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Abstract

We prove that the critical probability for bond or site percolation on Z
d

is asymptotically equal to 1/(2d) as d → ∞. If the probability of a bond
(respectively site) to be occupied is γ/(2d) with γ > 1, then for the bond
model the percolation probability converges as d → ∞ to the strictly posi-
tive solution y(γ) of the equation y = 1− exp(−γy). In the site model the
percolation probability is asymptotically equal to γy(γ)/(2d) under these
conditions. An asymptotic independence property for the random field of
sites which belong to the infinite cluster is given.

1. Introduction

Broadbent and Hammersley (1957) created the theory of percolation. Lar-
gely because of Hammersley’s impetus the subject has grown enormously
and is at present a very lively research area in probability and statistical
mechanics. Since much of my own research has been inspired by John
Hammersley it is a pleasure to dedicate an article on percolation to him in
this Festschrift.

Recently Aizenman, Bricmont, and Lebowitz (1987) used the behavior
of the critical probability of site percolation in high dimension to obtain
some interesting properties of the Ising model. For oriented percolation
the asymptotic behavior of the critical probability in high dimension was
derived by Cox and Durrett (1983). Here we shall consider the asymptotic
properties as d → ∞ of (unoriented) bond and site Bernoulli percolation on
Z

d. In (Bernoulli) bond percolation the bonds are occupied (respectively
vacant) with probability p (respectively q := 1 − p) and all bonds are
independent. The corresponding product measure on the configurations
of bonds is denoted by Pp. C(x) is the (occupied) cluster of x; it is the
collection of all points which can be reached from x by an occupied path.
(An occupied path is a path all of whose edges are occupied.) We write

1Research supported by the NSF through a grant to Cornell University.
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θ(p) = θ(p, Zd, bond) for the percolation probability:

θ(p) = Pp{C(0) is infinite}. (1.1)

It is known (Aizenman, Kesten, and Newman 1987; Gandolfi, Grimmett,
and Russo 1988) that if θ(p) > 0, then there exists w.p.1 a unique in-
finite cluster. If θ(p) > 0 we say that percolation occurs. Broadbent and
Hammersley (1957) and Hammersley (1959) proved that there exists a non-
trivial critical probability pc = pc(Z

d, bond) which separates the parameter
domains where percolation occurs and where it does not occur. In other
words, if we set

pc = sup{p : θ(p) = 0}, (1.2)

then
0 < pc < 1, θ(p) = 0 if p < pc and θ(p) > 0 if p > pc.

It is believed (but so far only proven when d = 2) that θ(pc) = 0. All of the
preceding has its analogue for site percolation; we merely have to replace
‘bond’ by ‘site’ everywhere in the above description of the bond model.

The principal result of this paper gives the asymptotic behavior of
pc. The result is not unexpected, since simple results about branching
processes tell us that on a tree with all vertices of degree 2d, percolation
occurs if and only if p > (2d − 1)−1. Theorem 1 says that asymptotically
for large d the critical probability for such a tree and for Z

d are the same in
first order; the circuits which exist on Z

d play only a small role for large d.
Gordon (1988) recently also proved that 2d pc(Z

d, bond) → 1 as d → ∞
by a rather different method.2

Theorem 1.

1

2d − 1
≤ pc(Z

d, bond) ≤ pc(Z
d, site) ≤

1

2d
+ O

(

(log log d)2

d log d

)

. (1.3)

Theorem 1 can be used to show that if one takes p = γ/(2d), then the
random field of the sites which belong to an infinite cluster behaves for large
d like an independent random field (with success probability converging to
the y(γ) of (1.5)). For site percolation we have a similar result after a
simple modification of the statement. Such a modification is necessary
for the following trivial reason. In the bond model a site is incident to

2Note added in proof: It seems that the forthcoming paper of Hara and Slade (1989)
implicitly proves that pc(Zd,bond) = (2d)−1 +O(d−2). In addition, it has just come to
our attention that asymptotic expansions (in powers of (2d− 1)−1) for pc(Zd, site) and
pc(Zd,bond) were given on a non-rigorous basis in Gaunt, Sykes, and Ruskin (1976)

and Gaunt and Ruskin (1978).
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2d edges, each of which can potentially connect the site to ∞. As we
shall see this leads to a strictly positive limit for θ(γ/(2d), Zd, bond) when
γ > 1 is fixed. In the case of site percolation our definitions require the
site x to be occupied in order for x to be connected to ∞. Consequently
θ(γ/(2d), Zd, site) ≤ γ/(2d). In order to obtain a situation comparable to
that of the bond model we should ignore the state of x itself or condition
on x being occupied. Theorem 2S shows that this indeed leads to a result
for the site model which is almost the same as for the bond model.

We should note that Theorems 2B and 2S (and their proofs) express
the generally held belief that in high dimensions the system exhibits ‘mean
field behavior’. E.g. in the bond model this means that around a fixed site
x the number of neighbors of x connected to ∞ is close to its expected value
2dθ(p), irrespective of the states of the edges incident to x itself. Once this
is accepted it is easy to derive a consistency relation for θ(p). This is the
so called mean field equation; at p = γ/(2d) the limit of this equation as
d → ∞ is just (1.5).

We write |A| for the number of vertices in the set A.

Theorem 2B. In the bond model, when γ > 1 is fixed,

lim
d→∞

θ
( γ

2d
, Zd, bond

)

= y(γ), (1.4)

where y(γ) is the unique strictly positive solution of

y = 1 − e−γy. (1.5)

More generally, for fixed γ > 1

lim
d→∞

sup
A,B

∣

∣

∣

∣

Pγ/2d{all sites in A belong to the infinite occupied cluster,

but none of the sites in B do} −
(

y(γ)
)|A|(

1 − y(γ)
)|B|

∣

∣

∣

∣

= 0. (1.6)

The supremum in (1.6) is over all pairs of finite disjoint sets A and B.

