simple form 2a3b. To support
my judgement that such numbers are attractively simple, note that Hardy
(1940, p. 69) discusses Ramanujan’s interest in numbers of this form. The
numbers 48 etc. are orders of subgroups of the symmetric group of degree
6, and this fact might be relevant in an explanation.

I estimated the prior probability of H0 as between 1/12000 and 1/600.
For H ′

0 I am inclined to lean over backwards and to reduce these lower and
upper probabilities to 1/36000 and 1/1800. Thus my (subjective) posterior
odds of H ′

0, not allowing for the other evidence in Table 1, are between 2
and 46 (with a geometric mean of about 10). I shall be interested to know
the reader’s honest estimates.

The initial probability of H1 is I think not much less than that of H ′

0,
say by a factor of 5. (Don’t forget that H ′

0 is a part of H1.) The remaining
Bayes factor in favour of H1, from Table 1, is 211 not allowing for (B+, B0).
Thus, not allowing for (B+, B0), my posterior odds that H1 has a ‘physical
meaning’ would be between 100 and 2000.

Quark
compositions X Y R(X,Y )

136α′/720

Close
integer

Bayes
factor

(uud, udd) p n 0.9999981 1 83,000
±0.0000044

(uds, uus) Λ Σ+ 47.95 ± 0.055 48 4.798
(uus, uds) Σ+ Σ0 1.94 ± 0.07 2 3.947
(uds, dds) Σ0 Σ− 2.974 ± 0.048 3 7.177
(us, ds) K+ K0 5.914 ± 0.046 6 1.511
(uss, dss) Ξ0 Ξ− 3.54 ± 0.033 3 or 4 0.775

(uc, dc) D
0

D− 1.844 ± 0.11 2 1.327

(ub, db) B+ B0 0.26 ± 0.15 - -

Table 1. Experimental values of R(X, Y )/(136α′/720), based
on PDG89 and Cohen (1989).

The result for (B+, B0) is somewhat of a setback. The closest integer
to 0.26 ± 0.15 is of course zero, but it seems physically unlikely that B+

and B0 have the same rest mass (Blecher 1989). (Moreover 0 is of course
not a factor of the two numbers 720 and 480 mentioned above.) Accord-
ing to PDG89 (pp. 20 and 218), the mass difference is 1.9 ± 1.1 MeV/c2.
This estimate was based on only one experiment (performed by 85 exper-
imenters), so the estimated standard error might not be wholly reliable,
but it now seems most unlikely that the pair (B+, B0) can be included in
our conjecture, H1.
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If we are to retain H1 we must assume either that

(i) the masses of B+ and B0 are equal; or

(ii) the standard error for the (B+, B0) mass difference is much larger than
1.1 MeV/c2 (to allow R(B+, B0) to be equal to R(p, n)); or

(iii) the hypothesis applies only to particles made of light quarks (u, d, s
and c quarks: see PDG89, p. 102, col. i). Then the pair (B+, B0)
should be excluded. In PDG89 (p. 6, col. ii) the light quarks are
defined as the u, d, and s quarks (the c quark not being included),

and, with this definition, I would have to exclude the pair (D
0
, D−)

also, but this would lose a Bayes factor of only 1.327. See Appendix
A for information about the masses of the quarks. As in my previous
work I have not allowed here for the elegance of the integers 48 etc.
although this elegance clearly supports H1.

I think it will be generally agreed that (iii) is much more reasonable
than (i) or (ii). The restriction to the light quarks is not a big restriction
because the hypothesis was already restricted to pairs of particles differing
only in the interchange of a down quark with an up quark, and these are
by far the lightest of the quarks.

The bottom quark is so much heavier than u, d, and s that the removal
of the pair (B+, B0) is only a small loss of beauty for H1. As a good analogy,
consider the following argument that might have been used against the
Copernican system. The moon always shows the same face towards the
earth (as if the moon were embodied in a sphere that rotates around the
earth) whereas the earth shows a variable face towards the sun. Copernicus
could have replied, without much adhockery, that the two pairs (Earth,
Moon) and (Sun, Earth) are quantitatively so different that a qualitative
difference is not surprising.

We should not forget that the hypothesis H ′

0 is ‘logically’ indepen-
dent of the rest of H1; but probabilistically (in the epistemic sense) they
support one another because they imply that R(X, Y ) has a fundamental
interpretation, unknown at present but presumably related to the relative
strengths of the strong and the electromagnetic forces.

The numerical values of R(X, Y )/(136α′/720) are changed negligibly
if the denominator is replaced by R(p, n), so, even if (1.1′) or (1.1) is
coincidental, we still have evidence that the proportional bulges R(X, Y )
bear a simple rational relationship to one another when heavy quarks are
not involved.

Further Discussion and a Modification of H1

The restriction to the light quarks suggests that H1 might be only a
good approximation (because if heavy quarks damage the numerology why
shouldn’t the light ones do a little damage?). Thus the approximations to
integers might not be as exact as I hope, but I believe they are at least
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close enough to demand an explanation. For the time being, I define the
‘null hypothesis’ H1 in terms of exact integers.

Note that the experimental values of R(X, Y )/(136α′/720) in Table 1
all fall short of the integers 1, 48, etc., though this is ambiguous for the pair
(Ξ0, Ξ−), and the ‘short-fall’ is statistically significant only for (B+, B0).
If we combine the short-falls for the first seven pairs (excluding (B+, B0)),
each divided by its ‘uncertainty’ (regarded as a standard deviation), we get
7.42. Since 7.42/

√
7 = 2.80, the null hypothesis H1 that all the seven ratios

are integers might be rejected with a P-value of 0.0052 (the double-tail) if
the non-null hypothesis asserts that the short-falls are all positive or all
negative. One would then wish to consider a modified hypothesis H2 that
the true values of the ratios R(X, Y )/(136α′/720) are the integers 1, 48, 2,
3, 6, 4, 2 (and 1?) minus small quantities that are monotonically related
to the masses of the corresponding quarks even if the pair (B+, B0) is
included. Among those pairs of particles for which the strangeness (which
is minus the number of s quarks) is 0, ±1, or ±2, the best result is for
strangeness 0 (the Bayes factor for H1 being 83000) and the results are
good for the four pairs of particles with strangeness ±1 (Bayes factor 205).
For the pair (Ξ0, Ξ−), where the strangeness is −2, the hypothesis H1

loses a little ground (the Bayes factor being 0.775). For giving H2 a more
precise formulation we require improved experimental values for the mass
differences, especially for m(Ξ−) − m(Ξ0).

I believe that the numerology is good enough to be taken very seriously.
How can the numbers 136, 720, 48, etc. be explained by a coherent and
intelligible physical theory?

The pair (Λ, Σ+) stands out in Table 1 in that the value of R(Λ, Σ+)
is much larger than for the other pairs. This pair is also exceptional in
that (i) the ‘isospins’ I of Λ and Σ+ are unequal, in fact I(Λ) = 0 and
I(Σ+) = 1; and (ii) it is the only ‘vice versa’ pair, as mentioned a few
sentences below equation (1.6′′). We could avoid this ‘vice versa’ property
by changing the sign of the numerator of R(Σ+, Λ), and then 48 would be
replaced by −48 as a ‘Pontryagin number’ in Green et al. (1985, p. 338).

The pair (Λ, Σ0) does not qualify for Table 1 because Λ and Σ0 have
the same quark composition, uds. Moreover the value of R(Λ, Σ0) had to
be close to R(Λ, Σ+) + R(Σ+, Σ0) because the masses of Λ, Σ+ and Σ0

don’t differ much. In fact R(Λ, Σ0)/(136α′/720) = 50.02± 0.065.

