Preface

The main topic of this book is the study of the behaviour in equilibrium of
vector stochastic processes, or stochastic networks. Such processes have a
wide range of applications: to give some examples, the components of the
vector may represent queue sizes in a queueing network, gene frequencies in
a population, or the condition of fruit trees in an orchard. When a stochastic
network is reversible its analysis is greatly simplified, and the first chapter is
devoted to a discussion of the concept of reversibility. Two themes emerge
from the remainder of the book: first, the various uses of reversibility, in the
study of the output from a queue, the flow of current in a conductor, the age
of an allele, or the equilibrium distribution of a polymerization process;
second, the extent to which the assumption of reversibility can be relaxed
without destroying the associated tractability. ‘

The main prerequisite is an understanding of Markov processes at about
the level of Feller’s Introduction to Probability Theory and Its Applications,
Volume I. In Section 1.1 the necessary material is very briefly reviewed,
primarily to establish terminology and notation.

For their comments and advice I am indebted to many people, particularly
Dave Aldous, Andrew Barbour, Dieter Koenig, Rolf Schassberger, and
Geoft Watterson. I am especially grateful to Peter Whittle, whose lectures
on reversibility first interested me in the subject and without whose encour-.
agement the book would not have been written. Finally, my thanks go to
Jackie Kelly for computing the graphs in the book and to Angie Ashton for
typing the final draft.

Cambridge, Christmas 1978
Frank KEeLLY
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CHAPTER 1
Markov Processes and Reversibility

In this chapter the concept of reversibility is introduced and explored, and
some simple stochastic models are described. The rest of the book will be
devoted to generalizations of these simple models.

The first section reviews some aspects of the theory of Markov processes
which will be required in the sequel.

1.1 PRELIMINARIES ON MARKOV PROCESSES

Let X(t) be a stochastic process taking values in a countable state space &
for teJ. Thus (X(t,), X(t,),...,X(t,)) has a known distribution for
t, t ..., €. For a discrete time stochastic process J will be the integers
Z while for a continuous time stochastic process J will be the real line R.
These are the only possibilities we shall consider.

If (X(t,), X(t,),...,X(t,)) has the same distribution as (X(¢, + 1), X(t,+
7,...,X(t,+7)) for all ¢,,¢,,...,1t, 7€T then the stochastic process X(t)
is stationary.

The stochastic process X(t) is a Markov process if for t, <t,<-::-<t, <
t,.1 the joint distribution of (X(t;), X(t,), ..., X(t,), X(t,.,)) is such that

P(X(tn+l) =jn+l IX(tl) =j1s X(t2) =j2’ ceey X(tn) =jn)
= P(X(tn+l) =jn+l I X(tn) =jn)

whenever the conditioning event (X(t,)=ji, X(t;))=j, ..., X(t,)=j,) has
positive probability. Where no confusion can arise we shall use an ab-
breviated notation in which the above equation becomes

P(jr|+l 'jl’ i2, e 9jn)=P(.in+l |1n)

Thus for a Markov process the state of the process at a given time contains
all the information about the past evolution of the process which is of use in
predicting its future behaviour. This is the usual definition of a Markov
process. An alternative equivalent definition is the following. The stochastic
process X(t) is a Markov process if for t,<t,<---<¢,<---<t,, condi-
tional on X(t,)=j, (the present), (X(t,), X(t,), ..., X(t,—,)) (the past) and
(X(t,41), X(1,42), . .., X(t,)) (the future) are independent (Exercise 1.1.2).

A Markov process is time homogeneous if P(X(t+71)=k | X(t)=j) does
not depend upon ¢, and is irreducible if every state in & can be reached from
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2 Markov Processes and Reversibility

every other state. For a time homogeneous discrete time Markov process
p(i, k)=P(X(+1)=k|X(®)=})

is called the transition probability from state j to state k. Note that

L pG)=1 je¥

kes
A discrete time Markov process is periodic if there exists an integer §>1
such that P(X(t+7)=j| X(t)=j)=0 unless 7 is divisible by 8; otherwise the
process is aperiodic. Throughout this work we shall assume that any discrete
time Markov process with which we deal is time homogeneous and irreduc-
ible; we shall often additionally assume it is aperiodic. Consider then a
process satisfying all these assumptions. Such a process may possess an
equilibrium distribution, that is a collection of positive numbers 7(j), je %,
summing to unity that satisfy the equilibrium equations

w(j)= Y akplk,)) je¥ (1.1)
ke¥
If we can find a collection of positive numbers satisfying equations (1.1)
whose sum is finite, then the collection can be normalized to produce an
equilibrium distribution. When an equilibrium distribution exists it is unique
and

lim P(X(1) =k | X(0)=j)=m(k) (1.2)

so that m is the limiting distribution. Also, the proportion of time the
process spends in state k during the period [0, t] converges to (k) as t = o,
that is the process is ergodic. Further, if P(X(0)=j)=w(j), je¥, then
P(X(0)=j)=m(j), je ¥, for all teZ, so that m is the stationary distribution.
If an equilibrium distribution does not exist then

!inﬂloP(X(t)=k)=0 ke¥

and the process cannot be stationary. An equilibrium distribution will not
exist if we can find a collection of positive numbers satisfying equations (1.1)
whose sum is infinite. An equilibrium distribution will always exist when &
is finite. All of the above remains true for periodic processes, except for the
relation (1.2).

It is possible to construct continuous time Markov processes which exhibit
extremely strange behaviour. These will be excluded; throughout this work
we shall assume that any continuous time Markov process with which we
deal is not only time homogeneous and irreducible but also remains in each



1.1 Preliminaries on Markov Processes 3

state for a positive length of time and is incapable of passing through an

infinite number of states in a finite time. Define the transition rate from state

j to state k to be

P(X(t+7)=k|X(1)=})
T

a(j, k) = lim itk
It will be convenient to let q(j, j)=0. For continuous time processes the
equilibrium equations are :

M Y qG. k)= T aak,j) jes (1.3)
ke ke

and an equilibrium distribution is a collection of positive numbers (j),

j€¥, summing to unity which satisfy the equilibrium equations. As for

discrete time processes an equilibrium distribution is unique if it exists and is

then both the limiting and the stationary distribution. Further, the process is

ergodic. If one does not exist then

!inaloP(X(t)=k)=O ke&

An equilibrium distribution will not exist if we can find a collection of
positive numbers satisfying equations (1.3) whose sum is infinite. When & is
finite an equilibrium distribution will always exist.

A discrete time Markov process is sometimes called a Markov chain. We
shall use this terminology so that from now on when we refer to a Markov
process it will be a continuous time process. We shall often refer to a
stationary Markov chain or process as being in equilibrium.

A Markov process remains in state j for a length of time which is
exponentially distributed with parameter

a()= Y, q(, k)

key
When it leaves state j it moves to state k with probability

. q(, k)

p(, k) a0) (1.4)
There is thus a natural way to associate a Markov chain X’ (t) with a Markov
process X(r). Let X’(0) be X(0), let X’(1) be the next state the Markov
process X(t) moves to after time ¢t =0, let X’ (2) be the next state after that,
and so on. The Markov chain X”(¢) is called the jump chain of the Markov
process X(t), and its transition probabilities are given by the relation (1.4).
The equilibrium distribution of a jump chain will in general be different
from that of the Markov process generating it (Exercise 1.1.5), essentially
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because the jump chain ignores the length of time the process remains in
each state. The initial distribution at time t=0 of the jump chain of a
stationary Markov process will be the equilibrium distribution of the Mar-
kov process, and thus the jump chain will not in general be stationary.

Exercises 1.1

1.

Let Z(t), teZ, be a sequence of independent identically distributed

random variables with P(Z(t)=0)=P(Z(t)=1)= 1. Define the stochastic

process X(t) with £={0,1,2,..., 6} and I =Z by X(t)=

Z{-1D)+2Z(t)+3Z(t+1).

(a) Determine P(X(0)=1, X(1)=3, X@2)= 2) and P(X(1)=3,
X()=2).

(b) Determine P(X(2)=2|X(0)=1, X(1)=3) and P(X(2)=
2| X(1) =3). Deduce that the process X(t) is not Markov.

. Establish the equivalence of the following statements:

(i) For all t1<t2<' ’ '<tn<tn+l,

P(in+1 |j1: j2’ L ’jn)=P(ju+l ‘In)
(ii) For all t,<t,<:- - <t, <+ <t,,
P(jl, i2’ ceey ip—l’ jp+1’ jp+2) ceey jm l]p)
= P(jI, j29 ey jp——l |jp)P(jp+l’ jp+2’ ve ey jm I]p)

If a Markov process has an equilibrium distribution show that the
convergence to it expressed in the relation (1.2) is uniform over states
ke%.

. Consider the Markov process with state space & ={0,1,2,...} and with

transition rates

a! k=j+1
q(j, k)= { b k=0
0 otherwise

If a> 1 this process is capable of passing through an infinite number of
states in finite time. Find the equilibrium distribution when a=1 and
b > 0. Observe that one does not exist when 0<a =<1 and b=0.

It is possible for a Markov process to possess an equilibrium distribution
and for its jump chain not to, and vice versa. Show that if a Markov
process has equilibrium distribution 7 (j), je &, then its jump chain has
an equilibrium distribution if and only if

B7'= Y w()a()

je¥



1.2 Reversibility 5
is finite, in which case the equilibrium distribution of the jump chain is
7' (i) = Bm()q()).

Observe that if q(j) does not depend upon j, so that the points in time at

which jumps take place form a Poisson process, then the jump chain and
the process have the same equilibrium distribution.

1.2 REVERSIBILITY

Some stochastic processes have the property that when the direction of time
is reversed the behaviour of the process remains the same. Speaking
intuitively, if we take a film of such a process and then run the film
backwards the resulting process will be statistically indistinguishable from
the original process. This property is described formally in the following
definition,

Definition

A stochastic process X(¢) is reversible if (X(t), X(t,), ..., X(t,)) has the
same distribution as (X(r—1t,), X(r—1,),..., X(r—t,)) for ali t,, t,, ..., t
red.