Theorem 2S. In the site percolation model, when γ > 1 is fixed,

lim
d→∞

2d

γ
θ
( γ

2d
, Zd, site

)

= y(γ)

(with y(γ) as in (1.5)). More generally, for fixed γ > 1,

lim
d→∞

sup
A,B

∣

∣

∣

∣

Pγ/2d{all sites in A have a neighbor which belongs to

the infinite occupied cluster, but none of the sites in B do}

−
(

y(γ)
)|A|(

1 − y(γ)
)|B|

∣

∣

∣

∣

= 0. (1.7)
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The supremum in (1.7) is over the same A, B as in (1.6).

Theorem 1 for bond percolation and Theorem 2B are special cases of
similar results for a more general cluster model in which bonds are not
independent. These so called Fortuin-Kasteleyn models have an extra pa-
rameter Q. For integral Q ≥ 1 these cluster models have a close relationship
with the Potts model with Q colors. In Bricmont, Kesten, Lebowitz, and
Schonmann (1989) and Kesten and Schonmann (1989), these models are
described in more detail and results corresponding to the above results are
proved there for integer Q. For 1 ≤ Q ≤ 2 one can even obtain the ex-
act parallels to the above results and we shall give these proofs elsewhere
(Kesten 1989). The proof of Theorem 1 has to be given for percolation
first and that will be done here. However, Theorem 2 is better treated for
all 1 ≤ Q ≤ 2 at the same time, and its proof will therefore be deferred to
Kesten (1989).

Acknowledgement. The author is indebted to R. Schonmann for suggesting
Theorems 2B and 2S and part of their proof.

2. Proof of Theorem 1

The first inequality in (1.3) is one of the earliest results in the subject. It
was proven by means of a Peierls argument by Broadbent and Hammersley
(1957). The second inequality was proven a number of times; see McDi-
armid (1980), Hammersley (1961), and Oxley and Welsh (1979). The only
novelty of (1.3) is therefore the last inequality and for the remainder of this

section we shall work with site percolation on Z
d.

As in Cox and Durrett (1983), which dealt with oriented percolation,
we shall basically apply Chebyshev’s inequality to the number of occupied
paths which connect the origin, 0, to points at distance n−1 from 0 (for n
large). Unfortunately, for standard percolation there is less independence
among such paths than for oriented percolation, and in order to regain
some independence we have to restrict ourselves to certain subclasses of
paths which we now define. First, a path (of length m) on Z

d is a sequence
v1, . . . , vm of m vertices of Z

d such that vi and vi+1 are neighbors. We do
not insist that all the vi are distinct; a path is not necessarily self-avoiding.
The ith step of the path is the vector si := vi − vi−1. ek will denote the
kth unit coordinate vector. We now define for positive integers N and n
the following class (⌊a⌋ denotes the largest integer a):

C(N, n) = collection of paths of length nN − 1 whose steps si satisfy
(a) si ∈ {ek : k > d − ⌊d/N⌋} if i = jN for j = 1, . . . , n − 1 and
(b) si ∈ {±ek : k ≤ d−⌊d/N⌋} if jN < i < (j + 1)N for j = 0, . . . , n− 1
(this also applies to s1, which we define as v1). (2.1)
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In the sequel we shall make the convention that v0 = 0 and s1 = v1 for
paths in C(N, n). We note that there are ⌊d/N⌋ choices for each of the
steps of the form (a) and 2d − 2⌊d/N⌋ choices for each of the steps of the
form (b). Thus #C(N, n), the cardinality of C(N, n) is

(2d − 2⌊d/N⌋)n(N−1)⌊d/N⌋n−1. (2.2)

Any path v1, . . . , vnN−1 in C(N, n) starts at a neighbor of 0 and

for kN ≤ i < (k + 1)N the sum of the
last ⌊d/N⌋ components of vi equals k. (2.3)

We shall count paths in C(N, n), but not just occupied paths. Instead we
define a stronger property. We attach to each vertex v of Z

d a sequence of
0–1 valued random variables Y1(v), Y2(v), . . . such that

all variables {Yi(v) : i ≥ 1, v ∈ Z
d} are independent (2.4)

and
P{Yi(v) = 1} = p for all i and v. (2.5)

If r = (v1, . . . , vnN−1) is a path of length nN − 1 then we define

k(r, v) = number of i ≥ 1 with vi equal to v

= the number of visits by r to v.

We say that the event A(r) occurs if

Yj(v) = 1 for j ≤ k(r, v) for all v. (2.6)

Thus if we think of Yj(v) as the Y value sampled at the jth visit to v, then
A(r) occurs if and only if the Y sampled at each visit to a vertex by r is
+1. Consequently

P{A(r)} = pnN−1 (2.7)

for all paths r of length nN − 1.
In the proof of Lemma 1 it is explained how the event A(r) is related

to r being occupied. In any case we shall be interested in the number of
paths r for which A(r) occurs. To estimate the variance of this number we
introduce some further quantities. For a pair of paths r = (v1, . . . , vnN−1),
and r′ = (v′1, . . . , v

′
nN−1), both of length nN − 1, we define

J(r, r′) =
∑

v

k(r, v) ∧ k(r′, v) (2.8)
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(a ∧ b denotes min{a, b}). Thus if r visits vi at time i, and this is the νth
visit to vi by r, then this visit adds to the count J(r, r′) if and only if there
exists an index j such that v′j = vi and r′ visits vi for the νth time at time
j.