Philosophical Discussion

Eddington (1946) and Einstein (1949, p. 63) believed that the fundamental
constants of physics could be calculated from qualitative assumptions just
as π can be calculated from the assumptions of Euclidean geometry. Ed-
dington’s main speculations along these lines, though stimulating, seem to
have been fairly unsuccessful. There is now a theoretical argument, though
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an unconvincing one, that it is impossible to attain his Pythagorean goal
and I shall mention that argument. First note, however, that if his dream is
unattainable then the prior probability that (1.1) or (1.1′) is exact is some-
what reduced. It is not much reduced because those equations determine
only one computable constraint on the fundamental constants.

The theoretical argument for believing that Eddington’s goal cannot
be achieved is related to one interpretation of the so-called anthropic prin-
ciple, better called the biotic principle. This interpretation of the principle
asserts that the fact that carbon-based life exists implies (but of course
does not cause) severe constraints on the fundamental constants; see, for a
review, Barrow & Tipler (1986). (The name anthropic principle is mislead-
ing because it is anthropomorphic to base the deduction on the fact that
humans exist, and ‘astronomomorphic’ on the fact that astronomers exist:
see Barrow & Tipler (1986, p. 15) who say wittily ‘certain properties of
the universe are necessary if it is to contain carbonaceous astronomers like
ourselves.’) An early and unconvincing example of the biotic principle can
be read into an argument by Boltzmann. He said that the low entropy in
the neighbourhood of the earth is a priori exceedingly improbable but in
an infinite universe everything that is possible occurs somewhere. (See, for
example, Porter 1986, pp. 215 and 216.) Boltzmann could have reversed
the argument and said that the existence of life on earth is evidence that
the universe is infinite or perhaps that there are an infinite number of uni-
verses. Another hypothesis is the one of which Laplace ‘had no need’, the
existence of God. A third hypothesis is that Boltzmann’s argument is sim-
ply wrong. For an extensive discussion of relevant matters see Prigogine
and Stengers (1984). To put the matter in general terms: if an explanation
requires an amazing coincidence, whether in a legal or a scientific context,
then we have probably overlooked something. (Compare the discussion of
Sherlock Holmes’s law in Good 1950, page 67; and the seeming occurrence
of two nearly independent murders in the same house: see, for example,
The Times, London, 19 September 1970, p. 19.)

As another example, theories of the origin of the solar system based
on the close encounter of a second star were proposed because there were
difficulties in the theories of a nebular origin. The unlikelihood of a close
encounter encouraged astronomers to remove the difficulties in the nebular
theories. (See Nieto 1972.) Similarly, the isotropy of the universe would be
explained by the ‘chaotic cosmological principle’ (Barrow & Tipler 1986,
§6.11). According to this principle the present isotropic condition of the
universe does not require isotropy in the initial conditions, but the principle
runs into difficulties pointed out by Collins and Hawking. If, however,
the chaotic principle is abandoned the isotropy seems to be an amazing
coincidence, and one way to begin to explain the coincidence is to use the
biotic principle. But another explanation of the coincidence would be that
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the chaotic cosmological principle will probably be reinstated by means of a
theoretical correction. An example of such a loophole is indeed mentioned
by Barrow & Tipler (1986 p. 425).

There is nothing wrong with the biotic principle as such, but a form of
it that requires an amazing coincidence needs to be extremely watertight.
If such an argument is valid then we are faced with a metaphysical option;
very probably either God exists (a ‘design argument’) or there are myriads
of universes (or both). In this case, to believe in Eddington’s dream would
be analogous to supposing that the first several hundred digits of π would,
under some simple encoding into letters, spell out a sonnet by Shakespeare.
(To believe that hypothesis you’d have to be a numerologist in the occult
sense or perhaps a monkey.) In short, the attaining of Eddington’s dream,
(1.1′) being a step in that direction, would be effectively incompatible with
the ‘metaphysical option’.

Part 2. The Judging of Numerological Assertions

The quantal hypothesis in Part 1 was not entirely numerological for it made
use of some physical theory though not convincingly. In the present part we
consider how one might try to judge numerology with less explicit reference
to physical theory.

At one time numerology meant divination by numbers, but during the
last few decades it has been used in a sense that has nothing to do with
the occult and is more fully called physical numerology. The expression
numerology has been applied to one or more proposed formulae of the form
(a ‘null hypothesis’)

x = y or x ≈ y

where x and y are numbers that might involve physical constants. The
formula is regarded as numerological by a person who thinks it has not
been explained. There will also be people who know that an explanation has
been proposed, but who have not understood the explanation. These people
either accept the judgements of the understanders or they might treat a
formula as if it were numerological and judge it partly by its simplicity (or
elegance) and its accuracy, or they might adopt a compromise position.

Numerological activity can be regarded as the search for patterns in
collections of numbers so it is a kind of exploratory data analysis, though
not necessarily of a Tukeyesque kind. The ultimate aim is to help in the
formulation of scientific theories.

A statement can be partly numerological and partly scientific. For
example, in 1815, William Prout suggested that all atomic weights are
multiples of that of hydrogen and, as an inference (which contains a little
truth), that all elements are composed of hydrogen (see Ihde 1964, p. 154).
The evidence at the time was weak but the estimates of 1960 (Ihde, p. 142)
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are impressive even if we don’t take isotopes into account. Of 49 atomic
weights given in Ihde’s table, 27 are within 0.1 of an integer (apart from
oxygen whose atomic weight was taken there as 16 exactly, by definition),
whereas only 49/5 = 9.8 would be expected if Prout’s hypothesis were
entirely wrong. That Prout’s hypothesis is false is obvious from the table,
but the discrepancy between 9.8 expected and 27 observed shows that there
is enough in the hypothesis to demand an explanation. This anachronistic
example verifies that a hypothesis can be clearly wrong and yet clearly
partly right at the same time. To say it was right would be absurd whereas
to say simply that it was wrong would be extremely misleading. Such
examples are not exceptional.

Even allowing for isotopes, the atomic weights are not exact integers
because of the so-called ‘packing fractions’ of special relativity, and because
the masses of protons and neutrons are not exactly equal. Prout’s hypoth-
esis is a good illustration of the need to take approximate laws seriously.
Unfortunately such laws cause difficulties for statisticians. For the sake of
simplicity, statisticians often assume sharp null hypotheses.

A sharp hypothesis is another name for a simple statistical hypothesis.
We often test sharp hypotheses although we know they are most unlikely to
be exactly true. This activity can often be justified on grounds of simplic-
ity: if the available evidence is not sufficient to reject a sharp hypothesis
we might find it convenient to regard it as true to an adequate approxima-
tion. But if we reject a sharp hypothesis we should be more careful. We
ought sometimes to consider smudging, smearing, or desharpening the null
hypothesis (Laplace 1774; and independently, but somewhat later, Good
1950, pp. 90–94). If we don’t desharpen there’ll be a risk of rejecting a hy-
pothesis that points in the general direction of the truth. It is unfortunate
that the terminology of ‘rejection’ is entrenched in statistical jargon, for it
causes us, by the ‘tyranny of words’ (Chase 1938; Good 1969, p. 62), to be
too ready to ignore hypotheses that are (probably) ‘wrong’ but might be
suggestive of something better. Examples are Prout’s law and the Titius-
Bode law. (Good 1969, especially p. 62; Good 1971; Efron 1971; and Nieto
1972.) Perhaps the term rejected when applied to hypotheses or theories
should often be replaced by smudged or shown to be inexact.