In the next section we shall give examples of reversible processes and in
later sections we shall discuss some of the less obvious consequences of the
above definition; but first let us derive some of the basic properties of
reversible processes.

Lemma 1.1. A reversible process is stationary.

Proof. Since X(t) is reversible both (X(t), X(ty),...,X(t,)) and
(X(t,+71), X(ty+71),..., X(t,+7)) have the same distribution as
(X(=t:), X(=15), ..., X(~1,)). Hence X(1) is stationary.

For a stationary Markov chain or process there exist simple necessary
and sufficient conditions for reversibility given in terms of the equilibrium
distribution and the transition probabilities or rates. These conditions are
obtained in Theorems 1.2 and 1.3 and are called the detailed balance
conditions; they should be contrasted with the equilibrium equations, which
are sometimes called the full balance conditions.

Theorem 1.2, A stationary Markov chain is reversible if and only if there
exists a collection of positive numbers w(j), je &, summing to unity that satisfy
the detailed balance conditions

m(DpG, k)=m(K)ptk,))  jkes (1.5)
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When there exists such a collection w(j), j€ &, it is the equilibrium distribution
of the process.

Proof. First suppose that the process is reversible. Since the process is
stationary P(X(t)=j) does not depend upon t. Let 7w (j) = P(X(t) = j); thus
w(j), je ¥, is a collection of positive numbers summing to unity. Since the
process is reversible

P(X()=]j, X(t+1)=k)=P(X()=k, Xit+1)=j)
and so
w(Hp(, k) = w(K)p(k, j)

Conversely, suppose there exists a collection of positive numbers m(j),
j€ %, summing to unity satisfying the detailed balance conditions. Summing
equations (1.5) over k we obtain

w(j) L pGi k)= ) w(kp(k,j)  je¥
ke? ke¥
which reduce to the equilibrium equations (1.1). Hence the collection w(j),
j€ &, is the equilibrium distribution of the process. Consider now a sequence
of states jo, j1s. .- Jm. Then

P(X(8)=jo, X(t+ 1) =1, ..., X(t+m)=ju)
= 7w (jo)p (o, il)P(h, J2) P (=15 jm)
and
P(X(t’) = jm, X(t,+ 1) = jm-—ly feey X(t,+ m) = .’0)
= '"(jm)p(jm’ jm—l)p(jm—l, jm—2) e p(jl’ ]0)
But the detailed balance conditions (1.5) imply that the right-hand sides of
the last two identities are equal. Hence, letting 7=t+ t'+m,
(X(1), X(t+1),...,X(t+m)) has the same distribution as (X(v—1), X(v—
t—1),..., X(r—t—m)), and from this we can deduce that

(X(t), X(t), ..., X(t,)) has the same distribution as (X{(r—t), X(r—
t,),.... X(r—t,)) for all t;, 5, ..., L, TEZL.

The detailed balance conditions (1.5) imply that if p(j, k) is positive then so
is p(k,j). Less obvious, but interesting, consequences for the matrix of
transition probabilities are contained in Exercises 1.2.4 and 1.2.5.

Theorem 1.2 has a direct analogue for continuous time processes.

Theorem 1.3. A stationary Markov process is reversible if and only if there
exists a collection of positive numbers w(j), j € &, summing to unity that satisfy
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the detailed balance conditions
w(Nq(, k)=w(k)q(k,j) jkeS (1.6)

When there exists such a collection w(j), j € &, it is the equilibrium distribution
of the process.

Proof. First suppose the process is reversible, and let w(j) = P(X(t) =J).
Then

PX@®)=j,X@+7)=k)=P(X@)=k, X(t+1)=])
and so
PX(t+7)=k |X(t)=j)=

m(j) (k)

PX(t+7)=j| X(t)=k)
T
Letting 1 — 0 we obtain the relation (1.6).

Conversely, suppose there exists the collection 7 (j), je &, satisfying the
detailed balance conditions. Summing equations (1.6) over k gives the
equilibrium equations (1.3), and hence the collection #(j), je &, is the
equilibrium distribution. Consider now the behaviour of the process X(¢) for
te[-T, T]. The process may start at time ¢t =—T in state j; and remain in
this state for a period h, before jumping to state j,. Suppose it now remains
in state j, for a period h, before jumping to state j;, and so on, until it
arrives in state j,, where it remains until time ¢ = T, a period of h,,, say. Now
the probability density of the random variable h, is

q(ie 0™
and the probability that j, is the next state after j, is
q(jy)

Similarly, we can calculate the density of h, and the probability that j, is the
next state after j,, and so on. The probability that the process remains in
state j, for a period of at least h,, is

e—q(jm)h,,
Thus the probability density of the behaviour described is
w(j)e 19Mq(j,, iz)e—qoz)hZQ(fm ja)em 1M« - q(n—y, jm)e_q(j"‘)h'“ 1.7

This is a density with respect to h,, h,,..., h,. To obtain a probability it
must be integrated over a region of values for h,, h,, ..., h,, satisfying the
constraint h;+h,+- - - +h,, =2T. Now the relation (1.6) implies that

W(h)‘l(h, j2)q(j2a ]3) et q(jm—l, ]m) = W(]m)q(]m’ jm—l) T Q(ja, j2)q(j2, ]l)
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and hence that expression (1.7) is equal to the probability density that the
process starts at time t=—T in state j,, that it remains in this state for a
period h,, before jumping to state j,,_;, and so on, until it arrives in state j,
which it remains in until time ¢t =T, a period of h,. Thus the probabilistic
behaviour of X(t) is precisely the same as that of X(—t) on the interval
[-T, T]. Thus (X(t), X(t),...,X(t,)) has the same distribution as
(X(~ty), X(~tp), ..., X(—t,)), but this has the same distribution as (X(7—
1), X(r—t),..., X(r—1,)) because X(t) is stationary; and so the theorem
is proved.

A collection of positive numbers satisfying the detailed balance conditions
whose sum is finite can of course be normalized to produce an equilibrium
distribution. Lemma 1.1 shows that a Markov process which is not station-
ary is not reversible, even if the detailed balance condition can be satisfied.

The term w(j)q(j, k) is called the probability flux from state j to state k; in
equilibrium the probability that in the interval (¢, ¢+ 8t) the process jumps
from state j to state k is 7w(j)q(j, k) 8t +0(8t). The detailed balance condition
(1.6) requires that the probability flux from state j to k should equal that
from state k to j. The full balance condition (1.3) requires that the
probability flux out of state j should equal that into state j. These relation-
ships can perhaps be more easily visualized if we associate a graph G with
the Markov process as follows: let the set of vertices of the graph be &, the
set of states, and let there be an edge joining vertices j and k if either q(j, k)
or q(k, j) is positive. Thus the Markov process can be regarded as a random
walk on the graph G. Note that the assumed irreducibility of the process
implies that the graph is connected. Define a cut to be a division of ¥ into
complementary sets & and ¥ — 4.

Lemma 1.4, For a stationary Markov process the probability flux each
way across a cut balances. That is for any o < &,

Y Y aiaGR=Y Y =@ak,j) (1.8)

jed keS—oA jed ke~

Proof. Summing the full balance condition (1.3) over je o gives

Y Y waG k=Y X wkalk,

jed ke? jed ke?
The result follows by subtracting the identity

Y Y w(aG k)= Y Y w(k)q(k,j)

jesA ked jest ked

Note that if o ={j} then equations (1.8) reduce to the equilibrium
equations (1.3).
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Lemma 1.5. If the graph G associated with a stationary Markov process is
a tree, then the process is reversible.

Proof. If j and k are not linked by an edge of the graph G the detailed
balance condition (1.6) is satisfied trivially. If j and k are linked by an edge
then removal of this edge cuts the graph G into two unconnected compo-
nents, since G is a tree. Thus Lemma 1.4 shows that the detailed balance
condition is satisfied.

Lemma 1.5 gives a sufficient condition for a process to be reversible but,
as we shall see later, it is by no means necessary.

It can be shown that the number of transitions from state j to k per unit
time calculated over the period (0, ¢) converges to w(j)q(j, k) as t — o, This
fact provides an alternative proof of Lemmas 1.4 and 1.5 since the number
of transitions each way across a cut in the period (0, t) cannot differ by more
than one.

Lemmas 1.4 and 1.5 have obvious counterparts for Markov chains.

Exercises 1.2

1. Consider the stationary Markov process X (1) with ¥={1,2}, q(1,2) =1,
q(2,1)=3. Show that X(¢) is reversible. Observe that a film of the
process, run either forwards or backwards, will show the process alternat-
ing between states with the periods in states 1 and 2 having means 1 and
2 respectively. There is a minor difficulty here which should be pointed
out. Suppose the process jumps from state 1 to 2 at time to. Is X(t)=1
or 2? The usual convention is that if X(t) jumps at time t, then X(t,) is
taken to be the new state, so that the process is right continuous. The
difficulty is that if the film run forwards is right continuous then the film
run backwards will be left continuous. The difficulty is avoided if we
adopt the convention that X(t,) is equally likely to be the old or the new
state. Such fine differences would of course be hard to detect (the finite
dimensional distributions do not manage it), and will not concern us from
now on. When, later, we speak of the instant in time just preceding
(respectively, following) a transition we shall be implicitly appealing to the
left (respectively, right) continuous version of the process,

2. Show that the stochastic process X(t) defined in Exercise 1.1.1 is not
reversible.

3. Suppose that the points s eR, i=...,-1,0,1,2,..., form a Poisson
process and define

+o00

X(= Y a(s-¢)

i=—
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Show that X(t) is reversible if

a(s)={1 -1<s=0

0 otherwise
and is not reversible if
2 -1<s=0
a(s)=<1 —2<s=-1
0 otherwise

4. Show that a stationary Markov chain is reversible if and only if the matrix
of transition probabilities can be written as the product of a symmetric
and a diagonal matrix.