Finally we introduce a probability measure on ordered pairs of paths. P

will be the probability measure which picks a pair r,r′ from C(N, n) with all
pairs equally likely. Thus, the probability mass assigned to any pair of paths
in C(N, n) is [#C(N, n)]−2. Actually, at this moment P depends on nN ,
but we suppress this dependence in the notation. E denotes expectation
with respect to P.

Lemma 1. For any fixed N ,

θ(p, Zd, site) ≥ p lim sup
n→∞

[E{p−J(r,r′)}]−1. (2.9)

Proof: Choose v occupied if Y1(v) = 1 and vacant if Y1(v) = 0. It is easily
seen that under (2.5) the distribution of the occupancy configurations is
Pp. Assume now that A(r) occurs for some r = (v1, . . . , vnN−1) ∈ C(N, n).
Then by ‘loop-removal’ we can find an occupied self-avoiding path from v1

to vnN−1. Loop-removal consists of first finding the last index k such that
vk = v1. We then take out from r the vertices v2, . . . , vk. We are then left
with the path (v1, vk+1, . . . , vnN−1) which visits v1 only at time 1. Next
we find the last index m ≥ k + 1 for which vm = vk+1 and we remove the
vertices vk+2, . . . , vm to obtain the path (v1, vk+1, vm+1, . . . , vnN−1) which
visits each of v1 and vk+1 exactly once. We continue this procedure until
no vertex is visited more than once. Let r be the self-avoiding path which
is left over after this procedure. Its first vertex is v1 and it is easily seen
that the last vertex of r must be equal to the endpoint of r, vnN−1 (even
though vnN−1 may be visited several times by r, and in the loop-removal
procedure the last vertex of r may appear as a vt which equals vnN−1,
but with t < nN − 1). By (2.3) with k = n − 1 this endpoint of r is at
least at distance n − 1 from 0 (the distance here is the l1 distance, not
the Euclidean one). Also r must be occupied since all its vertices had
corresponding Y1 = 1 if A(r) occurred. Thus A(r) implies that there exists
an occupied self-avoiding path of length n− 1 starting at a neighbor of the
origin. As n → ∞ the probability of the last event converges to

Pp{a neighbor of 0 is connected to ∞} =
1

p
θ(p, Zd, site).

Thus (2.9) will follow if we can prove

P{A(r) occurs for some r ∈ C(N, n)} ≥ [E{p−J(r,r′)}]−1. (2.10)



Asymptotics in High Dimensions for Percolation 225

However, (2.10) is almost immediate from Schwarz’s inequality. Indeed if
M denotes the number of r in C(N, n) for which A(r) occurs, then

P{A(r) occurs for some r} = P{M > 0} ≥
(E{M})2

E{M2}
.

Now

E{M} = #C(N, n)pnN−1.

(see (2.7)), while

E{M2} =
∑

r,r′

P{A(r) and A(r′) occur}

=
∑

r,r′

p2nN−2−J(r,r′) = [#C(N, n)]2p2nN−2
E{p−J(r,r′)}.

The second equality here follows from the fact that the number of Y ’s sam-
pled by r and r′ together is 2nN − 2 − J(r, r′), because J counts precisely
the number of times r samples a Y which is also sampled by r′. (2.10)
follows from these formulae. �

To estimate E{p−J} we shall break up J into a sequence of contribu-
tions which behave more or less like a Markov chain. Before we do this it
is convenient to view the paths (v1, . . . , vnN−1) and (v′1, . . . , v

′
nN−1) as the

initial pieces of two infinite paths r = (v1, v2, . . . ) and r′ = (v′1, v
′
2, . . . ).

Accordingly we extend P to a measure on pairs of infinite paths which are
independent under P and whose ith step is any one of the unit vectors in
{±ek : k ≤ d − ⌊d/N⌋} with probability (2d − 2⌊d/N⌋)−1 when N does
not divide i, and whose ith step is any one of {ek : k > d − ⌊d/N⌋} with
probability ⌊d/N⌋−1 when i is a multiple of N . Here the first step of the
path r is v1 and the first step of r′ is v′1. We also maintain our convention
that v0 = 0. One easily checks that the initial pieces of length nN − 1 of
r and r′ are independently uniformly distributed over C(N, n) as with the
previous definition of P. If necessary we shall write JnN (r, r′) now, instead
of our previous J(r, r′), to indicate that we are working with the initial
pieces of length nN − 1.

We define the kth block of r to be the path (v(k−1)N , v(k−1)N+1, . . . ,
vkN−1). By a slight abuse of notation we shall also say that the time t or
the index t occurs in the kth block if (k − 1)N ≤ t < kN . We say that r
has a high density point in the kth block if there exist t and s in the kth
block such that

t, s ≥ 1, |t − s| ≥ 2, and |vt − vs| ≤ 1.
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In particular if vt is a double point of r in the rth block, then it is also a
high density point. However, vt is also a high density point if one of its
neighbors is visited by r at any other time than t − 1 or t + 1. Similar
definitions hold for r′. By our choice of P, (2.3) still holds for all k so that
w.p.1 vt = vs can actually occur only if t and s belong to the same block.
For the same reason vt = v′s can w.p.1 occur only when t and s lie in the
same block.

We next define special indices. If r has no high density point in the
kth block, then (k− 1)N + i, with 0 ≤ i < N , is a special index if and only
if

v′(k−1)N+i has not been visited by r′ at any time 1 ≤

t < (k − 1)N + i, and in addition v′(k−1)N+i = v(k−1)N+j

for some j. (If k = 1 we also require i, j ≥ 1.) (2.11)

We point out that (w.p.1) the occurrence of (2.11) depends on the kth
blocks of r and r′ only, since the only possible values for t and (k−1)N + j
at which r′ or r can visit v(k−1)N+i are in the kth block. With each such
special index t we associate a contribution L(t) = L(t; r, r′) of size 1 to J .
Here and in the future we index a contribution L by the special index to
which it corresponds. Next, when r has a high density point in the kth
block, then there is either no special index in [(k − 1)N, kN) or exactly
one. The former is the case if there are no t and s in [(k − 1)N ∨ 1, kN)
with vt = v′s (a ∨ b denotes max{a, b}). If there do exist such t and s,
then the only special index in the kth block is taken to be kN − 1 and the
corresponding contribution L(kN − 1) is defined as

L(kN − 1) = number of s ∈ [(k − 1)N ∨ 1, kN) for which v′s

equals a vt in the kth block of r.