It is only in the non-occult senses that the word numerology is used in
this chapter. An example (Lenz 1951) is

m(p)/m(e) ≈ 6π5 (2.1)

where m(p) and m(e) denote the rest masses of the proton and electron.
This formula is correct to one part in 50,000 but is now known to be inexact.
(See Table 3.) An example from pure mathematics that will seem to some
to be numerological, but which has a known explanation (Weber, c. 1908,
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§125), is

exp
(π

3

√
67

)

≈ number of feet in a mile, (2.2)

which is correct to one part in 300,000,000. (Naturally Weber doesn’t
mention feet or miles.) Of course a mere numerical computation doesn’t
explain why the left side is so close to an integer.

There have been a few examples of numerology that have led to theo-
ries that transformed society: see the mention of Kirchhoff and Balmer in
Good (1962, p. 316) and in Barrow & Tipler (1986, p. 219ff) and one can
well include Kepler on account of his third law. It would be fair enough
to say that numerology was the origin of the theories of electromagnetism,
quantum mechanics, gravitation, and quantitative chemistry (by Proust’s
law and Prout’s hypothesis). So I intend no disparagement when I describe
a formula as numerological.

There is, however, much bad numerology, and we shall discuss methods
for attacking the difficult problem of distinguishing the good from the bad
when the distinction is not obvious. This project is a special case of the even
more difficult and more familiar one of distinguishing between good and
bad scientific theories or hypotheses, and the consideration of the special
case might provide some insights for the more general project which is of
course a main problem in the philosophy of science. I believe that part of
the solution should depend on the concept of explicativity (Good 1977) but
this approach cannot be carried out without first thinking along somewhat
Bayesian lines as in the present work. My purpose here is to contribute
ideas that might lead to a more satisfactory solution than has been attained
so far. See also Cover (1973).

When a numerological formula is proposed, then we may ask whether
it is correct. The notion of exact correctness has a clear meaning when
the formula is purely mathematical, but otherwise some clarification is
required. I think an appropriate definition of correctness is that the formula
has a good explanation, in a Platonic sense, that is, the explanation could
be based on a good theory that is not yet known but ‘exists’ in the universe
of possible reasonable ideas. A good but undiscovered theory is like a work
of art waiting to be chiselled out of a block of marble.

A formula might be partly correct in the sense that some reasonable
theory (possibly unknown) might explain why it is a good approximation.
Such a theory is known for the mathematical formula (1.2) (with 5280
on the right of course). Lenz’s formula (2.1) is so simple, and so nearly
true, that I would not be surprised if it turned out to be partly correct. It
will be discussed again below. Leaving such approximations aside, a correct
numerological formula might sometimes be used for predicting new decimal
places of observations before an explanation is found. A formula might be
partly numerological in the sense that it can already be partly supported
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by rational arguments, although there is not yet a good explanation. Part 1
provides an example. There is no precise demarcation between numerology
and a scientific theory.

We naturally ask the following questions (which are not demands) of
a numerological formula:
(a) Was it ‘consistent’ with the experimental observations when it was

published? (See below for the meaning of consistency.)
(b) Is it consistent with the latest experimental observations?
(c) Has its accuracy improved or deteriorated since it was first suggested?
(d) To how many significant digits (for example, in radix 10) is it correct

according to the latest experimental results?
(e) How complex or simple is it? Here, as in (f), subjectivity can hardly

be avoided.
(f) What, in some sense, was its prior probability of being correct (without

allowing for the experimental results)?
(g) If it is consistent with the latest experimental results, is it likely to

remain consistent with future experiments? This question can be at-
tacked by Bayes’s theorem, though still with difficulty, if an answer to
(f) can be accepted.

(h) Is is part of a set of similar formulae, in other words does it satisfy, in
a numerological sense, the desideratum of ‘consilience of induction’?
(Whewell 1847/1967, Vol. 2, pp. 77–78.)
We now elaborate on aspects (a) to (g).
(a) and (b). Consistency with experiment. Let x and y have estimated

standard errors σ and τ , and estimated correlation coefficient ρ. (For the
sake of simple notation I am not writing σ̂, τ̂ , and ρ̂.) Let

s =
|x − y|

(σ2 + τ2 − 2ρστ)1/2
(2.3)

and call s the sigmage (to rhyme with porridge) of |x − y|. (In the special
case of a purely mathematical piece of numerology we have σ = τ = 0,
and the sigmage is infinite unless the piece of numerology is exact.) We
should hold in mind that, historically, standard errors of physical constants
have tended to be too small (Henrion & Fischhoff 1986). Also ρ is seldom
presented, and we might have to assume that ρ = 0. We might say that the
equation x = y is inconsistent with present experiments if s > 3 (compare
Jeffreys 1937, p. 83, or 1957, p. 72) and consistent if s ≤ 2. Like most
things, consistency is a matter of degree, for example s = 1 is apprecia-
bly more consistent with experiment than is s = 2. In fact if s ≤ 1 it
would hardly be misleading to say that the agreement with experiment is
perfect and in many Bayesian models such good agreement would give a
little support to the null hypothesis, the Bayes factor (see Appendix B)
being roughly proportional to exp(−s2/2). A rough rule of thumb for the
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weight of evidence (logarithm of a Bayes factor), against the null hypothe-
sis, would be 1

2 (s2 − 1) ‘natural bans’ or 0.217(s2− 1) bans (Turing’s name
for decimal units). This takes the ‘cut even’ sigmage as unity. As recalled
by Good (1989a), if it is possible for the outcome of an experiment to un-
dermine a hypothesis, then it is also possible for the outcome to support
the hypothesis provided that all outcomes are observable. A proof of this
little theorem is obvious, once the theorem is stated, but the result might
surprise some Popperians and non-Bayesian statisticians. An example of
a hypothesis tested by an experiment for which not all possible outcomes
are observable is that there is life after death.

(c) and (d). Number of correct significant digits (n.c.s.d.). People
sometimes use an integer to measure the number of correct significant digits
of an approximation, but this constraint is of course unnecessary and ties
one too much to radix 10. It is more informative to measure the number
of correct significant digits by means of a real positive number and to take
the standard errors into account. In Good (1988a) I suggested two related
definitions but made an error (plus some verbal ones). Of the two, I think
most statisticians will prefer the smaller of the two numbers
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where σ, τ , and ρ denote respectively the ‘uncertainties’ or standard errors
of x and y and the estimated correlation between the measurements. The
proportional accuracy is then defined as

1 in 10n.c.s.d., (2.5)

where one may well add the words ‘or better’ or ‘at least’ when |x − y| ≤
2(σ2 + τ2 − 2ρστ)1/2. The proportional accuracy (2.5) does not depend on
the radix 10.

To allow both for the n.c.s.d. and the sigmage s, the rule of thumb
mentioned above for the weight of evidence in bans in favour of the null
hypothesis (to be added to the prior log-odds to get the posterior log-odds)
is

n.c.s.d. − 0.217(s2 − 1), (2.6)

the corresponding Bayes factor being

10n.c.s.d.e−(s2
−1)/2. (2.6A)

But the most difficult and controversial problem is the estimation of the
initial odds of the null hypothesis. The initial odds, the n.c.s.d., and the
sigmage are all relevant for an evaluation.
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(e) How complex or simple is the numerology? Although no one has
found an entirely satisfactory definition of simplicity or complexity, it is
obviously easier to force several significant digits of accuracy by inventing
complex formulae. Certainly simplicity has something to do with brevity as
hardly anyone would deny apart from some Humpty Dumpty philosophers
who change the meanings of words completely. In Good (1968) I suggested
that the complexity κ(H) of a proposition H could be defined by a measure
of information,

κ(H) = − log P (H), (2.7)

where P (H) denotes the prior probability of H . This definition, which
links headings (e) and (f), leads to some difficulties when applied to arbi-
trary propositions (for example, H ∨ K is less simple but more probable
than H), and a modification was discussed by Good (1975, pp. 46–48 =
1983, pp. 154–156) where negations and logical disjunctions are avoided.
For the computable numbers that I shall discuss I believe formula (2.7) is
reliable enough. The base of the logarithms merely determines the unit
of complexity and I shall assume base 10 for convenience. My article on
surprise, Good (1984/88), contains some further discussion of this matter.