5. Show that the matrix of transition probabilities of a reversible Markov
chain can be written in the form D 'AD where D is diagonal and A
symmetric. Deduce that it has real eigenvalues (the converse is false as
the next exercise shows).

6. Consider a stationary Markov chain with the following matrix of transi-
tion probabilities:

[==)

1

0

0
Show that the process is not reversible even though the matrix has real
eigenvalues.

7. Suppose a Markov process and its jump chain both possess equilibrium
distributions. Observe that the equilibrium probability that the jump
chain is in state j, found in Exercise 1.1.5, is proportional to the
probability flux out of, or, equivalently, the probability flux into, state j
in the Markov process. Show that the transition rates of the Markov
process satisfy the detailed balance conditions if and only if the transition
probabilities of the jump chain do.

8. If X,(t) and X,(t) are independent reversible Markov processes show
that (X,(t), X,(1)) is a reversible Markov process.

9. If X(1) is a reversible stochastic process show that so is Y(t) = f[X(#)] for
any function f.

- a O
=

1.3 BIRTH AND DEATH PROCESSES v

The simplest examples of reversible processes are provided by Markov
processes for which the state space & is {0,1,2,..., K}, with K possibly
infinite, and q(j, k) =0 unless |j—k|=1. These are called birth and death
processes, since the only possible transitions from state j are to j—1 (a
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death) or j+1 (a birth). A stationary birth and death process is reversible,
by Lemma 1.5. The detailed balance condition states that the equilibrium
distribution of a stationary birth and death process satisfies

7(NqG, j—D=m({-1)q(—1,))
and hence is given by

r=1,r
()= m(0) l'I atr-1,0 (1.9)
r,r—1)
where m(0) must be chosen so that #(j), j=0, 1,2, ..., sum to unity. If 7(0)

cannot be so chosen then the process does not possess an equilibrium
distribution and cannot be stationary. We will now discuss some simple
examples of birth and death processes.

The simple queue. Suppose that the stream of customers arriving at a
queue (the arrival process) forms a Poisson process of rate v. Suppose
further that there is a single server and that customers’ service times are
independent of each other and of the arrival process and are exponentially
distributed with mean p~*. Such a queue is called simple or M/M/1, the M’s
indicating the memoryless (exponential) character of the interarrival and
service times and the final digit indicating the number of servers. Let n(t) be
the number of customers in the queue at time ¢, including the customer
being served. Then it follows from our description of the queue that n(t) is a
birth and death process with transition rates

qG,i-D=p j=1,2,...
qG,j+D=v  j=0,1,...

If the arrival rate v is less than the service rate u the process has an
equilibrium distribution which is, from equation (1.9),

()= (1—1) (1)' (1.10)
W/ A\ )
Thus in equilibrium the number in the queue has a geometric distribution
with mean v/(p —v).

This result can be used to obtain another distribution of interest, the
distribution of the waiting time of a customer. We shall define waiting time
to include service time, so that it is the period between a customer’s arrival
at and departure from the queue. Consider now a typical customer arriving
at the queue and let W be his waiting time. Assume for the moment that the
probability he finds j customers already present in the queue is 7 (j), With
the queue discipline first come first served,

i=0

P(W=w)= Y m()P Z s, <w) (1.11)
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where S, S,,... are independent exponentially distributed random vari-
ables with mean p~!. After some reduction (Exercise 1.3.1) this shows that
W is exponentially distributed with mean (p -v)L

Is it valid to assume that when a typical customer arrives at the queue he
finds it in equilibrium? This assumption can be made when the arrival
process is Poisson, although we must be careful about the interpretation of a
typical customer. If we observe a customer arriving at time ¢, and we know
nothing other than this about arrival times or about the state of the queue,
then we shall call this customer typical. When the arrival process is Poisson
the interval between t, and the preceding arrival has an exponential dis-
tribution, and indeed the arrival process up until time ¢, has the same
probabilistic description as it would have if {, were just a fixed instant in
time. Hence the customer arriving at time ¢, finds the queue in equilibrium.
(The concept of a typical customer is investigated further in Exercise 1.3.7.)

There is an alternative approach to this result which is of greater general-
ity and will be of use later. The probability that in the interval (to, to+ 8t) a
single customer arrives and finds j customers already present in the queue is

m()q, j+1) 8t +o(8t)

The probability that in the interval (fo, {, +8¢) a single customer arrives is

oo

Y w(ag, j+1) 8t+0(80)
j=0
Thus given that a single customer arrives in the interval (t, to+8t) the
conditional probability that he finds j customers already present in the
queue is
w(j)q(j, j +1) 8t +0(81)

Yi-o w(i)q(i, j+1) 8t +o(81)
As 8t — 0 this conditional probability tends to the ratio

w(qG, j+1)
Yo m(DaG,j+1)

The numerator is the probability flux that a customer arrives to find j
customers already present in the queue, and the denominator is the proba-
bility flux that a customer arrives. Thus this ratio is also the limit as t — « of
the proportion of arrivals in the period (0, t) who find j customers already
present in the queue. Since q(j, j+1) = v the ratio is simply w(j).

The above approach is of use whenever a stochastic process is observed at
just those points in time marked by some special event. Exercises 1.1.5,
1.3.6, and 1.3.9 provide further examples.

For a simple queue the mean number in the queue E(n), the mean
waiting time of a customer E(W), and the mean time between successive
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arrivals v~! are related by the identity
E(n)=vE(W). (1.12)

This, Little’s result, holds for much more general systems—the arrival
process need not be Poisson, service times need not be independent, and
indeed the system may bear little resemblance to a queue at all. It has the
nature of an accounting identity; we can count time spent in a system either
by adding it up over the customers who pass through the system or by
integrating the number in the system over time. We shall not prove Little’s
result, although we shall occasionally use it. For our purposes it will be
enough to record that equation (1.12) holds whenever there is a stationary
Markov process X(t) such that the number in the system at time ¢, n(t), is a
function of X(t). The expectation E(W) can be regarded as the mean time
spent in the system by a typical customer or as the limit as m — « of the
average time spent in the system by the first m customers to enter the
system after time t. Similarly, v can be regarded as the reciprocal of the
mean interarrival period preceding the arrival of a typical customer or as the
limit as t — o of the number of customers to arrive per unit time calculated
over the period (0, ¢). In equilibrium the probability flux that a customer
arrives is ». When the arrival process is not Poisson we shall call v the mean
arrival rate.

A telephone exchange. Suppose that calls are initiated at points in time
which form a Poisson process of rate v, but that the exchange has only K
lines so that a call initiated when K calls are already in progress is lost.
Further suppose that calls which are connected last for lengths of time which
are independent and exponentially distributed with mean w™'. Then the
number of calls in progress at time t is a birth and.death process with
transition rates

q(jaj_1)=j“' j=1’2’---’K

q(G, j+D=v i=0,1,...,K-1
The equilibrium distribution over the state space ¥={0,1,..., K} is

v\i

(i) =m(0) ]l, (;)

Thus in equilibrium the number of calls in progress has a truncated Poisson
distribution.
The probability that a typical call will be lost is
(UKD u)
(K)o
K= S Wineiay

This, Erlang’s formula, also gives the limiting proportion of calls lost.

(1.13)
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The simple birth, death, and immigration process. Suppose that individu-
als immigrate at rate v, give birth to additional individuals at rate A, and die
at rate u so that

qG,j—1)=ju i=1,2,...
q(],]+1)=V+]A j=0,1,...

These transition rates correspond to the assumptions that the lifetimes of
individuals are independent of each other and of the immigration process
and that during an individual’s lifetime the points in time at which it gives
birth form a Poisson process independent of other lifetimes and of the
immigration process. It is often tedious to specify precisely the assumptions
underlying a model; where the assumptions are clear from the context or
from the structure of a Markov process we shall often fail to list them. It
follows from equation (1.9) that when A <u the equilibrium distribution for
the number of individuals alive is

w(j) = (1—3)“ (IV“"l)(-&)' (1.14)
I

where

(x)=x(x—1)---(x—r+l)
r r(r—1)---1

This distribution is an example of the negative binomial distribution; its
mean is »/( —A) and its variance is vu/(n —A)%. When A = v it reduces to
the geometric distribution (1.10).

Exercises 1.3

1. Relation (1.11) shows that W is the sum of j+ 1 independent exponen-
tially distributed random variables, where j itself is a random variable
with a geometric distribution. By considering the Markov process with
three states and transition rates q(1,2)=q(2,1)=v, q(1,3)=q(2,3)=
u — v, show that W is exponentially distributed with mean (u — v)

2. Suppose the simple queue described above is amended by the require-
ment that any customer who arrives when there are K customers already
present must leave immediately without service. Show that in equilibrium
the probability that this amended queue contains n customers is just the
conditional probability that the simple queue contains n customers given
that it contains not more than K customers.

3. Show that for an M/M/s queue the number in the queue is a birth and
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death process whose equilibrium distribution is determined by
i1
w(i)=w(0)(1).— i=1,2,...,s
p/ !
v\i—*
(i) =(s)( =) j=s+1,542,...
Sp

provided v <su. The ratio p = v/sp is called the traffic intensity. Show
that if a typical customer arrives to find all the servers busy then, with the
queue discipline first come first served, his queueing time (the period of
time until his service commences) is exponentially distributed with mean
(sp—v)™ L.

. Suppose the number of customers in an M/M/1 queue is observed at
those instants in time at which a customer is about to arrive. Show that
the resulting discrete time process is a Markov chain with transition
probabilities

v w j—k+1
j, k)= ( ) O<k=<j+1
p(j, k) v ta i
Verify that the equilibrium distribution is given by the expression (1.10).