Now let t(1) < t(2) < · · · < t(ρ) be all the special indices ≤ nN − 1
(thus the next special index t(ρ+1) occurs at or after time nN ; this defines
ρ = ρ(nN)). We claim that

JnN (r, r′) ≤

ρ
∑

k=1

L(t(k); r, r′). (2.12)

To prove (2.12) consider the kth block of r. The vertices in this block
can be visited only at the times [(k − 1)n, kN). If r has no high density
points in this block and v is one of the vertices of r in this block then
k(r, v) = 1. Therefore the only contributions to (2.8) from this block come
from v’s with k(r, v) ∧ k(r′, v) = 1. Let v be such a vertex and let t be
the smallest index t for which v′t = v. Then t is a special index and the
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corresponding L(t) = 1 = k(r, v) ∧ k(r′, v). Thus all contributions to J
from a block without high density points also appear in the right hand side
of (2.12). If r has a high density point in the kth block but vt 6= v′s for
all t,s ∈ [(k − 1)N, kN), then there are no contributions from this block to
either side of (2.12). If vt = v′s for some t, s, then the contribution to JnN

from this block is

∑

v∈kth
block of r

k(r, v) ∧ k(r′, v) ≤
∑

v∈kth
block of r

k(r′, v)

= L(kN − 1).

Thus for a block with high density points the contribution to the right hand
side of (2.12) is always at least as large as the one to the left hand side,
and (2.12) must hold.

Finally we associate a type with each special index and its correspond-
ing contribution L. We make the convention that t(0) = 0. For i ≥ 1 we
say that t(i) is of

type 1 if t belongs to a block without high density points,
t(i) − t(i − 1) = 1, and t(i) is not a multiple of N ,

type 2 if t belongs to a block without high density points,
t(i) − t(i − 1) = 1, but t(i) is a multiple of N ,

type 3 if t belongs to a block without high density points,
and t(i) − t(i − 1) ≥ 2,

type 4 if t belongs to a block with high density points.
It will turn out that the main task is to estimate

E{p−L(t(i)); i ≤ ρ, t(i) is of type l | Fi−1} (2.13)

on the event
{(i − 1) ≤ ρ, t(i − 1) is of type m}, (2.14)

where

Fj := the σ-field generated by t(j) and

{vt : t < ⌈t(j)/N⌉N} ∪ {v′t : t ≤ t(j)}

(⌈a⌉ denotes the smallest integer ≥ a). It may be useful for the reader to
skip Lemmas 2–6 at first reading to see how the main line of the argument
runs once (2.13) has been estimated.

Note that r and r′ are not treated equally in the definition of Fj ;
we are forced to do this by the asymmetric definition of the special indices
which involve first looking at the whole block of r to see whether it contains
a high density point, while high density points of r′ do not play such a role.
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We have defined Fj in such a way that L(t(j)) is measurable with respect
to Fj .

To estimate (2.13) we shall need some estimates which are basically
known facts about a simple random walk. For the remainder of this section
we take D = d − ⌊d/N⌋ and {Su} a simple random walk in Z

D with
S0 = 0. Ki will denote some universal constant (independent of d, N and
p). Furthermore we restrict p and N to satisfy

1

2d
≤ p ≤

2

2d
and 8 ≤ N ≤

log d

2 log log d
. (2.15)

Lemma 2. Let

Gt = σ-field generated by all vi and by the v′q with q ≤ t.

and let τ be a stopping time with respect to the Gt. Then for p and N
satisfying (2.15) and for any vertex w we have

P{v′i = w for some τ ∨ (jN − 1) < i < (j + 1)N | Gτ}

≤
(1 + K1N/d)

2D
on the set {τ = s}, for any jN ≤ s < (j + 1)N − 1.

(2.16)

Moreover

P{r′ visits the (j + 1)th block of r at some time > τ | Gτ}

≤

{ N
2D (1 + K1N/d) on the set {τ ≥ jN}
2N
d on the set {τ < jN}.

(2.17)

Proof: Note that, given r and the event {τ = s}, possibly intersected
with some other event in Gs, the conditional distribution of the steps s′i with
i > s is still the same as the unconditional distribution under the extended
P as defined above. In particular the steps s′i for s < i < (j + 1)N and i
not divisible by N are distributed like the steps of a simple random walk
{Su} on Z

D with S0 = 0. More precisely, this holds for the projection of
the s′i on the span of the first D coordinate vectors. We shall be somewhat
cavalier about this and shall not always distinguish between s′i and this
projection. For any vector w in Z

d or Z
D we use w(i) to denote the ith

component of w and w = (w(1), . . . , w(D)) for the projection of w on Z
D

if w ∈ Z
d.

Now it is known for a simple random walk {Su} on Z
D with S0 = 0

(cf. Kesten 1964, Sect. 3) that

sup
w

P{S2u+1 = w} ≤ sup
w

P{S2u = w} = P{S2u = 0}, (2.18)

∞
∑

u=1

P{S2u = 0} ≤
1

2D
(1 + K2D

−1),

∞
∑

u=2

P{S2u = 0} ≤ K2D
−2.