A natural axiom for complexity is

κ(H&H ′) = κ(H) + κ(H ′ | H) (2.8)

in which the second term is a conditional complexity. This axiom is an
immediate deduction from (2.7) when (2.7) is applicable. Also the axiom
forces (2.7) if κ(H) is assumed to depend only on P (H), just as in infor-
mation theory (Good 1950, p. 75).

When considering the complexity of an arbitrary-looking real posi-
tive number based on measurement (and hence not ‘computable’) such
as 4357.073 we should hold in mind that this almost certainly is just an
abbreviated way of denoting an estimate with a standard error which is
sometimes roughly equal to 0.0005 (or this divided by

√
3). The definition

of the complexity of the number ought to depend on how large it is as
compared with its standard error, say σ (Rissanen 1983, p. 419). An ap-
proximate measure of the complexity is log10(4357.073/σ) in decimal units.
This definition is consistent with (2.7) if we assume the Jeffreys-Haldane
improper prior density 1/u for a random positive number u. The defini-
tion does not depend on the use of the decimal system any more than the
theories of information and weight of evidence depend on the units ‘bits’,
‘decibans’, etc.

(f) and (g). What was the prior (epistemic) probability? We shall be
discussing, in two different senses, the prior probability of a computable
number x. Sometimes the prior probability refers to the probability that
a computable number chosen at random from some context will be x, and
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sometimes it refers to the prior probability that x = y where y is some
physical quantity. These two senses are very different and to distinguish
between them I shall call the prior probability in the former sense the
preprior probability. It is the probability of coming across x in some con-
text and is not at all the same as the prior probability that x = y. But
sometimes the context is influenced by that in which y arises. The complex-
ity of x can be defined as minus the logarithm of its preprior probability.
Thus the complexity of x might be relative to a context. This comment is
in the spirit of the more general concept of complexity discussed in Good
(1975), as referenced here just below equation (2.7). The complexity of the
equation x = y is equal to that of y plus that of x in the contexts in which
y appears.

The preprior probability of x is especially pertinent when a piece of
numerology is consistent with experimental results. It is more fundamental
than the concept of simplicity (or complexity) but the concept of simplic-
ity helps one to judge the preprior probability. The preprior probability
can be expressed as the product of that of the functional form or algo-
rithm assumed in the piece of numerology, and that of the choice of com-
putable numbers that are the arguments of this functional form. (More
precisely, this probability would be computed for the simplest algorithm
that gives the same answer. Still more precisely, the probability should
be estimated for all the algorithms, the maximum of these probabilities
being selected.) In this article I have mainly in mind the functional form of
a1a2 . . . am/(b1b2 . . . bn) (a pseudorational number so to speak), where the
a’s and b’s are positive integers or π or e or one of a few operations such as
square-rooting, but what I say about the probabilities of numbers of this
form might well apply to most functional forms.

We have mentioned the Jeffreys-Haldane prior for measured quantities
but for computable numbers it is much more difficult to suggest reasonable
prior probabilities. In principle, this can be done consistently because com-
putable numbers (like statable hypotheses) form only a countable set. This
problem of assigning probabilities to computable numbers was propounded
but not attacked by Good (1950 p. 55n). Here I shall try to make some
small steps towards a solution. See also Rissanen (1983). In Part 1 I gave
an example in which the computable number is 136/720. This example
shows that in a special case one might need to invoke special arguments.

When judging any prior probability, such as the occurrence of an inte-
ger, it is necessary to take the context into account. Consider, for example,
M.H.A. Newman’s bus problem (Jeffreys 1938, p. 186): We know that a
town has N buses, numbered 1 to N , but we don’t know N , and we have
little idea of the population of the town. We see a bus numbered k. What is
the posterior probability distribution of N? Jeffreys obtained a reasonable
solution by assuming an (improper) prior roughly proportional to 1/N by
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analogy with the Jeffreys-Haldane prior density 1/x for a positive random
real number x (which has the property that powers of x have the same
distribution as x has). This can also be called suggestively the log-uniform
prior. Some proper distributions that ‘approximate’ the Jeffreys-Haldane
distribution are mentioned by Good (1989b).

When the density 1/x is ‘approximated’ by a proper density f(x) the
definition of the complexity κ(x) of a real number x with standard deviation
σ needs to be modified. A natural definition is κ(x) = − log10 f(x/σ).

For general physical numerology one needs to put the positive inte-
gers and a few operations in some rank order, and a distribution somewhat
resembling 1/N should be applied to the ranks and not to the original inte-
gers. For example, we would tend to favour composite integers over primes
of about the same size because many formulae in physics, and in mathe-
matics, consist of the products of various quantities. It would be possible
to sample computable numbers in many texts, but so far my sample is too
small. It will be described below. When sampling we must of course avoid
including numbers, like 100, when they occur as approximations merely
because of the use of radix 10. Also angles should be measured in radians
or ‘circumfians’ and not in degrees.

Apart from the large amount of work required to obtain an adequate
sample, there are further sampling difficulties such as

(i) A sample of individual numbers ignores relationships between pairs or
larger groups of numbers; for example, the two ‘triangulations’ of n,
namely 1

2n(n − 1) and 1
2n(n + 1), are logically related so it would be

unfair to multiply their preprior probabilities when they both occur in
the same piece of numerology. This case occurred in Part 1.

(ii) The field of theoretical physics is not homogeneous, and which popu-
lation is appropriate for a given piece of numerology might be difficult
to judge.

For these and other reasons a large reliance on subjective judgement
is necessary. This necessity was exemplified in Part 1 and will be further
exemplified below. Science seems objective only when it is compared with
non-science. Fortunately, an exact ordering is unimportant.

My sample consisted of all the integers and π, 2π, and e occurring
in Ramond (1985) and Goldman & Haber (1985), although e had zero
frequency. I chose these two articles because my examples relate to el-
ementary particles and because these two articles contain a lot of inte-
gers. I included also the operations ×, ÷, +, −, squaring, powering other
than squaring, ! (factorial), and triangulating up or down. Let us think
first of numerological formulae of the form x = y where x is of the form
a1a2 . . . am/(b1b2 . . . bn) in which the a’s and b’s all belong to the set con-
sisting of positive integers, etc., and their square roots, squares and other
integer powers. I assume further that ζ and 1/ζ have equal complexities
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and preprior probabilities, where ζ is any computable number, so at first
we need to consider only products a1a2 . . . an. For this limited project the
preprior probabilities of ×, ÷, +, −, and 1 are irrelevant and are men-
tioned only in the heading of Table 2 and not in the body of that table.
The table consists of the integers etc. in a ranking order that I have chosen
mainly subjectively because my samples are too small to give very much
information about the ranking.

A principle of this ranking is to begin by thinking of the (unique) prime
factorization of integers, where small primes are preferred to larger primes.
Note that unique factorization also applies to rational (or pseudorational)
numbers expressed in their lowest terms, even if π and e are regarded as
pseudoprimes, for presumably π is not a rational or pseudorational power
of e. (That looks like a difficult problem in the theory of numbers.) A
simple measure of complexity of a rational number

2n13n25n37n4 · · · , (2.9)

where the ni are integers, positive, negative or zero, would be

λ1|n1| + λ2|n2| + λ3|n3| + · · · , (2.10)

where λr is − log(relative frequency of the rth prime). The frequencies of
2 and 3, as prime factors, in the two samples combined, were respectively
1237 and 269 (out of 1665), so the ratio of the frequencies of 2 and 3,
regarded as prime factors, differs substantially from the ratio when they
are regarded just as integers. This discrepancy suggests that the simple rule
(2.10) can be only a crude approximation. If used, the λ’s could instead be
estimated by means of monotonic regression, where the ‘dependent variable’
is someone’s subjective measure of complexity.