. The Poisson assumption in the telephone exchange model may be ade-
quate if the source population of subscribers is very large. If the source
population is of finite size M(>K), it may be more reasonable to let

q(,j+1)=A(M~]) i=0,1,...,K-1

Show that the equilibrium distribution will then be given by

qr(i)=w(0)(’;4)(§)' i=0,1,....K

. Consider the finite source telephone exchange model of the previous
exercise. Suppose the number of busy lines is observed at those instants
in time at which a call is about to be initiated. Write down the transition
probabilities of the resulting Markov chain. By considering the probabil-
ity flux w(j)q(j, j+ 1) that a call is initiated while j lines are busy show
that the equilibrium distribution of the Markov chain is given by

- i

'rr'(j)=1r'(0)(M, 1)(i) j=0,1,2,...,K
) w

Comparing this distribution with the one obtained in the preceding

exercise we see that the number of busy lines found by a subscriber when

he attempts to make a call has the same distribution as the number of

busy lines at a fixed instant in time in a system with one less subscriber.
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7. Suppose that a typical customer arrives at an M/M/1 queue at time ¢,.
Show that the mth customer to arrive after time t, finds the queue in
equilibrium, for m=1,2,.... In contrast, the first customer to arrive
after a fixed instant in time does not find the queue in equilibrium, since
the interarrival period preceding his arrival is the sum of two exponential
random variables. This customer is not typical: the way in which he has
been chosen provides us with information about the time of previous
arrivals. Show that the probability this customer finds j customers in the
queue is

(1-p)1+p) j=0
(1-p)p™* i=12,...

where p=7v/u. )

8. A stack is a form of queue in which the server devotes his entire
attention to the customer who last arrived at the queue. Thus when a
customer arrives his service is started immediately, but is interrupted if
another customer arrives before its completion. Suppose that customers
are of I types, that the stream of customers of type i arriving at the
queue forms a Poisson process of rate v, and that the service times of
these customers are exponentially distributed with parameter ;. Con-
struct a Markov process to represent the queue and show that the graph
associated with the process is a tree. Show that if

the equilibrium probability that there are n customers in the queue with
the rth customer being of type t(r) is

(1-p) [T 22
r=1 “‘t(r)
Deduce that in equilibrium the number of customers in the queue has the .
same distribution as for the simple queue with »/u = p.

9. Consider the points in time at which new individuals appear, either
through immigration or birth, in the simple birth, death, and immigration
process. Show that the mean time between such appearances is (u—
A)/vp by using Little’s result (1.12). Equivalently show that the mean
appearance rate is vu/( —A) by calculating the probability flux that a
new individual appears. Show that when a new individual appears the
number of individuals he finds already alive has a negative binomial
distribution with mean (v +A)/(u —A). Conditional on the new individual
having been born show that the number of individuals he finds already
alive, excluding his parent, has the same negative binomial distribution.
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1.4 THE EHRENFEST MODEL

One particular example of a birth and death process is worth special study;
it was introduced early in the century to help explain the apparent paradox
between reversibility and the phenomenon of increasing entropy. The model
can be described as follows. There are K particles distributed between two
containers (Fig. 1.1). Particles behave independently and change container
at rate A. Thus X(t), the number of particles in container 1 at time ¢, is a
Markov process with transition rates

q(,j—-1D=jr i=1,2,...,K
q(G,j+D)=(K-Hr» j=0,1,...,K-1

The equilibrium distribution can be deduced from equation (1.9) and is
K
w()=2%(")
]
The process in equilibrium is reversible and thus, assuming K is even,

P(X()=K, X(t+1)=3K)=P(X(t)=3iK, X(t+1)=K) (1.15)

The equilibrium distribution shows that states which allocate particles fairly
evenly between the two containers are much more likely than states which
allocate most of the particles to one container. Hence the conditional
probability P(X(t+7)=3K|X()=K) is much greater than P(X(t+7)=
K | X(1)=3K). If the process starts with all the particles in one container
then it is quite likely that after a period the particles will be shared evenly
between the two containers. On the other hand, if the process starts with the
particles shared evenly between the containers it is extremely unlikely that
after a period the particles will all be in one container. The lack of symmetry
exhibited by the conditional probabilities is quite compatible with reversibil-
ity. It is joint probabilities, such as those appearing in equation (1.15), which
reversibility requires to be symmetric.

The asymmetry of the conditional probabilities, and more generally the
phenomenon of increasing entropy, is a symptom of the approach to
equilibrium of a system not initially in equilibrium. Consider a Markov
process X(¢) with a finite state space. Let

u(t)=P(X(t)=}))

Fig. 1.1 The Ehrenfest model
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and suppose that the initial distribution, 4;(0), je¥, may not be the
equilibrium distribution. Considering the possible events in the time interval
(¢, t + 8t) leads to the equation

w(t+80= T w@alk, o+ u,(t)(l - T 4G,k 8t)+o(8t)

and hence the forward equations

L= T Gatk h-u®aG k) e (1L16

ke&

The solution to these equations must satisfy the initial conditions at time
t=0, and tends to the equilibrium distribution as ¢t — . Now let

_ A
HO=2, “")"(w(i))

where h(x) is a strictly concave function. Thus H(t) is a function of the
distribution over states at time t, y;(t), j € &. If the initial distribution is the
equilibrium distribution, then H(t) takes a constant value. Otherwise H(t)
increases monotonically to this constant value, as the next theorem shows.

Theorem 1.6. If the initial distribution is not the equilibrium distribution,
then the function H(t), t>0, is strictly increasing.

Proof. For fixed >0 let
p(j, k)=P(X(t+7)=k | X(®) =)

Thus
w(t+7)= Zj: w(Dp(, k)
and
w(k)= ; w(p, k)
Let
a(k, j) =w—(2%((j)’—k) (1.17)
Thus a(k, j)>0, ¥, a(k, j)=1. Also
w(t+7) _ 5 w (DpG, k)
wky T wk)
=3 ak, 4 (1.18)

i w(j)
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Now since h(x) is strictly concave

h(z a(k, j)x,.) > a(k, Hh(x) (1.19)

i i
unless x;, je€ &, are all equal. Using successively relations (1.18), (1.19), and
(1.17) we have that unless wit)=n(j), je &,

(uk(t+ 'r))

H(t+7)=) mw(k)h e

k

_ N0
-gren(Ean )

, uj(t)
> ‘Z Z w0k, J)h(;—(j—))

_ N L)
=3, L owG, on(22)

= H(t)

The theorem has a counterpart for Markov chains which is established in
the same way.

An important special case of the theorem arises with the concave function
h(x)=—x log x. Then

o ()
H(r) ; u;(t) log pare;
This quantity is called the statistical entropy, or the entropy of the distribu-
tion u;(t), j€ &, with respect to the distribution w(j), je &.

The monotonic increase of the function H(t) is a consequence of the
convergence of the distribution u(t), je &, to the equilibrium distribution
w(j), je¥. It will occur whether or not the Markov process X(t) has
transition rates which satisfy the detailed balance conditions (1.6), provided
only that the process is not in equilibrium. On the other hand, reversibility is
essentially a property which a process in equilibrium may or may not
possess, and in either case the function H(t) is constant just because the
process is in equilibrium. To take the example of the Ehrenfest model, there
is no conflict between reversibility and the phenomenon of increasing
entropy—reversibility is a property of the model in equilibrium and increas-
ing entropy is a property of the approach to equilibrium.

If the transition rates of the Markov process X(t) do satisfy the detailed
balance conditions then there is an interesting alternative interpretation of
the approach to equilibrium and of the function H(t). In this case the
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forward equations (1.16) can be rewritten

d _ 1 uk(t)_uj(t) R
au‘(t)—kgyr(i,k)(w(k) w(f)) je¥ (1.20)

where the (possibly infinite) quantity r(j, k) is given by
rG, k)Y =[w()qG, )T =[w(k)q(k, )T = r(k, j)

Consider now an electrical network with nodes & in which nodes j and k are
connected by a wire of resistance r(j, k) and node j is connected to earth by
a capacitor of capacitance m(j). If u;(t) is the charge present at node j at
time ¢t then (1), je &, will satisfy equations (1.20); these are just Kir-
chhoff’s equations and express the fact that the rate of increase of charge at
node j is equal to the rate at which charge is flowing into node j. Thus the
way in which probability spreads itself over the states of the Markov process
is analogous to the way in which charge spreads itself over the nodes of the
electrical network. Further, if we let h(x)=—4x2 then

_1 ¢ u(@?
“HO=3 2706

which is just the potential energy stored in the capacitors of the electrical
network. As H(t) increases, energy is dissipated as heat in the wires of the
electrical network.

In this work we shall mainly be concerned with processes in equilibrium,
exceptions being Section 4.5 and Chapter 5. In Chapter 5 the electrical
analogue discussed here will be considered further.

Exercises 1.4

1. Show that the jump chain X’(t) of the Ehrenfest model has the same
equilibrium distribution as X(t). Show that if j is close to K, then in
equilibrium

PX'(-1)=j-1,X'(0)=}, X’ (1)=j-1)
is much larger than any of

PX'(-1)=j+1,X"(0)=j, X’ (1) =j-1),

PX'(-1)=j-1,X(0)=j, X’ (1)=j+1),

PX’1D)=j+1,X70)=j, X' 1) =j+1).

Deduce that if at a fixed time we observe j particles in container 1
then it is highly probable that the previous state was, and the next state
will be, j~1.

2. If in the Ehrenfest model particles move from container 1 to container 2

C
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at rate . show that the equilibrium distribution is

n= (1+2) (5 (2

3. Let X(t) be a stationary stochastic process and let & be a subset of the
state space &. Show that

P(X(1), X(2),...,X(n)e 4 | X(0)e A)
=P(X(0), X(1),...,X(n—-1)esd | X(n)eA)
Establish Kac’s formula:

P(X(0)ed, X(1),X(2),...,X(n)¢ )

=P(X(0),X(1),...,.X(n—-1)éoA, X(n)eA)
Deduce that

P(X(1),X(2),...,X(n)¢ A | X(0)e o)
=P(X(0), X(1),..., X(n—-1)¢ A | X(n)e oA)

Observe that these relations hold whether the process is reversible or not.
4. Suppose the transition rates of a Markov process with a finite space

satisfy the detailed balance conditions. If the process starts in state k at

time t =0 show that

(k)
u(28)= ) —=[u; ()
“ iezy w()
Deduce from Theorem 1.6 that the function w (1), t=0, decreases
monotonically from unity to (k).