(2.19)
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Also, by counting all possibilities (cf. (3.5) in Kesten 1964), one easily
obtains

sup
w

P{S1 =w} =
1

2D
, sup

w 6=0

P{S2 = w} ≤
K3

D2
,

sup
w

P{S3 = w} ≤
K3

D2
.

(2.20)

It follows from these observations that if jN ≤ s and w = (w(1), . . . , w(d))
is such that

D
∑

q=1

{w(q) − v′s(q)} is even, (2.21)

then we have on the set {τ = s}

P{v′i = w for some s < i <(j + 1)N | Gτ}

≤ P{Su visits w − v′s for some u > 0}

= P{Su visits w − v′s at some even time > 0}

≤
1

2D

(

1 +
K2

D

)

(see (2.19)). (2.22)

If the sum in (2.21) is odd instead of even then we obtain (2.22) by replacing
‘even’ by ‘odd’ in (2.22) and using (2.18), (2.19), as well as the special
estimates (2.20) for the terms corresponding to u = 1 or 3. This proves
(2.16).

Next we note that on {τ = s} with jN ≤ s < (j + 1)N the first case
of (2.17) is immediate from (2.16) since there are only N points in the
(j +1)th block of r and these can be visited by r′ only during the (j +1)th
block. (2.17) is also clear on {τ ≥ (j + 1)N} for then the left hand side
is zero. In order to obtain (2.17) on {τ = s} when s < jN we observe
that the sum of the last ⌊d/N⌋ coordinates is the same for all the vt in
the (j + 1)th block of r (compare (2.3)). The same comment applies to r′.
Therefore r′ can visit the (j + 1)th block of r only if the sum of the last
⌊d/N⌋ coordinates is the same for v′jN and vjN . Moreover the last ⌊d/N⌋
coordinates of v′jN are w.p.1 the same as those of v′(j−1)N + s′jN . Thus if

we condition on Gτ∨(jN−1) then on {τ < jN} the conditional probability
that r′ visits the (j + 1)th block of r is bounded by

P{s′jN =
(

0, . . . , 0, vjN (D + 1) − v′(j−1)N (D + 1), . . .

. . . , vjN (d) − v′(j−1)N (d)
)

| Gτ∨(jN−1)} ≤ ⌊d/N⌋−1.

In the last step we used that s′jN takes any given value with probability at

most ⌊d/N⌋−1 by the definition of P. This implies (2.17) on {τ < jN} as
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well, since Gτ ⊂ Gτ∨(jN−1). �

We remind the reader of our convention that t(0) = 0. If we declare
t(0) to be a special index of type 2 then Lemmas 3–6 remain valid even for
i = 1. In other words, for i = 1 the estimates in these lemmas for m = 2
apply also to

E{p−L(t(1)); 1 ≤ ρ, t(1) is of type l}.

We leave most of the slight modifications necessary for i = 1 to the reader.

Lemma 3. Under (2.15) the expression in (2.13) is for l = 4 at most

K4p
−N

[

N

2D

]N+1

(2.23)

on the set (2.14) for any 1 ≤ m ≤ 4.

Proof: First observe that if

t(i − 1) occurs in the kth block, (2.24)

then the next special index can be of type 4 only if it occurs in the jth
block for some j > k and if r has a high density point in its jth block (no
matter what the type of t(i− 1) is). In addition v′s must equal vt for some
s and t in the jth block for there to be any special index in the jth block.
Let us assume for the rest of this proof that (2.24) occurs and let us set

σj = smallest index s ≥ (j − 1)N such that v′s equals some vt

(σ = ∞ if no such s exists). (If i = 1 then we replace kN by 1 in the above
definition.) Then on the event (2.24) we have

E

{

p−L(t(i)); i ≤ ρ, t(i) is of type 4 | Fi−1

}

≤
∑

j>k

∑

(j−1)N≤ν<jN

E

{

p−L(jN−1); σj = ν and r has

a high density point in the jth block | Fi−1

}

. (2.25)

We shall estimate the summands in the right hand side of (2.25) by condi-
tioning on r. First we show that for (j − 1)N ≤ ν < jN

E{p−L(jN−1) | r, σj = ν,Fi−1} ≤ K5p
−N

[

N

2D

]N−1

. (2.26)
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This will be seen to follow from Lemma 2. Indeed, note that σj = ν ∈
[(j−1)N, jN) implies L(jN−1) ≥ 1, since there is at least the contribution
to this L of the visit of r′ to r at the time σj . For L(jN −1) to be ≥ λ+1,
there must be at least λ further visits by r′ to r, necessarily to the jth
block of r and during the time interval (σj , jN). Thus by the first line of
(2.17) (with j replaced by j − 1)

P{r′ visits the jth block of r at least λ times during (σj , jN) | Gσj}

≤

{

N

2D
(1 + K1N/d)

}λ

. (2.27)

By virtue of (2.27) the left hand side of (2.26) is at most

p−1 +
N−1
∑

λ=1

p−λ−1

{

N

2D
(1 + K1N/d)

}λ

. (2.28)

Note that the upper bound in the sum over λ is N − 1 because r′ cannot
visit the jth block of r more than N times. With the choice of p and N
restricted by (2.15) the ratio of the geometric series in (2.28) is at least 2
and (2.26) follows.

Substitution of (2.26) into (2.25) now shows that on the event (2.24)

E{p−L(t(i)); i ≤ ρ, t(i) is of type 4 | Fi−1}

≤ K5p
−N

[

N

2D

]N−1
∑

j>k

P{r has a high density point in

its jth block and r′ visits the jth block of r | Fi−1}. (2.29)

Note that if A ∈ Fi−1 then A ∩ {t(i − 1) occurs in the kth block} belongs
to HkN−1, where

Ht = σ-field generated by {vj, v
′
j : j ≤ t}.