The samples suffer from the same disadvantage as the use of continuous
patches of prose for sampling the frequencies of English words — that a
specific number can occur many times in a single context and yet can be
rare in a more general population. I have listed the two samples separately
to show how much they differ. This difference shows the desirability of a
very large sample of samples. Having only two samples is like estimating
the time by consulting two bad clocks, and averaging the result. But I shall
regard the sum of the two samples as adequate, in this early discussion, for
estimating a smooth fit to the relative frequencies of the ranks.

A fairly good smoothing is given by

pr =
2

(r + 1)(r + 2)
(r = 1, 2, 3, . . . ), (2.11)

where pr denotes the probability of the rank r. (For example, the rank of
2 is 1.) Compare (2.11) to H9 of Good (1953, p. 249) where, for greater
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flexibility, a factor of ξr occurs in the numerator, ξ being close to and less
than 1. I have found that H9 often fits biological data. As an example note
that the frequencies of 2, 3, and squaring according to (2.11), would be 342,
171, and 103, while the observations were 327, 138, and 104. The fit pr is
good for the ranges 1 ≤ r ≤ 39 and r ≥ 60 but not when 40 ≤ r ≤ 59. The
fit would be improved by giving the number 56 a much smaller rank or else
by assuming that the relative frequency of 56 will be greatly reduced when
the sample of samples is much larger. Because pr gives a better fit than
the other distributions mentioned in Good (1989b), namely the log-Cauchy
and the distribution of Rissanen (1983), let us accept pr for the present.
The fit leads to results that are harsher on numerology than the less formal
method used by Good (1984/88, p. 107).

Table 2. Frequency counts of positive integers etc. in two ar-
ticles on physics, and a subjective ranking. Because I was aiming
only to evaluate products (and quotients), the following pairs of
counts were excluded from the table: 1 : (273, 43); × : (145, 126);
÷ : (60, 84); + : (133, 41); − : (40, 34). Although the ranking is
mainly subjective it is influenced somewhat by the two samples.

Rank, r Number Sample 1 Sample 2 Total

1 2 286 41 327
2 3 93 45 138
3 squaring 7 97 104
4 4 56 14 70
5 8 58 26 84
6 6 26 3 29
7 powering 1 20 21
8

√
- 17 17

9 π, 2π - 14 14
10 16 8 4 12
11 24 1 - 1
12 e - - -
13 5 11 14 25
14 10 13 4 17
15 ! 1 - 1
16 32 2 4 6
17 9 11 4 15
18 12 4 1 5
19 21 - - -
20 7 16 - 16
21 48 - 2 2
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22 720 - - -
23 120 - - -
24 28 6 - 6
25 64 1 - 1
26 triang. 3 - 3
27 27 1 9 10
28 36 - - -
29 60 - - -
30 72 - - -
31 96 - - -
32 15 3 - 3
33 20 7 1 8
34 136 - - -
35 144 - - -
36 216 3 1 4
37 81 - - -
38 105 - - -
39 7! - - -
40 25 1 - 1
41 50 1 - 1
42 18 - 1 1
43 56 10 10 20
44 45 - - -
45 55 1 - 1
46 256 3 1 4
47 1024 - - -
48 512 - - -
49 128 8 1 9
50 576 - 1 1
51 125 - - -
52 49 - - -
53 480 2 - 2
54 35 6 - 6
55 42 1 - 1
56 65536 1 - 1
57 32768 3 2 5
58 40 3 - 3
59 30 3 - 3

The remaining numbers occurred but are not ranked here.
(The multiples of 10 are exact integers, not mere roundings.)

22 1 - 1
26 1 - 1
31 1 - 1
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44 1 - 1
82 2 - 2
84 2 - 2

110 2 - 2
126 1 - 1
133 2 - 2
560 1 - 1
672 1 - 1

1120 2 - 2
1160 1 - 1
1520 3 - 3
2040 1 - 1
2640 2 - 2
3200 1 - 1
3696 1 - 1
8800 1 - 1

Totals 688 337 1025

Table 2 should be considered together with the following notes. (i) The
numbers beyond rank 59 in this table have not been ranked but occurred in
the first sample. (ii) Composite numbers can be represented in more than
one way, for example 576 = 242. In this example we might well regard the
prior probability of 576 as the larger of 1

2p50 and 1
4p2

11p3 where 50, 11, and
3 are the ranks of 576, 24 and squaring as listed and where the quotients
2 and 4 are explained under note (vii). (iii) Similarly, the probability of
v = a1a2 . . . am/(b1b2 . . . bn) should strictly be computed as the maximum
of the probabilities of all the different ways of expressing v. This leads to
a difficult unsolved mathematical problem and will not be explicitly taken
into account. When v is a rational number it can be expressed uniquely as
a product of prime powers (or, more generally, one could include π and e as
‘pseudoprimes’) where the powers can be negative. The primes and pseu-
doprimes could be ranked in order, such as 2, 3, π or 2π, e, 5, 7, 11, . . . , and
their probabilities estimated from samples. (Allowance for square roots,
factorials etc. is still necessary.) Some of this idea is of course implicit in
the ranking in Table 2. (iv) The subjective ranking would be modified if
the number of samples of samples were greatly increased but pr might still
be adequately estimated by formula (2.11). (v) The number 120 deserves
a good ranking because it is both a factorial and a triangulation of a nice
number, 16. See also Part 1. (vi) When estimating the probability of a
product (or quotient) it is necessary to take into consideration whether the
factors are in some manner logically related to each other. (vii) For each
parameter one should pay a Bayes factor of 2 because the parameter could
have occurred as its reciprocal. I shall call this the binary factor. Instead,
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we could pay a factor of 2 for each multiplication or division. (viii) It helps
the judgement to imagine that the information about the experimental ob-
servations arrives in two stages. In the first stage we are told only that
the unknown number lies in some wide (but not excessively wide) interval
(y1, y2), with a uniform prior, or slightly more accurately a log-uniform
prior, for the non-null hypothesis, within that interval. For example, the
interval might be (y/

√
2, y

√
2). The full information (in the form y ± τ)

arrives at the second stage. The first stage gives so little information that it
is reasonable to ‘condition’ on it. This device might help you to replace the
preprior by a prior. The conditioning on (y1 < x < y2) provides a method
for multiplying by a ballpark factor to obtain the prior probability. The
ballpark factor is a ‘reward’ for x’s being in the right ballpark, and, when
the ballpark interval is (y/

√
2, y

√
2) I take this factor as 2y in accordance

with the following argument.
Let us condition on x 6= 1, assume a probability of 1

2 that a positive
computable number exceeds 1 (since a rational number and its reciprocal
are assumed to be equally probable), and that the probabilities have the
geometric distribution

P (2n < x ≤ 2n+1) = 2−(n+2) (n = 0, 1, 2, . . . ). (2.12)

(This is more consistent with (2.11) than it looks.) Then, if y > 1, we have

P (y/
√

2 < x ≤ y
√

2) ≈ 1

23/2y
. (2.12A)

By conditioning on x’s lying in this interval we force a proportional accu-
racy of 1/

√
2 so the n.c.s.d. of the observed x should strictly be adjusted to

allow for this. Instead, I shall absorb this small adjustment into the ball-

park factor which is therefore taken as 2y. (ix) 65536 = 222
2

is the number
of possible functionals of two binary variables (Good 1985) whereas 16 is
the number of functions. (x) From a geometrical point of view π and 2π
are equally simple for an obvious reason. (xi) I hope to carry out a small
survey to see to what extent judgement of the ranking varies from one judge
to another.