1.5 KOLMOGOROV’S CRITERIA

The detailed balance conditions (1.6) enable us to decide whether a station-
ary Markov process is reversible from its equilibrium distribution and its
transition rates. Since the equilibrium distribution is determined by the
transition rates it is natural to ask whether we can establish the reversibility
of a process directly from the transition rates alone. Kolmogorov’s criteria
allow us to do just that.

We begin by establishing the criteria for a Markov chain.

Theorem 1.7. A stationary Markov chain is reversible if and only if its
transition probabilities satisfy

p(jl’ j2)p(j2’ ]3) e p(jn—l’ jn)p(jm ]1)
= P15 J)PUis 1) * * - PU3s 1P U, 1) (1.21)

for any finite sequence of states ji,j,,...,J. €.
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Proof. If the process is reversible then the detailed balance conditions
hold; hence

w(j)r(s, j2) = 7w (j2)p iz j1)
7 (j2)p(jas ja)= w(j2)p(as i2)

W(ju—l)p(jn—l, ]n) = w(ln)p(’m jn—l)
’ﬂ'(ln)P(jm ]l) = ""'(11)[’(]1, ]n)

Multiplying these conditions together and cancelling the positive equilib-
rium probabilities gives equation (1.21).

Conversely, suppose the transition probabilities satisfy equation (1.21).
Let j, be an arbitrarily chosen reference state. Since the process is irreduci-
ble, for any state j€ & there exists a sequence Of states j, jo, ju-1,- - -» j1» Jo
leading from j to jo such that p(j, j)PUns ju-1) = * * PU1, Jo) > 0. Let

o _ pGo, 1P, d2) " * P, §)
N=B—— —r
Uy )P Uns Ja1) * * * PUs Jo)
where B is a positive constant. Observe that (j) does not depend upon the
particular sequence of states chosen to lead from j to jo, since if j,

jt faets+ - +» its Jo is another sequence of states leading from j to j, with
PG, 8Pty fiu-1) * * * PU4, Jo) >0, relation (1.21) ensures that

P(fo, jl)p(jb .’2) tt p(jm ]) = P(jo: j’l)p(]’la ]&) tet p(j;m j)
p(], jn)p(jm jn——l) e p(il; ]0) P(l, ]:n)p(j:m j:n—l) o p(]’b ]0)
Note that irreducibility and relation (1.21) imply that = (j) is positive. We
must now show that w(j), je &, satisfy the detailed balance conditions. If

p(j, k) =p(k, j)=0 these are satisfied automatically, so suppose p(k, j)>0.
Then we can write

w(k)=B

P(fo, jl)p(jl, ]2) tct p(jm ])P(I, k)
p(k, ])P(], jn)p(jm jn—l) e p(jl’ jo)

Hence
w(k)p(k, j)=m(DpG, k)

Thus w(j), je ¥, satisfy the detailed balance conditions and so they also
satisfy the equilibrium equations. Since the process is stationary they cannot
sum to infinity; hence B can be chosen so they sum to unity. Thus from
Theorem 1.2 the process is reversible and w(j), je ¥, is the equilibrium
distribution.

Kolmogorov’s criteria (1.21) provide a useful insight into the nature of a
reversible Markov chain. They show that given a starting point j; €% any
path in the state space which ultimately returns to j1 must have the same
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probability whether this path is traced in one direction or the other. Thus a
reversible Markov chain shows no net circulation in the state space.

The proof of Theorem 1.7 has a direct analogue for a Markov process
which establishes the next result.

Theorem 1.8. A stationary Markov process is reversible if and only if its
transition rates satisfy

q(jl; fz)Q(jz, ]3) tr q(jn-ls jn)q(jm ]1)
= q(jl’ jn)q(jm jn—l) e q(j:h j2)q(j2’ ]l) (122)

for any finite sequence of states j,, Ja. oo  j €S

In practice relation (1.22) does not usually have to be established for all
closed paths jy, j,, ..., j., j; since it is often possible to choose certain simple
paths so that the truth of (1.22) for a general path follows from its truth for
these simple paths. For instance if relation (1.22) can be established for
sequences of distinct states then it follows for all sequences. Another
example is contained in Exercise 1.5.2, and a further example follows.

A two-server queue. Suppose that the stream of customers arriving at a
queue forms a Poisson process of rate v and that there are two servers who
possibly differ in efficiency. Specifically, suppose that a customer’s service
time at server i is exponentially distributed with mean p;', for i=1,2,
where to ensure that equilibrium is possible w,+u,>v. If a customer
arrives to find both servers free he is equally likely to be allocated to either
server. The queue can be represented by a Markov process whose transition
rates and associated graph G are illustrated in Fig. 1.2. State n, for
n=0,2,3,..., corresponds to there being n customers in the queue, while
state 1A or 1B corresponds to there being a single customer in the queue,
allocated to server 1 or 2 respectively. To ensure that the process is
reversible in equilibrium we need only check the relation

q(0,1A)q(1A, 2)q(2, 1B)q(1B, 0) = q(0, 1B)q(1B, 2)q(2, 1A)q(1A4, 0)
(1.23)

since Kolmogorov’s criterion (1.22) for any other finite sequence of states

1A

T
o X#'// X x“i"“z "__x Pt v
b\\ /2 3 4
Yy %,

%I X

Fig. 1.2 Representation of a two-server queue



24  Markov Processes and Reversibility

will follow from this or will hold trivially. Relation (1.23) holds, since it
reduces to

FVXVX U Xy =30 X ¥ X s X

The equilibrium distribution is given by

m(1A)= w(O)ﬁ—

#(1B) = 7(0) ——

2p,
Vz v n—-2
(n) = m(0) ( ) n=2,3,. ..
2pqpy \q + py

Observe that if a customer arriving to find both servers free is allocated to
server 1 with probability p#3 then the process is not reversible since
relation (1.23) will fail to hold.

Exercises 1.5

1.

There is an alternative proof of Theorem 1.7 which is instructive. By
summing the equation

pGs iDpls i2) - - - pUa KPR, ) = p(, K)DCK, ) * * * PUas iR, )

over all ji,jp,...,j,€%, and then letting n-—», deduce that, for
aperiodic chains in the first instance, the equilibrium distribution w(j),
j € &, satisfies

w(k)p(k, j)=w({p(, k)

. Consider a stationary Markov process with a state j, such that q(j, jo)> 0

for all j€ &. Show that a necessary and sufficient condition for reversibil-
ity is that
4G, 141> 1292 Jo) = (o, J2)a o, J1)a s, fo)

for all j;, j,e &.

. Construct a stationary Markov process which is not reversible yet which

satisfies relation (1.22) when n =3.

. Consider a stationary Markov process whose associated graph G can be

imbedded in the plane without any of its edges crossing. Show that the
process is reversible if relation (1.22) holds for every minimal closed
path, where a closed path is called minimal if there is a point in the plane
such that the closed path is associated with the subgraph of G encircling
the point.

. Consider the two-server queue described in this section. Show that if

i1 = py = then the number in the queue is a birth and death process
and 7w(0)=Qu +v)/Qu —v).
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6. Generalize the queue described in this section to the case of s servers.
Assume that if a customer arrives to find more than one server free he is
equally likely to be allocated to any of them.

7. Observe that Lemma 1.5 could be regarded as a corollary of Theorem
1.8. Consider now the following amendment of the two-server queue
described in this section. Suppose that if a customer arrives to find both
servers free he is allocated to the server who has been free for the
shortest time. Show that the resulting queue can be represented by a
Markov process whose associated graph G is a tree. Generalize the
queue to the case of s servers. Show that the probability servers
i1, i3 ...,i, are busy and the rest free is the same as in the queue
considered in the preceding exercise.

1.6 TRUNCATING REVERSIBLE PROCESSES

Various amendments can be made to the transition rates of a reversible
. Markov process without destroying the property of reversibility. For exam-
ple if a reversible Markov process is altered by changing q(j;, j,) to cq(ji, j,)
and q(j,, j;) to ¢q(j, j,), where ¢ >0, then the resulting Markov process is
reversible and has the same equilibrium distribution. This follows from
Theorem 1.3, since the detailed balance conditions (1.6) will still be
satisfied. A slightly different alteration is the subject of the next lemma.

Lemma 1.9. If the transition rates of a reversible Markov process with state
space & and equilibrium distribution w(j), je &, are altered by changing
q(j, k) to cq(j, k) for je A, ke P — oA, where ¢ >0, then the resulting Markov
process is reversible in equilibrium and has equilibrium distribution

Bw(j) jed
Ben(j) je¥—-oA
where B is a normalizing constant.

Proof. The suggested equilibrium distribution satisfies the detailed bal-
ance conditions and so the result follows from Theorem 1.3. The normaliz-
ing constant is given by

B'=) w()+c Y w(j)

ied jieF—ot

If ¢ =0 the resulting process has a smaller state space. Say that a Markov
process is truncated to the set of < & if q(j, k) is changed to zero for jesd,
k € ¥ — o, and if the resulting process is irreducible within the state space A.
Like Lemma 1.9 the next result follows directly from the detailed balance
conditions.
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%
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Fig. 1.3 The state space for two queues
with a joint waiting room of size 4

Corollary 1.10. If a reversible Markov process with state space & and
equilibrium distribution w(j), je <, is truncated to the set < & then the
resulting Markov process is reversible in equilibrium and has equilibrium
distribution
m(j)- ,
Yiea m(k) jed

It is interesting to note that the equilibrium distribution of the truncated
process is just the conditional probability that the original process is in state
j given that it is somewhere in &. An example has already been given in
Exercise 1.3.2; another follows.