It therefore suffices to estimate the right hand side of (2.29) with Fi−1

replaced by HkN−1. Now by estimates entirely analogous to those for
(2.16) and (2.27) we have for j > k

P{r has a high density point in its jth block | HkN−1}

≤
∑

(j−1)N≤t<jN

[

P{vs = vt for some t < s < jN | HkN−1}

+
∑

w

P{vs = w for some t + 2 ≤ s < jN | HkN−1}
]

, (2.30)
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where the inner sum over w runs over the 2d neighbors of vt. The first
probability in the right hand side is for each fixed t at most

E

{

sup
w

P{vs = w for some t < s < jN | Ht} | HkN−1

}

,

which by virtue of (2.16) (with the roles of r and r′ interchanged) is at most
D−1. As for the second probability in the right hand side of (2.30) note
that vs = w means that vs − vt has to be a unit vector, and in fact when
t and s lie in the same block this can occur only when w ∈ {±ei : i ≤ D}.
Therefore this probability is at most

E

{

sup
i≤D

P{vs − vt = ±ei for some t + 2 ≤ s < jN | Ht} | HkN−1

}

≤ sup
w 6=0

P{Su = w for some u ≥ 2}

≤ K6D
−2.

Since t can take at most N values and w at most 2d values we obtain that
(2.30) is at most K7N/D. Substituting this into (2.29) we see that its right
hand side, with HkN−1 instead of Fi−1, is bounded by

K8p
−N

[

N

2D

]N
∑

j>k

sup
r

P{r′ visits the jth block of r | r,HkN−1}. (2.31)

Since conditioning on r and on HkN−1 is the same as conditioning on
GkN−1, the probability in the sum in (2.31) for j = k + 1 is at most 2N/D
(by the second line of (2.17)). The remaining sum in (2.31) is bounded by

∑

j≥k+2

sup
r

∑

(j−1)N≤q<jN

P
{

v′s = vq for some

(j − 1)N ≤ s < jN | r,HkN−1

}

≤
∑

s≥(k+1)N

N sup
w

P
{

v′s = w | HkN−1

}

. (2.32)

In turn the last sum can be estimated by the arguments used in Lemma
2. We can condition on all steps s′i with i divisible by N in addition to
HkN−1. Then v′s − v′kN−1 still contains s− kN − ⌊(s− kN + 1)/N⌋ simple
random walk steps independent of these conditions, so that

sup
w

P{v′s = w | HkN−1} ≤ sup
w

P
{

Ss−kN−⌊(s−kN+1)/N⌋ = w
}
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and (2.32) is therefore at most

K8N

∞
∑

u=4

sup
w

P{Su = w} ≤ K9
N

D2
.

It follows that (2.31) is bounded by K10p
−N (N/(2D))N+1. The lemma fol-

lows because (2.13) is bounded by the conditional expectation (given Fi−1)
of (2.31). �

Lemma 4. Under (2.15) the expression (2.13) is for l = 3 at most

K4
N2

pd2
(2.33)

on the set (2.14) for any 1 ≤ m ≤ 4.

Proof: If t(i) is of type 3, then L(t(i)) = 1. In addition, v′t(i) cannot

have been visited before by r′, so that v′t(i) 6= v′t(i−1) (cf. (2.11)). Finally

t(i) ≥ t(i − 1) + 2. Therefore

E{p−L(t(i)); i ≤ ρ, t(i) is of type 3 | Gt(i−1)}

≤ p−1
P
{

v′s = vt for some s ≥ t(i − 1) + 2 and some t with

vt 6= v′t(i−1) | Gt(i−1)

}

. (2.34)

Next we note that for given r and a time s there are at most N possible vt

which can equal v′s, since t and s must belong to the same block for this to
be possible. The right hand side of (2.34) is therefore bounded by

p−1N sup
τ

∞
∑

m=2

sup
w 6=0

P
{

v′τ+m − v′τ = w
}

. (2.35)

This sum can be estimated by almost the same method as used for (2.32).
First consider the terms with 2 ≤ m < 5. If τ is such that there are no
i divisible by N in (τ, τ + m], then v′τ+m − v′τ has the same distribution
as Sm. In particular v′τ+m − v′τ = w is possible only if the last ⌊d/N⌋
coordinates of w are zero. Also for w 6= 0

P
{

Sm = w
}

≤ K5D
−2, (2.36)

by virtue of (2.18)–(2.20). If m < 5 then there may also be exactly one i0
in (τ, τ +m] which is divisible by N . In this case v′τ+m−v′τ = w forces w to
be the sum of at most m − 1 vectors from {±ek : k ≤ D} plus exactly one
vector from {ek : D < k ≤ d}. The step s′i0 has to equal this last vector
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and the other m−1 steps s′i with τ < i ≤ τ +m have to add up to a vector
determined by w. Since the probability of s′i0 having a prescribed value is
at most 2N/d, we obtain that in this case

sup
w 6=0

P
{

v′τ+m − v′τ = w
}

≤ K5N/(dD). (2.37)

For m ≥ 5 we simply observe that there are at least (m− 1 − ⌊m/N⌋) ≥ 4
values of i in (τ, τ + m] which are not divisible by N so that

sup
τ

sup
w 6=0

∞
∑

m=5

P
{

v′τ+m − v′τ = w
}

≤ K6

∞
∑

u=2

P
{

S2u = 0
}

≤ K7D
−2 (2.38)

(cf. (2.18) and (2.19)). (2.35)–(2.38) show that the right hand side of (2.34)
is at most K8p

−1N2d−2. Since Fi−1 ⊂ Gt(i−1) this same estimate holds for
the expression in (2.13).