I now apply my ranking of computable numbers, such as it is, to several
examples related to m(p)/m(e).

The Mass Ratio of Proton to Electron

I have assembled eight pieces of numerology for m(p)/m(e), the ratio of the
rest masses of the proton and the electron. (All but one were previously
assembled in Good, 1987.) They are not all of the form a1a2 . . . am/(b1b2 . . .
bn) which was mentioned above. They are shown in Table 3 together with
the observational value and I here use them as examples for a method of
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evaluation. Although it is obvious, I emphasize that these evaluations are
largely based on my personal judgement, but the kind of reasoning might
help others to make their own judgements about numerological assertions.
The sources were

(i) Cohen and Taylor (1987, pp. 1126 and 1139), the observational
value.

(ii)∗ Eddington (1946, pp. 38 and 58).

(iii)∗ Lenz (1951).

(iv) Worrall (1960, p. 602).

(v)∗ Good (1960, 1962).

(vi) Good (1962, p. 318).

(vii) Sirag (1977).

(viii)∗ Parker-Rhodes (1981, p. 185).

(ix) A modification of (iii) proposed here.

The four items marked with an asterisk were ‘within experimental error’
when they were announced but, in common with the other four items,
they are now ‘contradicted’ (shown not to be exact) by the observed value
given in row (i). The sigmages are given in the third column of the table.
The numbers of correct significant digits (n.c.s.d.) are shown in the fourth
column. In the fifth column I give a rough subjective estimate of the
complexity κ0 of the numerology measured in decimal digits and adjusted
by the binary factor and ballpark factor of notes (vii) and (viii) to Table
2. These estimates are based largely on formulae (2.7) and (2.11) where
r is the rank of an integer or symbol as shown in Table 2. The adjusted
complexities are denoted by κ0 to distinguish them from the κ used above
and in Good (1988c) where no allowance was made for the binary and
ballpark factors. Because I am ignoring note (iii) to Table 2, apart from
allowing for the obvious permutations, the measures of adjusted complexity
might be somewhat too harsh. The last column is discussed at the end of
the article. The approach leaves much to be desired, but I don’t know a
better one, and the results seem to me to make overall approximate sense.

Elaborate arguments were provided by the authors of items (ii) and
(viii) but I have not yet understood their arguments so I here treat these
items as if they were purely numerological. This treatment might not
be excessively unfair because the formulae seem to have been empirically
refuted. Note, however, that item (viii) is stated only as an approximation
on page 475 of Bastin et al. (1979). Those who have understood the
arguments of the authors won’t need to adopt the numerological approach
for items (ii) and (viii) but they provide examples for my discussion.

The following notes describe how I arrived at the rough estimates of
the adjusted complexity measures κ0. In each case the ballpark factor is
taken as 2× 1836 = 3672. The paragraph numbers (ii) to (viii) correspond
to those in Table 3.
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n.c.s.d. κ0 n.c.s.d.–κ0

‘sigmage’ (adjusted (score)
complexity)

(i) 1836.152701± 0.000037 0 7.6 - -

(ii)* 1836.34, the ratio of the
roots of 10x2 − 136x + β5/6

= 0 where β = 137/136 5000 4.0 7.5 −3.5

(iii)* 1836.118 = 6π5 900 4.7 3.8 0.9

(iv) 1839.39 = 104/(2e) 90000 2.8 4.1 −1.3
(v)* 1836.10 = 1372/(10γ)

where γ = 46/45 1400 4.5 8.9 −4.4

(vi) 1836 = 1728 + 108 4000 4.1 4.7 −0.6

(vii) 1836 = 136 × 135/10 4000 4.1 4.4 −0.3

(viii)*1836.15150 =
137π×(5/4)
3

14 (1+
2

7
+ 4

49 )
32 6.2 11.0 −4.8

(ix) 1836.15070 = 6π5α′/α 54 6.0 - -

Table 3. Numerology for m(p)/m(e).

(i) This is the best available experimental value.
(ii) I judge that the prior probability that m(p)/m(e) is equal to the

ratio of the roots of a quadratic, with interesting and ultimately explicable
coefficients, is less than 1/200, but I’ll use this value to be generous. (The
use of this judgement shows that my prior probability in this example is not
entirely ‘preprior’.) Conditioning on that assumption we have to measure
the complexities of 10, −136, 137/136, powering, 5 and 6. The numbers 6,
10, and 136 are somewhat related to one another, as said in Part 1, so it
would not be fair to multiply all of the values of pr (= 2/[(r+1)(r+2)]) for
the ranks. To allow for the relationship just mentioned, and out of respect
for Eddington, Bastin, and others, I shall generously allow no penalty for
10 and 137. We recover a factor of 2 because the quadratic could have been
written in reverse order. The adjusted complexity (in decimal units) then
comes to at least

κ0 = − log10

(

2
200 · 2

35·36 · 2
14·15 · 2

7·8 · 2
8·9 · 3672

16

)

= 7.5.

(iii) Lenz’s paper is probably the shortest physics paper on record.
He did not try, at least not there, to dress up his formula with a theory,
whether lucid or obscure. The values of r for 6, π, powering and 5, are 6,
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9, 7, and 13. We gain a factor of 2 because the product can be written as
π56. This gives κ0 = 3.8. This is slightly less than the number of correct
significant digits, so I judge that Lenz’s formula was better than an evens
bet at the time it was first proposed. It is interesting to write the formula
as

m(p)/m(e) ≈ 6! V10/C10 (2.13)

where V10 is the volume of a ten-dimensional ball of radius say k and C10

is that of a ten-dimensional cube of side k (compare Good 1970). The
occurrence of 6! again is somewhat striking.

(iv) The ranks for 10, powering, 4, 2, and e are 14, 7, 4, 1, and 12, and
we recover a factor of 3! = 6 for permuting the factors, so we get κ0 = 4.1.
This item should not have been published because it was extremely inaccu-
rate when first suggested. Moreover the author tried to explain the factor
e−1 as ‘exponential decay’. The correct factor representing exponential de-
cay is of the form e−λt and it is hardly conceivable that there can be any
reason for λt to be equal to 1.

(v) The constant γ = 46/45 was introduced by analogy with 137/136
which Eddington denoted by β. Whereas 136 = 102 + 62 (or the number
of independent elements in a 16 × 16 symmetric matrix), we have 45 =
62 + 32 (as for a 9 × 9 matrix) where 3, 6, and 10 are three consecutive
triangular numbers. To allow for the relationships I count 10 only once,
having regarded 45 as a triangulation of 10 (while losing a factor of 2
because there are always two ways to triangulate a number). I think of
46 as 45 + 1 and 137 as 136 + 1. Take the ranks of ‘squaring’, 10, and
triangulation

((

10
2

)

= 45
)

(ranks 3, 14, and 26), and judge a rank of 12 for
+1. We recover a factor 4! for permutations and get

κ0 = − log10

(

2
35·36 · 2

13·14 · 2
4·5 · 2

15·16 · 2
27·28 · 2

13·14 · 24·3672
16·2

)

= 8.9.

(vi) The numbers 1728 and 108 were originally given credit for arising
in Klein’s theories of groups connected with the icosahedron and dodeca-
hedron. If (on grounds of self-criticism) we harshly credit nothing for these
reasons we can write the formula as 123(1 + 1

16 ), and use ranks for 12,
powering, 3, 16, and addition of 1, namely 18, 7, 2, 10 and say 12. The
expression is unchanged under four permutations so κ0 = 4.7.