Two queues with a joint waiting room. Consider two independent M/M/1
queues. Let »; be the arrival rate and p! the mean service time at queue i,
for i=1,2. If n; is the number of customers in queue i then the Markov
process (n,, n,) is reversible (Exercise 1.2.8) with equilibrium distribution

rnmr=(=2)) (-)62)

Suppose now that the two queues are forced to share a joint waiting room of
size R, so that a customer who arrives to find R customers already waiting
for service, not including those being served, leaves without being served.
This corresponds to truncating the Markov process (n,, ny) to o, the set of
states in which not more than R customers are waiting (Fig. 1.3). The
equilibrium distribution for the truncated process will thus be

(ny, ny) = (0, 0)(&)"' (ii) (ny, np)e

2
Exercises 1.6

1. Suppose that the two queues considered in this section have three waiting
rooms associated with them: a waiting room of size R, for customers at
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queue 1, a waiting room of size R, for customers at queue 2, and an
overflow waiting room of size R, which can hold customers waiting for
either queue. Identify the state space and write down the form of the
equilibrium distribution.

2. Suppose that a Markov process with equilibrium distribution w(j), jeZ,
is truncated to the set o = &%. Show that the equilibrium distribution of
the truncated process is the conditional probability distribution

m(j)
Zked (k)
if and only if the distribution w(j), je &, satisfies

jed

() X aG k=Y a(kgl) jed (1.24)
kest kest

These equations are of a form intermediate between the detailed balance

conditions (1.6) and the full balance conditions (1.3), and we shall call

them the partial balance conditions for the set sf. Observe that the

distribution 7 (j), je &, satisfies the partial balance conditions (1.24) if

and only if

() Y aG k)= Y w(kqkj) jed
kesf—-oA ke —-s
These equations should be compared with equation (1.8).

3. Suppose that a Markov process with equilibrium distribution w{(j), je &,
is altered by changing the transition rate a(j, k) to cq(j, k) for j, ke o,
where ¢#0 or 1. Show that the resulting Markov process has the same
equilibrium distribution if and only if the partial balance conditions
(1.24) are satisfied.

4. Suppose that a Markov process with equilibrium distribution w(f), je &,
is altered by changing the transition rate a(j, k) to cq(j, k) for je o,
ke ¥—o, where c#0 or 1. Show that the resulting Markov process has
an equilibrium distribution of the form

Bu(j)  jed
Ben(j)  jeS-oA

if and only if the distribution m(j), je &, satisfies the partial balance
conditions (1.24).

1.7 REVERSED PROCESSES

If X(t) is a reversible Markov process then X (7—1) is also a Markov process
since it is statistically indistinguishable from X(t). In this section we shall
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investigate the form of the reversed process X(r—t) when X (t) is a Markov
process, but one which is not necessarily reversible.

The characterization of a Markov process as a process for which, condi-
tional on the present, the past and the future are independent shows that if
X(t) is a Markov process then so is X(r—1). An alternative proof is given in
the next lemma which shows the complications that can arise if X (t) is not
stationary.

Lemma 1.11. If X(t) is a time homogeneous Markov process which is not
stationary then the reversed process X(r—t) is a Markov process which is not
even time homogeneous.

Proof. Since X(t) is a Markov process we have the following factoriza-
tion for £, <, < <t,:

P(is, jas - - - »§n) = PGy TI PG 1i-0)
r=2

But
P(jr—l)P(jr Ijr—l) = P(jr)P(jr-—l | .ir) (125)
and so

P(jl; j29 L ’jn)=P(jn) l_l P(jr——l |]r)
r=2

This factorization shows that X(r —¢t) is Markov, but let us look more closely
at the definition of P(j,_,|j,) contained in equation (1.25). An alternative
version of equation (1.25) is
P(X(t)=j)P(X(t+h)=k | X(t)=])

=P(X(t+h)=k)P(X({t)=j| X(t+h)=k) (1.26)
Now P(X(t+h)=k | X(t)=j) does not depend upon ¢, but P(X(t)=j) and
P(X(t+ h) = k) will depend upon ¢ for some j, k e & if X(t) is not stationary.
Thus P(X(t) = j | X(t+ h) = k) will depend upon ¢, and so X(r —1) will not be
time homogeneous.

If X(t) is stationary the situation is much simpler.

Theorem 1.12, If X(t) is a stationary Markov process with transition rates
q(, k), j, ke, and equilibrium distribution w(j), j€ ¥, then the reversed
process X(t—1t) is a stationary Markov process with transition rates
w(k)a(k, j)
(j)

and the same equilibrium distribution.

q'(, k)= hkeS
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Proof. From equation (1.26) we obtain

POX(0)=| X(t+h)= k) =9 p(X(t+ h)=k | X(6) = ])

(k)
Now divide both sides by h and let h tend to zero. Thus
vy o el k)

The fact that the reversed process is stationary follows as an immediate
consequence of the definition of stationarity. That X(¢t) and X(r—¢) have
the same equilibrium distribution follows since they have the same station-
ary distribution, but it is worth checking that the equilibrium equations

() Y 4'G k)= Z w(k)q'(k, j)

kes

are satisfied.
The next example illustrates the theorem.

A two-server queue. Suppose the stream of customers arriving at a
two-server queue forms a Poisson process of rate v and that a customer’s
service time at server i is exponentially distributed with mean u;*, for
i=1,2, where pu,+ u,>». If a customer arrives to find both servers free he
is allocated to the server who has been free for the longest time. The queue
can be represented by a Markov process whose transition rates and as-
sociated graph G are illustrated in Fig. 1.4(a). State n, for n=2,3, ...,

/\ ""l’““! o B, v Vil
"\/ 3 7
v
1B
/ "2\
v
+ Y) )
OA OBX My xl‘l 2 Bk v
K2 \y v 2
B

Fig. 1.4 A two-server queue: (a) the original process and (b) the
reversed process
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corresponds to there being n customers in the queue. State 1A or 1B
corresponds to there being a single customer in the queue, allocated to
server 1 or 2 respectively. State 0A or 0B corresponds to both servers being
free, with server 1 or 2 respectively having been free for the shorter time.
The process is clearly not reversible since q(0A, 1B) is positive and
q(1B, 0A) is zero. The equilibrium distribution for the process is

'rr(n)='n'(2)(m:u2)"—2 n=23,...

»n(lA)=1r(2)i:—2

w(1B)= w(z)‘—:l

m(0A)=m(0B) = 7(2) ‘—”L—’j%

Theorem 1.12 shows that the transition rates of the reversed process are as
illustrated in Fig. 1.4(b). Observe that they take a particularly simple form.
This is not always the case, as Exercise 1.7.1 demonstrates.

Remember that the period for which X(t) remains in state j is exponen-
tially distributed with parameter

a)= Y, q(, k)
ke

Similarly, define
a()= X 4'G,k)
ke¥

It follows from Theorem 1.12 that q(j)=q'(j). This is not surprising: the
periods spent in state j have the same distribution whatever the direction of
time. Theorem 1.12 has the following converse.

Theorem 1.13. Let X(t) be a stationary Markov process with transition
rates q(j, k), j, k€ &P. If we can find a collection of numbers q'(j, k), , ke S,
such that

a@=q() je¥ (1.27)
and a collection of positive numbers w(j), j € &, summing to unity, such that
w(a(, k)=mk)q'(k,j) jke¥ (1.28)

then q'(j, k), j, k € #, are the transition rates of the reversed process X(t—1t)
and 7w (j), j€ ¥, is the equilibrium distribution of both processes.



1.7 Reversed Processes 31

Proof. From equations (1.28) and (1.27) it follows that

2 m(aG, k)=m(k) Y. q'(k, j)

je& je¥

=w(k)q'(k)
= w(k)q(k)

Thus 7(j), j € &, is the equilibrium distribution of X (t). That q'(j, k), j, ke &,
are the transition rates of the reversed process then follows from Theorem
1.12.

We shall find Theorem 1.13 useful in Chapter 3 where we discuss a rather
complicated Markov process for which it would be tedious to check the
equilibrium equations, but for which possible transition rates of the reversed
process are apparent. The similarity of equation (1.28) to the detailed
balance condition should be observed. A generalization of Kolmogorov’s
criteria can also be obtained (Exercise 1.7.4).

Occasionally we may come across a stationary Markov process for which
the reversed process, while not statistically indistinguishable from the origi-
nal process, would be if some of the states were interchanged. To make this
notion precise suppose that to each state j€ ¥ there corresponds a conjugate
state j* € & with (j*)* =], Then the stationary Markov process X(t) is called
dynamically reversible if X(t) is statistically indistinguishable from [X(r—
)]*. As an example consider the stationary Markov process with state space
S={-n,-n+1,...,n—1,n} and transition rates

G, j+D)=r  j=-n,-n+1,...,n-1
q(n,—n)=A

With j*=—j this process is dynamically reversible. Reversing this process
has an analogous effect to reversing the velocity of a particle moving in a
circular orbit—hence the term ‘dynamically reversible’. A further example is
the two-server queue illustrated in Fig. 1.4, which is dynamically reversible
with (0A)*=0B and all other states self-conjugate.

Theorem 1.14. A stationary Markov process with a()=q("), je%, is
dynamically reversible if and only if there exists a collection of positive
numbers w(j), j€ &, summing to unity that satisfy

w(j)=n(j") jes (1.29)
and
w(Dq(, k)= mw(k*)qk*,j*) j ke

When there exists such a collection w(j), j€ ¥, it is the equilibrium distribution
of the process.
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Proof. If the process is dynamically reversible then the relations follow
from the identification m(j) = P(X(t) =j). Conversely, if the process satisfies
the relations let q'(k, j)=q(k™,j*). Thus

m(f)
w(k™)

(({3) 4G, k)

q'(k, )=—77q(, k)

Further,

ai)=% 4G k)

kes

=3 q(*, k")

ke&
=q(j*)
=q(j)

We have thus established that the transition rates q'(j, k), j, k € &, satisfy
equations (1.27) and (1.28) and so, by Theorem 1.13, #(j), je ¥, is the
equilibrium distribution and the reversed process X(r—t) has transition
rates q'(j, k), j, ke . Since q'(j, k) =q(j*, k™) the process X(t) is dynami-
cally reversible.