For i = 1, (2.34) should be replaced by

E
{

p−L(t(i)); 1 ≤ ρ, t(1) is of type 3
}

≤ p−1
N−1
∑

s=2

P
{

v′s = some vt with 1 ≤ t < N
}

+ (expression in (2.35))

≤ p−1
N−1
∑

s=2

N−1
∑

t=1

P
{

v′s = vt = 0
}

+ p−1N
N−1
∑

s=2

sup
w 6=0

P
{

v′s = w
}

+ (expression in (2.35))

≤ p−1
N−1
∑

s=2

N−1
∑

t=1

P
{

v′s = 0
}

P
{

vt = 0
}

+ K9p
−1N2d−2

≤ K10p
−1N2d−2 (2.39)

(by (2.18)–(2.20)). �

For l = 1 or 2 our estimate for (2.13) on the set (2.14) does depend on
m.

Lemma 5. Under (2.15), on the set (2.14) we have

E{p−L(t(i)); i ≥ ρ, t(i) is of type 1 | Fi−1}

≤











(2pD)−1 if m = 1

(pD)−1 if m = 2 or 3

0 if m = 4.

(2.40)
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Proof: As in the last lemma L(t(i)) = 1 if t(i) is of type 1. First consider
the case m = 1, i.e., let t(i − 1) be of type 1 as well. Let t(i − 1) belong
to the kth block. We must then have that t(i) also belongs to the kth
block, and in fact t(i − 1) + 1 = t(i) < kN (since t(i) is not divisible by
N). Also v′t(i−1) must equal some vt with t in the kth block. Since t(i− 1)

is also of type 1, v′t(i−2) = v′t(i−1)−1 is one of the neighbors of vt and also

equals some point of r. Moreover t(i − 1) is not divisible by N , so that
t(i − 1) − 1 = t(i − 2) ≥ (k − 1)N also belongs to the kth block. Since r
does not have a high density point in the kth block if t(i − 1) is of type 1,
r does not visit any other neighbors on Z

d of vt than vt−1 and vt+1 during
[(k − 1)N, kN). One of these is v′t(i−2). But also v′t(i) must be equal to a

neighbor of vt which is visited during the kth block (recall that v′t(i) and

v′t(i−2) can only visit points of the kth block of r, by (2.3)). Thus v′t(i)
must be either vt−1 or vt+1. However, it cannot equal v′t(i−2) because at

time t(i), r′ must be at a point which it had not visited before (see (2.11)).
Since all of r and v′t(i−2) are known when we condition on Fi−1, there is

only one choice for v′t(i), namely the one point of vt±1 which is not v′t(i−2).

The probability that r′ moves to this prescribed site at the (t(i− 1)+ 1)th
step is (2D)−1. This proves the case m = 1 of (2.40).

The case m = 2 or 3 is very similar, except that there now may be
two choices for v′t(i). Again, if t(i − 1) belongs to the kth block, then

t(i) = t(i − 1) + 1 also belongs to the kth block and v′t(i−1) equals some

vt of the kth block of r, v′t(i) must be one of the neighbors of vt which are
visited by the kth block of r. This allows at most the choices vt−1 or vt+1

for v′t(i). This takes care of m = 2 or 3 when i ≥ 2.

For i = 1 we have by (2.16) (with the roles of r and r′ interchanged)

E{p−L(t(i)); 1 ≤ ρ, t(1) is of type 1}

≤ p−1
P{v′1 = vt for some 1 ≤ t < N}

≤ p−1 sup
w

P{vt = w for some 1 ≤ t < N}

≤ (pD)−1.

Finally, if m = 4, then t(i− 1) = kN − 1 for some k. Then t(i) cannot
be of type 1, for this would require on the one hand that t(i) = t(i−1)+1,
and on the other hand that t(i) is not divisble by N . �

Lemma 6. Under (2.15), on the set (2.14) we have

E{p−L(t(i)); i ≤ ρ, t(i) is of type 2 | Fi−1}

≤

{

4N(pd)−1 if m = 1, 3, or 4

0 if m = 2.
(2.41)
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Proof: t(i) can be of type 2 only if t(i) = kN for some k and if t(i− 1) =
kN − 1. This rules out that t(i− 1) is of type 2, so that the second case of
(2.41) is trivial. For i ≥ 2 and m = 1, 3, or 4, on the set {t(i−1) = kN −1}
the left hand side of (2.41) is bounded by

p−1
P{vt = v′kN for some kN ≤ t < (k + 1)N | HkN−1}.

This is bounded by p−1(2N/D) by the second case of (2.17). For i = 1,
t(0) = kN − 1 is impossible. �

We are now ready to carry out the principal estimate for

E
{

p−JnN(r,r′)
}

.

By (2.12) this expression is for all n at most

∞
∑

u=0

E

{

p−
∑u

k=1
L(t(k)); ρ = u

}

≤ 1 +

∞
∑

u=1

E

{

p−
∑

u

k=1
L(t(k)); t(u) < nN

}

≤ 1 +

∞
∑

u=1

∑

τ

E

{

p−
∑

u

k=1
L(t(k)); t(u) < nN, t(k) has type τ(k), k ≤ u

}

.

(2.42)

The sum over τ here is over all possible sequences of types (τ(1), . . . , τ(u))
for (t(1), . . . , t(u)). For fixed u and τ the summand here can be written as

E

{

p−
∑u−1

k=1
L(t(k))

E
{

p−L(t(u)); u ≤ ρ, t(u) is of type τ(u) | Fu−1

}

;

u − 1 ≤ ρ, t(k) is of type τ(k), k ≤ u − 1

}

≤ E

{

p−
∑u−1

k=1
L(t(k))Γ(τ(u − 1), τ(u)); u − 1 ≤ ρ,

t(k) is of type τ(k), k ≤ u − 1

}

,

where Γ(m, l) is an upper bound for (2.13) on the set (2.14). From Lemmas
3–6 we see that we can take for Γ the following matrix:













1
2pD

4N
pd K4

N2

pd2 K4p
−N

[

N
2D

]N+1

1
pD 0 K4

N2

pd2 K4p
−N

[

N
2D

]N+1

1
pD

4N
pd K4

N2

pd2 K4p
−N

[

N
2D

]N+1

0 4N
pd K4

N2

pd2 K4p
−N

[

N
2D

]N+1













.
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By iteration of this argument we now obtain

E

{

p−
∑u

k=1
L(t(k)); t(u) < nN, t(k) has type τ(k), k ≤ u

}

≤ E
{

p−L(t(1)); t(1) has type τ(1)
}

u−1
∏

k=1

Γ(τ(k), τ(k + 1)).