(vii) The formula can be written as
(

136
2

)/

5. The ranks for 136, tri-
angulation and 5 are 34, 26, and 13. We should pay a factor of 2 for the
choice of the lower triangulation and recover a factor of 2 for ‘permutation’.
We get κ0 = 4.4.

(viii) Write the formula as

137π(5/4)
3

2×7

(

1 + 2
7 + 4

72

)
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and take ranks for 136, +1, π, 5, 4, 3, 2, 7, +1, 2, and squaring, namely
34, 12, 9, 13, 4, 2, 1, 20, 12, 1, and 3. It seems roughly right to count the 7
only once and allow for only one plus sign in the denominator. We recover
8! 2! for ‘permutations’ of the factors 137, π, 5, 4, 3, 2, 7 and 1 + 2

7 + 4
49

and for reversal of the terms in the last factor. The binary factor is 512.
The outcome is κ0 = 11.0. It is possible that Parker-Rhodes constructed
his obscure explanation of (viii) after noticing that, according to the best
value of m(p)/m(e) known at the time,

1

137π
· m(p)

m(e)
≈ 1715

402
=

5 × 73

6 × 67

which would have been readily obtained by using continued fractions. He
then might have rewritten this in various ways while constructing his ex-
planation. (For example, 67 = 72 + 2 × 7 + 22.) If only he were still alive
he could confirm or deny this conjecture. The fundamental correctness of
his explanation would have been far more convincing (to those who do not
understand it) if he had produced it without first knowing the observed
value. The same statement applies to Eddington’s explanations which I
surmise were largely numerological though nominally based on a theory.

(ix) This modification of Lenz’s formula is correct to one part in a
million. I have found it too difficult to estimate the adjusted complexity,
for I cannot decide how much to ‘pay’ for the factor α′/α. This factor
seems to require a self-contradictory explanation. It might be better to
replace it by 1 + 1

3α2 or 1 + 1
3α′2 or exp(1

3α2) etc.
The last column of the table gives the difference n.c.s.d. −κ0 and

is a rough measure of how good each piece of numerology is when the
sigmage s is ignored or equivalently is assumed to be equal to 1. The
difference is suggestive of the posterior log-odds of the corresponding piece
of numerology, at the time it was proposed, if it was consistent with the
observations at that time as were items (ii), (iii), (v), and (viii). I say
‘suggestive of’ rather than ‘roughly equal to’ because my arguments are not
rigorous enough to justify the latter expression. It is safe enough to describe
the expression n.c.s.d.−κ0 as a score in its ordinary English sense. It gives
an indication of whether the numerology (even if only an approximation)
might point towards the truth when its sigmage is not taken into account
by means of the factor exp

[

− 1
2 (s2 − 1)

]

of formula (2.6A).
Lenz’s formula is the only one, among formulae (ii) to (viii), having a

positive score.

Concluding Comments

The methods used in Parts 1 and 2 differ considerably. This is because the
examples in Part 2 are treated as almost purely numerological apart from
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my judgement of the rankings of numbers and operations in Table 2. But
the two parts share the ‘two stages of information’ as described in note (viii)
to Table 2. There are precedents for two stages of information. For exam-
ple, in statistical consulting a client might suggest a null hypothesis, and
then the statistician might take this hypothesis seriously out of respect for
the client’s scientific judgement. Similarly a medical or legal investigation
often begins with ‘presenting symptoms’ or a ‘prima facie case’.

Part 1 supports the hypothesis of the relative rationality of propor-
tional bulges (of hadron masses), at least to a good approximation when
the heavy quarks are not involved. The numbers 720, 48 etc. suggest that
an explanation based on finite groups might be found, the symmetric group
of degree 6 being a candidate, or the ‘heterotic string theory’ might be rel-
evant. Part 2 argues that the judgement of physical numerology does not
need to be made only in a gestalt manner, but can be largely analyzed in
terms of judgements concerning the complexities of integers, familiar con-
stants, and familiar mathematical operations. At present these judgements
are subjective and depend on what mathematical language, or calculator,
one believes to be appropriate for a specific application. (Compare, for
example, Good 1977, pp. 326–327.)

The methods of Part 2 are exemplified by various numerological ex-
pressions for m(p)/m(e). One conclusion was that Lenz’s formula 6π5 was
seemingly ‘odds on’ when it was suggested though it is now known not to
be accurate. Equation (2.13) expresses it in a form that might lead to a
geometrical interpretation in ten dimensions.
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Appendix A. Physics

Many of the ‘elementary particles’, namely the hadrons, are believed to be
mainly made up of quarks of which there are various kinds. The quarks
are often described as up, down, strange, charmed, bottom (or beauty)
and top (or truth). These can be regarded as nicknames or mnemonics for
the official names, u, d, s, c, b, and t (Cohen and Giacomo 1987, p. 12).
Corresponding antiquarks are denoted by u, d, etc. The charges on u, d,
s, c, b, and t are respectively − 1

3 , 2
3 , − 1

3 , 2
3 , − 1

3 and 2
3 where the unit

is the charge on the electron, while the antiparticles have the signs of the
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charges reversed. The compositions, in terms of quarks, of the particles
mentioned in Table 1, are shown in the first column of that table. The
particles containing three quarks are baryons while those containing one
quark and one antiquark are mesons.

The standard notation for the mass of the proton, for example, is mp,
but I have used the notation m(p) to make the production of the document
a little easier. The ‘mass’ m(X) of a particle X means its rest mass. The
relativistic mass of X moving with velocity v, relative to a specified frame
of reference, is equal to m(X)(1 − v2/c2)−1/2.

The masses of the quarks. PDG89 (p. 102, col. i) gives the masses
of the quarks, in units of MeV/c2, as m(u) = 5.6 ± 1.1, m(d) = 9.9 ± 1.1,
m(s) = 199 ± 33, m(c) = 1350 ± 50, m(b) ≈ 5000, and m(t) > 50, 000.
These are described as ‘running masses evaluated at 1 GeV’. Perhaps the
charmed quark should be regarded as of intermediate mass, neither light
nor heavy. Much of the mass of a quark is converted into ‘packing energy’
so a particle can be lighter than the sum of the masses of the quarks that
lie within it.

From Balmer to Bohr. The well-respected textbook Messiah (1961,
p. 38n) is historically somewhat inaccurate when it says ‘The quantization
of circular orbits led Bohr to find the Balmer formula . . . ’. For Bohr
postulated this quantization to explain, not to ‘predict’, Balmer’s formula
when that formula was shown to him by Hans Marius Hansen (Barrow &
Tipler 1986, p. 222).

Appendix B. Odds and Bayes Factors

If an event or proposition has (possibly conditional) probability p, then its
odds are defined as p/(1−p). (Odds of, for example, 3.5 are also expressed
as 7 to 2 on.) If the result of an experiment is denoted by E, then the prior
odds O(H) of a hypothesis H are multiplied by B(H : E) to obtain the
posterior odds of H , where B(H : E) is called the Bayes factor in favour
of H provided by E, and is given by

B(H : E) =
O(H |E)

O(H)
=

P (E|H)

P (E|H)
(B1)

where H denotes the negation of H . This odds form of Bayes’s theorem
was stated by Wrinch and Jeffreys (1921), although they did not use the
terminology of odds. One can think of O(H |E)/O(H) as the definition of
the Bayes factor, and the right side of (B1) as the method usually used
for its calculation or estimation. When H and H are simple statistical
hypotheses the right side is an uncontroversial simple likelihood ratio, oth-
erwise it is undefined in non-Bayesian statistics. In Bayesian statistics,
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in this latter case, some judgement is needed to estimate the right side.
Sometimes much depends on how the negation of H is interpreted.