Exercises 1.7

1.

If X(2) is the stationary Markov process whose transition rates were given
in Exercise 1.1.4, with a<1 and b>0, find the transition rates of the
reversed process X(7—1).

. Construct examples to show that condition (1.27) cannot be dropped

from Theorem 1.13, nor condition (1.29) from Theorem 1.14.

. Establish counterparts of Theorems 1.12, 1.13, and 1.14 for Markov

chains. Observe that no analogue of condition (1.27) is needed: the
implicit condition that transition probabilities sum to unity serves the
same purpose.

Let X(t) be a stationary Markov chain with transition probabilities
p(j, k), j, k€ &. Show that if there exist transition probabilities p'(j, k),
I, k € %, such that

p(jls j2)p(j2’ ]3) e p(jn—l’ jn)p(jm ]1)

=D'(15 §a)P Uns Ju—1) = * - D' (s 12)D" (25 J2)
for any finite sequence of states ji, j,,...,J. €%, then p'(j, k), j, ke &,
are the transition probabilities of the reversed Markov chain X(r—t).

Using the additional condition (1.27) obtain the parallel result for a
Markov process.
C
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. Show that the reversed process illustrated in Fig. 1.4(b) can be regarded
as representing a two-server queue identical to the one represented by
the original process but with states 0A or 0B indicating that the next
arrival will be allocated to server 1 or 2 respectively.

. Generalize the queue considered in this section to the case of s servers.
Show that the probability servers i,, i, .. ., i, are busy and the rest free
is the same as in the queues considered in Exercises 1.5.6 and 1.5.7.

. Suppose that a Markov process X () with transition rates q(j, k), jked,
and equilibrium distribution #(j), je€ &, is truncated to the set <. Let
Y(t) be the stationary truncated process. Let Z(f) be the stationary
process resulting from truncating the reversed process X(—t) to. the set
5. Show that Z(t) and Y(—t) have the same transition rates if and only if
the partial balance conditions (1.24) are satisfied. If Z(t) and Y(—t) have
the same transition rates we shall say that for the process X(t) the
operations of time reversal and truncation to the set & commute.

. Consider a Markov process with transition rates q(j, k), j, ke ¥, and
equilibrium distribution (j), j€ &. Suppose that the probability flux out
of the set of

L X w()aG k)

jed ke~
is finite. Show that the Markov chain formed by observing the process at
those instants in time just before it leaves the set o has the same
equilibrium distribution as the Markov chain formed by observing the
process at those instants in time-just after it enters the set of if and only if
the partial balance conditions (1.24) are satisfied.



CHAPTER 2
Migration Processes

In this chapter we shall meet some of the simpler systems in which
customers (or individuals) move about between a number of queues (or
colonies). First we shall consider further the simple queue introduced in
Section 1.3.

2.1 THE OUTPUT FROM A SIMPLE QUEUE

In Section 1.3 it was shown that if n(t) is the number of customers in an
M/M/1 queue at time t then in equilibrium n(t) is a reversible Markov
process. A typical realization of n(t) is illustrated in Fig. 2.1. Note that the
points in time at which n(t) jumps upwards form a Poisson process of rate v
since these points correspond to arrivals at the queue. Now n(t) is reversible
and hence the points in time at which n(—t) jumps upwards must also form a
Poisson process of rate v. But if n(—t) jumps upwards at time —¢, then n(t)
jumps downwards at time ,, and so the points in time at which n(t) jumps
downwards must form a Poisson process of rate v. But these points corres-
pond to departures from the queue. We have thus shown that in equilibrium
the points in time at which customers leave the queue (the departure
process) form a Poisson process of rate v. The line of argument can be used
to establish a little more. Let t;, be a fixed instant in time. Since n(t) is
reversible, the departure process up until time t, and the number in the
queue at time t, have the same joint distribution as the arrival process after
time —t, and the number in the queue at time —¢,. But the arrival process
after time —t, is independent of the number in the queue at time —t,, and
hence the departure process prior to time {, is independent of the number in
the queue at time #,. The next theorem summarizes these results.

Theorem 2.1. In equilibrium the departure process from an M/MJ1 queue
is a Poisson process, and the number in the queue at time t, is independent of
the departure process prior to time t,.

In some ways this result is surprising, since while the server is busy
departures occur at rate u and while the server is idle departures occur at
rate zero. It is difficult, however, to analyse the departure process using this
approach since the length of a busy period and the departure process during
this period are not independent. The dependence is such that if we observe

34
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n(t)

arrivals x x x x

departures X x X x
Fig. 2.1 A realization of the process n(t)

the entire departure process from an M/M/1 queue for —o < t <o, but know
nothing of the times of arrival or the numbers in the queue, then we can
determine the arrival rate » but can learn nothing of the service rate p.

The reasoning which led to Theorem 2.1 will apply to any queue with a
Poisson arrival process for which the number in the queue is a birth and
death process, for example the M/M/s queue (Exercise 1.3.3). More gener-
ally it will apply whenever a queue with a Poisson arrival process can be
represented by a reversible Markov process, provided an arrival causes the
process to change state and the reverse transition corresponds to a depar-
ture. A further example of such a queue is the two-server queue discussed in
Section 1.5. It occasionally requires some guile to find an appropriate
process, as the following example illustrates.

A telephone exchange. Consider the model of a telephone exchange with
K lines described in Section 1.3. The number of calls in progress at time ¢, n,
is a reversible Markov process, but one which does not always change state
when a call is initiated. Consider, however, the process (n, f) where the
flip-flop variable f takes the value zero or unity and changes value whenever
a call is lost. Clearly this process changes state whenever a call is initiated,
and it is easily checked that the process is reversible with equilibrium
distribution

w(n, f)=1im(n) n=0,1,...,K; f=0,1

where w(n) is the equilibrium distribution of the process n. Moreover,
transitions of the process associated with the completion of a call or the loss
of a call are just the reverse transitions of those associated with the initiation
of a call. Thus the points in time at which a call is lost or is completed form a
Poisson process. If the points in time at which a call is lost are considered
alone they form a more complicated point process, but one which is
reversible (Exercise 2.1.3).
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A two-server queue. Consider now the two-server queue introduced in
Section 1.7. The Markov process representing this queue (Fig. 1.4a) is not
reversible. Nevertheless, we do know the form of the reversed process (Fig.
1.4b). Indeed the reversed process can be regarded as representing an
identical two-server queue but with a different interpretation being given to
states 0A and 0B (Exercise 1.7.5). Observe that if a transition in the
reversed process corresponds to an arrival then the reverse transition in the
original process corresponds to a departure. Arrivals at the queue rep-
resented by the reversed process form a Poisson process and the arrival
process at this queue after time —t, is independent of the state of the
reversed process at time —t,. Hence departures from the queue represented
by the original process form a Poisson process and the state of the original
process at time {, is independent of the departure process prior to time f.
This example shows that it is not reversibility as such that leads to the
results, but rather the particular form of the reversed process.

Exercises 2.1

1. Consider a queue with s identical servers who each take an exponentially
distributed amount of time to serve a customer. Suppose that an arriving
customer leaves immediately without being served (he balks), with a
probability depending on the number in the queue, and that if he does
join the queue he gives up and defects after an exponentially distributed
amount of time unless his service has begun beforehand. Use both of the
following approaches to show that if the arrival process is Poisson then in
equilibrium the departure process is Poisson, provided all departing
customers are counted.

(i) Represent the queue by a Markov process (n, f) as in the telephone
exchange model.

(i) Approximate the queue by one at which customers who decide on
arrival that they will leave without service remain in the queue for an
exponentially distributed time with mean £! where ¢ is very large.
Let m be the number of such customers in the queue. Suppose that
while m is positive service and defection are suspended and further
arrivals decide to leave the queue without service, i.e. they increase
m. Let n be the number of other customers in the queue. Find the
equilibrium distribution of the Markov process (n, m).

2. Show that the departure process from the queue considered in the preceding
exercise remains Poisson if the defection rate of a customer depends upon
how many are in front of him in the queue. Show that the departure
processes from the many-server queues considered in Exercises 1.5.6,
1.5.7, and 1.7.6 are Poisson and remain so even if customers may balk or
defect.
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3. Before we can assert that a point process is reversible we need to charac-
terize a point process in a form to which our definition of reversibility
(Section 1.2) can apply. The simplest way to do this is with a flip-flop
variable f(t) defined as follows: f(t) takes the value zero or unity and
changes value at the points in time of the point process. Call the point
process reversible if f(t) is reversible. Show that in the model of a
telephone exchange the intervals between successive lost calls are inde-
pendent, and deduce that the points in time at which a call is lost form a
reversible point process. (A point process in which the intervals between
successive points are independent is called a renewal process.) Observe
that a stationary renewal process is always reversible,

4. In the model of a telephone exchange show that the points in time at
which a call is completed form a point process which when reversed in
time is statistically indistinguishable from that formed by the points in
time at which a call is successfully connected. Show that without the time
reversal the two processes will differ unless K =1.