As pointed out before, the estimates in Lemmas 3–6 with m = 2 apply to

E
{

p−L(t(1)); 1 ≤ ρ, t(1) has type τ(1)
}

,

so that finally

E

{

p−
∑u

k=1
L(t(k)); t(u) < nN, t(k) has type τ(k), k ≤ u

}

≤ Γ(2, τ(1))
u−1
∏

k=1

Γ(τ(k), τ(k + 1)).

Substituting this into (2.42) we find

E
{

p−JnN(r,r′)
}

≤ 1 +

∞
∑

u=1

∑

τ

Γ(2, τ(1))

u−1
∏

k=1

Γ(τ(k), τ(k + 1)). (2.43)

It will not do to take the sum here over all sequences (τ(1), . . . , τ(u)) with
values in {1, 2, 3, 4} because the largest eigenvalue of the matrix Γ is much
bigger than 1 (in fact Γ(1, 2)Γ(2, 1) is of order N under the restrictions
(2.15) and this will grow with d; see below). However, as we saw in (2.42)
we only have to sum over the sequences which are possible sequences of
types for (t(1), . . . , t(u)). In particular, if τ(k) = 2 for some k, then either
all τ(j) with k − N < j < k equal 1 or one of these τ(j) equals 3 or 4 and
the τ ’s between τ(j) and τ(k) equal 1. We use this to replace Γ in (2.43)
by the matrix ∆ defined as













N3/(N−1)

2pD
4

N2pd K4
N5

pd2 K4p
−N

[

N
2D

]N+1
N3

N3/(N−1)

pD 0 K4
N5

pd2 K4p
−N

[

N
2D

]N+1
N3

N3/(N−1)

pD
4

N2pd K4
N5

pd2 K4p
−N

[

N
2D

]N+1
N3

0 4
N2pd K4

N5

pd2 K4p
−N

[

N
2D

]N+1
N3













.

∆ is obtained from Γ by multiplying the first column by N3/(N−1), and
the third and fourth columns by N3, while dividing the second column
by N3. (2.43) with Γ replaced by ∆ is a valid estimate because for each
τ(k + 1) = 2 for which we lose a factor N3 in the right hand side of (2.43)
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we gain a factor of at least N3 from the τ(j) which equal 1, 3, or 4 between
τ(k) and the preceding τ which equals 2 (or in all the preceding τ if τ(k)
is the first τ which equals 2).

After the replacement of Γ by ∆ we do sum over all sequences (τ(1),
. . . , τ(u)) with values in {1, 2, 3, 4} to obtain, uniformly in n,

E
{

p−JnN (r,r′)
}

≤ 1 +
∞
∑

u=1

4
∑

i=1

∆u(2, i). (2.44)

(1.3) is contained in the following stronger lemma.

Lemma 7. The largest eigenvalue of ∆ is at most

N3/(N−1)

2pD
+

12

pdN2
+ 3K4

N5

pd2
+ 3K4p

−N

(

N

2D

)N+1

N3. (2.45)

(1.3) holds. Moreover, for fixed γ > 1,

lim inf
d→∞

θ
( γ

2d
, Zd, bond

)

≥ lim inf
d→∞

2d

γ
θ
( γ

2d
, Zd, site

)

≥ K5[(γ − 1) ∧ 1].

(2.46)

Proof: The largest eigenvalue of ∆ is the same as the largest eigenvalue
of A−1∆A, where A is the diagonal matrix with entries 1, 3, 3, 3 along
the diagonal. A−1∆A is obtained from ∆ by multiplying the second, third,
and fourth columns by 3 and then dividing the corresponding rows by 3.
The largest row sum of the resulting matrix occurs in the first row and
equals the expression in (2.45). Thus (2.45) is indeed an upper bound for
the largest eigenvalue of ∆ (Ostrowsky 1973, Theorem 19.1).

For p = γ/(2d) with 1 ≤ γ ≤ 2 and N = ⌊(log d)/(2 log log d)⌋, (2.45)
is bounded above by

d

γD
+ K6

(log log d)2

log d
≤

1

γ
+ K7

(log log d)2

log d
.

In particular the largest eigenvalue of ∆ is strictly less than one for

p =
1

2d

(

1 + 2K7
(log log d)2

log d

)

(2.47)

and d large. Thus for large d and p as in (2.47) the right hand side of (2.44)
is finite and percolation occurs by Lemma 1. This implies (1.3). Also if we
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take p = γ/(2d) for some fixed γ > 1, then for large d the right hand side
of (2.44) is at most

1 + K8

∞
∑

u=1

max
i≤4

4
∑

j=1

(A−1∆A)u(i, j)

≤ 1 + K9

∞
∑

u=1

(expression in (2.45))u

≤ 1 + K9

{

1 −
1

γ
− K7

(log log d)2

log d

}−1

≤ K10γ(γ − 1)−1.

The second inequality in (2.46) now follows from Lemma 1. The first in-
equality can be found in any one of Hammersley (1961), McDiarmid (1980),
and Oxley and Welsh (1979). �
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