Some writers use the term ‘odds-ratio’ which can mean, ambiguously,
odds or the ratio of odds. Hence the expression Bayes factor is linguistically
better as well as being historically earlier.

Appendix C. The One-Plus Exaggeration

The one-plus exaggeration, which was mentioned in the text, has occurred
in relation to quantum electrodynamics (QED). While mentioning this I
have no wish to question that highly successful theory.

The experimental value of the magnetic moment of the electron, in
units of e~/(2cm(e)) (where e in the numerator denotes the charge of
an electron), according to PDG89 (p. 24) or Cohen and Taylor (1987,
p. 1141), was 1.001 159 652 193(10), while the value given by QED was
1.001 159 652 46(20) (see Feynman 1985, pp. 6 and 7). In an interesting
book, Watkins (1986, p. 46), said that the accuracy was better than one
part in a million million. He confirmed in correspondence that he was re-
ferring to the magnetic moment of the electron. If we take the observed
and theoretical values as the x and y of our formula, we find that n.c.s.d.
was only (at least) 8.3 which is an accuracy of one part in at least two
hundred million. But, according to Dirac’s previous theory, which did not
allow for the interaction of electrons with light, the theoretical value would
be 1. If we are evaluating the further advance of QED, for this observation,
it seems to me that we should consider that

x/y = (115965246± 20)/(115965219± 1)

and this reduces the n.c.s.d. to at least 6.6 or one part in at least 4,000,000
(instead of one part in a million million). Thus this crowning achievement
of QED was 24 times as accurate as my piece of numerology H ′

0 (and
both had small sigmages and therefore had ‘room for improvement’). Of
course a numerical success based on an attractive and otherwise successful
theory is very much more convincing than even an equally accurate largely
numerological result. This is because the result based on a successful theory
has the higher prior probability as judged by most of the people who are
paid to do physics.

The latest experimental and theoretical values for the magnetic
moment of the electron are (Kinoshita 1989) 1.001159652164(7) and
1.001159652188(4) with an accuracy of 1 in 30 billion, or 1 in 40 million if
we don’t ‘add one to exaggerate’. The ‘official’ sigmage is now 3.0 so the
theory has possible reached the limit of its accuracy.

Feynman (1985, p. 9) says that nobody understands QED and then
proceeds to explain it brilliantly! Similarly Bohr said that any one who
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is not shocked by quantum mechanics hasn’t understood it. This can
be reworded, paradoxically: Anyone who understands quantum mechanics
knows that she has not understood it. And this is at least as true for QED.
The ‘instrumentalism’ of modern physical theories detracts somewhat from
their stati as explanations and in this respect they have a soupçon of nu-
merology.

Appendix D. Quantal Hypotheses

Suppose that a hypothesis or theory H states that a certain physical con-
stant is exactly equal to an unspecified integer n, while the experimental
estimate is N(x, σ2). For the sake of elegance I allow n to be positive,
negative, or zero, and I assume that σ is known precisely.

Suppose that, before the measurement was made, we had little idea
about what value x would have. Then I claim that the Bayes factor in
favour of H is approximately

1

σ
√

2π

∞
∑

n=−∞

exp

(

− (n − x)2

2σ2

)

(D1)

= 1 + 2

∞
∑

n=1

e−2π2σ2n2

cos(2πnx) (D2)

= ϑ3(πx | 2πiσ2). (D3)

The equivalence of (D1) and (D2) is a special case of Poisson’s summation
formula given as (5.13) of Good (1986) where further details and applica-
tions of formula (D2), as well as historical comments, can be found.

Formula (D1) is based on the idea that, given H , the prior distribution
of the relevant integer is nearly uniform over a wide range of integers, while,
given the negation of H , the corresponding real number has a prior that is
nearly uniform, as a real number, over much the same range. In fact I am
regarding this as the definition of the negation of H . It is important not to
forget that this assumption has been made because, for example, the result
would be very different if the negation of H stated that the real number
is equal to half an odd integer. The Bayes factor would be expressible as
ϑ3/ϑ4.

If σ < 1
2 , formula (D1) can be well approximated by just a few terms

of the series, and if σ is small a single term is adequate. If σ > 1
2 , the Bayes

factor is close to 1, as can be readily seen both intuitively from the meaning
of the statistical problem and also from formula (D2). It is also interesting
to note the check that, if x is an integer, expression (D2) exceeds unity, as
it should, while if x is half an odd integer the expression ‘subceeds’ unity,
and this again makes perfect intuitive sense. This last fact follows at once
from Jacobi’s infinite product for ϑ4.
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If σ is regarded as having a prior distribution we could multiply formula
(D1), (D2), or (D3) by that distribution and integrate to get an improved
value for the overall Bayes factor. But I shall not try to carry out this
refinement.

Example. In Part 1 the hypothesis H1 states that seven independent
physical constants are all equal to integers. The corresponding observations
are 0.9999981 ± 0.0000044, 47.95 ± 0.055, etc. The seven corresponding
Bayes factors are therefore approximately

1

σ1

√
2π

exp

(

−0.00000192

2σ2
1

)

(σ1 = 0.0000044), etc.,

1

σ6

√
2π

[

exp

(

−0.462

2σ2
6

)

+ exp

(

−0.542

2σ2
6

)]

(σ6 = 0.33),

and
1

σ7

√
2π

exp

(

−0.1562

2σ2
7

)

(σ7 = 0.11).

The seven Bayes factors are respectively as shown in Table 1.

Discussion. The topic of this appendix is closely related to that of
‘Quantum hunting’ which is surveyed by Kendall (1986). In quantum hunt-
ing one searches for a quantity q such that all observations are multiples
of q ‘within experimental error’, where the experimental error (standard
deviation σ) is assumed to be the same for all observations. Our prob-
lem is the case where q has a specified value, but where σ varies from one
observation to another and has an approximately known value for each ob-
servation. As far as I know, the published work on quantum hunting has all
been non-Bayesian but it could be tackled by a Bayesian approach. Even
without assuming a prior distribution F (q) for q it would be of interest to
draw a graph of B(q) where B(q) is the Bayes factor (or a Bayes factor)
in favour of the quantum hypothesis (say Hq) that q has a specified value,
the rival hypothesis being that no value of q exists. Clearly B(q) → 1
as q → 0. By definition Hq is supposed to denote the hypothesis that q
is the largest quantum. This definition makes the various hypotheses Hq

mutually exclusive. Without this constraint, Hq would imply Hq/2, Hq/3,
etc.

The integral of B(q)dF (q) would be the overall Bayes factor in favor
of the quantal hypothesis without specifying a value for q.

Another quantal problem was treated by Hammersley (1950), that of
estimating a parameter when it is known in advance of sampling that the
parameter certainly belongs to a specified set of numbers, such as the set
of integers, whereas in this appendix we have been concerned with testing
this hypothesis. In the example, the problem of estimation is not entirely
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absent because the favoured integers seem all to be of the form 2a3b, but I
have not taken this nice-looking feature into account when calculating the
overall Bayes factor.

Appendix E. The Symmetric Group of Degree 6

Burnside (1911 or 1955, p. 209) states the following theorem which gives
a distinctive property of the symmetric group of degree 6:

The symmetric group of degree n (n 6= 6) contains n and only n
sub-groups of order (n − 1)! . . . . The symmetric group of degree
6 contains 12 sub-groups of order 5!, which are simply isomorphic
with one another and form two conjugate sets of 6 each.

It is tempting to conjecture that the two conjugate sets correspond to the
six quarks and six antiquarks.
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