2.2 A SERIES OF SIMPLE QUEUES

The most obvious application of Theorem 2.1 is to a series of J single-server
queues arranged so that when a customer leaves a queue he joins the next
one, until he has passed through all queues (Fig. 2.2). Suppose the arrival
stream at queue 1 is Poisson at rate v and that service times at queue j are
exponentially distributed with mean p;', where v<y, for j=1,2,...,/J.
Suppose further that service times are independent of each other, including
those of the same customer in different queues, and of the arrival stream at
queue 1. Let n;(t) be the number of customers in queue j at time t. Queue 1
viewed in isolation is simply an M/M/1 queue and hence the departure
process from it is Poisson, by Theorem 2.1. Thus the arrival process at
queue 2 is Poisson, and so it, too, viewed in isolation, is an M/M/1 queue.
Proceeding with this argument we see that queue j viewed in isolation is an
M/MJ1 queue, and hence in equilibrium

=122

What is not yet clear is the joint distribution of (n, n,,...,n;). Now
Theorem 2.1 also states that n,(t,) is independent of the departure process
from queue 1 prior to t,. But (n,(t,), n5(%), . . ., n;(t)) is determined by the

e B I e B - == "

Fig. 2.2 A series of queues
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departure process from queue 1 prior to ¢ and service times at queues
2,3,...,J. Hence n,(t,) is independent of (n,(t), ns(ty), . . ., ny(to)). Simi-
larly, n;(to) is independent of (n;44(to), ..., n;(to)). Thus n,(ty), nx(to), ...,
n,(t,) are mutually independent, and so in equilibrium

w(ny, Nay e, )= ﬁ (1__1’_)(1)":

i=1 i 7\

The above approach is clearly of much wider applicability. The queues in
the system can be of any of the forms discussed in the last section, and
indeed the final queue need not be restricted even in this way. It is not
essential that customers who leave queue j should join queue j+1; they
may leave the system or jump to a queue between j+1 and J. We shall not
pursue this approach, however, since it breaks down when a customer
leaving queue j is allowed to jump back to a queue between 1 and j. Such
behaviour will be discussed in the following sections.

Consider now the experience of an individual customer as he passes
through the series of J simple queues described at the beginning of this
section.

Theorem 2.2. If the discipline at each queue in a series of J simple queues
is first come first served, then in equilibrium the waiting times of a customer at
each of the J queues are independent.

Proof. The first step of the proof is to establish that in equilibrium the
waiting time of a customer at a first come first served M/MJ/1 queue is
independent of the departure process prior to his departure. Let n(t) be the
number of customers in the queue at time t. Then n(—t) can also be
regarded as the number in a first come first served M/M/1 queue at time ¢,
since its behaviour is statistically indistinguishable from that of n(t). Now if
a customer arrives at the original queue at time f, and leaves at time ¢, then
n(—t) will signal the arrival of a customer at time —t, and the departure of
the same customer at time —t,. But the waiting time of this customer is
independent of the arrivals signalled by n(—t) after time —t,. Hence in the
original queue the departure process prior to time is independent of the
waiting time of the customer who leaves at time ¢;.

Consider a customer leaving queue 1. Customers who leave queue 1 after
him cannot reach any subsequent queue before him: the queue discipline
and the assumption of a single server at the next J—2 queues ensure this.
Now his waiting time at queue 1 is independent of the arrival process at
queue 2 prior to his arrival, and hence is independent of his waiting time at
gueues 2, 3,...,J. Similarly, his waiting time at queue j is independent of
his waiting times at queues j+1, j+2,...,J, and hence the theorem is
proved.
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It is clear from the proof of Theorem 2.2 that the final queue in the

system is not required to be simple. For example waiting times would still be
independent if the Jth queue were a first come first served M|G/s queue, i.e.
an s-server queue at which service times have a general distribution. Few
other generalizations are possible; the independence of waiting times is a
much less common result than the independence of queue sizes.

Exercises 2.2

1.

2.

4,

If in a series of simple queues p, =, =+ = w; show that the Markov
process (ny, n,, ..., n;) is dynamically reversible.

Observe that in a series of simple queues the waiting time of a customer
at queue j is exponential with mean (y;—v)~'. Deduce that the time
taken for a customer to pass through the system is the sum of J independent
exponentially distributed random variables, and has mean i (i —v)?
and variance Y, (p; —v) 2

Consider two stacks, as described in Exercise 1.3.8, arranged so that
customers leaving the first stack join the second. Show that in equilib-
rium the waiting time of a customer at the first stack is independent of
the departure process subsequent to his departure. Deduce that the
waiting times of a customer at the two stacks are independent,

Let n(t) be the number of customers in an M/MJs queue at time t.
Suppose the queue discipline is first come first served, and let ¢, and ¢, be
points in time at which n(t) increases and decreases respectively. From
the realization n(t), —c<t<o, the probability P that the customer
arriving at time t, is the one leaving at time ¢, can be calculated. Note
that P will be zero or unity if s=1. If the reversed process n(—t) is
regarded as representing the number in a first come first served M/Ms
queue, show that P is the probability that in this queue the customer who
arrives at time —t, is the one who leaves at time —to. Deduce that in
equilibrium the waiting time of a customer at a first come first served
M/M/s queue is independent of the departure process prior to his
departure.

. Consider a series of J first come first served M/M/s queues in equilib-

rium. Let s; be the number of servers at queue j. Deduce from the
previous exercise that the waiting times of a customer at two successive
queues are independent. Consider the case J=3, 5;=83=1, s,=00,
B1 = = 3. Show that if a customer’s waiting time at queue 1 is large
then the probability that the customer entering queue 1 after him will
overtake him and be present in queue 3 when he arrives there is close to
one-eighth. Deduce that although a customer’s waiting times at queues 1
and 2 or at queues 2 and 3 are independent, his waiting times at queues 1
and 3 are dependent. Deduce from the previous exercise that if 5=1
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unless j=1 or J then the waiting times of a customer at each of the J
queues are independent.

6. Consider a series of two simple queues in equilibrium. Suppose that an
arriving customer finds queue 1 empty. Show that the probability queue
2 will be empty when he reaches it is

1_..”_+_‘L(_.£2_‘__"_)
M2 Mo\t pa—v

Deduce that although a customer’s waiting times at the two queues are
independent his queueing times are not.

2.3 CLOSED MIGRATION PROCESSES

The elegant but delicate method of analysis used in the preceding sections
breaks down if customers can rejoin queue 1 after leaving queue J. In this
and the next section we shall use an alternative approach which can deal
with such behaviour. The approach readily yields equilibrium distributions
for the number of customers in each queue, but is not as informative about
the time taken by a customer to pass through a sequence of queues.

We shall call the model to be examined a migration process. The main
applications are to queueing rather than to biological systems, but the idea
of individuals moving between colonies makes exposition easier and the
alternative term ‘queueing network’ seems more appropriate for the model
of the next chapter. In this section we shall consider a closed migration
process where individuals cannot enter or leave the system but can only
move between colonies. Thus the total number of individuals in the system,
N, is fixed.

Consider a set of J colonies and let n; denote the number of individuals in
colony j, for j=1,2,...,J. Define an operator T to act upon the vector
n=(ny, ny, ..., n;) as follows:

T,~k(n1,n2,...,n,,...,nk,...,n,)=(n1,n2,...,n,—l,...,nk+1,...,n,)
if j <k. Similarly,
T,k(n,,nz,...,nk,...,n,~,...,n,)=(n1,n2,...,nk+1,...,ni—1,...,n,)

if k<j. Thus T, moves an individual from colony j to k. We shall study n
under the assumption that it is a Markov process with transition rates given
by

q(n, Tikn) = Aikd’i(nj) (2.1

where ¢,(0)=0 and for simplicity A; = 0. The parameter Ay can be viewed
as measuring the intrinsic tendency for movement from colony j to colony
k; the function ¢;(n) then measures the extent to which this tendency is
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affected by the number of individuals in colony J- To ensure that n is
irreducible within the state space

J
.9’={nln,20,j=1,2,...,.l; Yy n,=N}
i=1

we shall require that ¢;(n)>0 if n>0 and that the parameters Ay allow an
individual to pass between any two colonies, either directly or indirectly via
a chain of other colonies. We shall call the process n a closed migration

process.
As an example of the behaviour transition rates (2.1) can allow consider

the special case
&;(n) =min(n, 5)

With this function colony j behaves as a queue with s servers at which
service times are exponentially distributed with mean A;l, where

A =Z7‘ik
k

An individual departing from this queue joins colony k with probability
AplA.

If ¢;(n)=n for all j then the migration process is called linear, and the
individuals can be considered to be moving independently of one another. If
N =1 then the single individual in the system performs a random walk on
the set of colonies, and if a,, as, ..., a, is the unique collection of positive
numbers summing to unity which satisfy

aig)\ik=§ak)‘ki i=L2,...,J 2.2)

then a; is the equilibrium probability that the individual is in colony j.

Theorem 2.3. The equilibrium distribution for a closed migration process is
J n
7@)=By[[st— ne? (2.3)

=111k d’j(")

where By is a normalizing constant, chosen so that the distribution sums to
unity.

Proof. The equilibrium equations (1.3) are

am) Y Y qn, Tym)= Y Y #(Tpn)q(Tyn, n)

i=1k=1 i=1 k=1
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which become

ar (m) z Z Ajkd’](nj)—' Z Z (T, kn)Ak1¢k(nk+1) 2.4

i=1k=1 j=1k=1

These will be satisfied if we can find a distribution w(m), ne &, which satisfies

(n) Z A,kqb,(ni)—kzl 7 (Tyem) Ay (1 + 1) (2.5)
If n, =0 then, with the convention that w(n) vanishes if n¢ ¥, equations (2.5)
are satisfied trivially. When n; >0 it is readily verified, using equation (2.2),
that the form proposed for (n) satisfies equations (2.5). Thus m(n), ne ¥,
 satisfies the equilibrium equations (2.4) and, since & is finite, it is clearly
possible to choose By so that the distribution sums to unity.

The process n will be reversible if ay, a,, ..., a; satisfy
oAy = oAy
since then the detailed balance conditions
7 (MAud () = T (T (. + 1) (2.6)

will hold. The relations (2.5) are of a form intermediate between the
detailed balance conditions (2.6) and the full balance conditions (2.4). We
shall call them partial balance equations. Their connection with the partial
balance conditions defined in Exercise 1.6.2 will be explored in Chapter 9;
in this chapter our only use of partial balance will be to simplify the
verification of equilibrium distributions.

The partial balance equations (2.5) state that in equilibrium the probabil-
ity flux out of a state due to an individual moving from colony j is equal to
the probability flux into that same state due to an individual moving to
colony j. This statement is not clear a priori, and should be contrasted with
the balance equation

Y w(n) Z q(n, Tym)= Y Z 7 (T;m)q(Tyn, n) 2.7)

ne¥ ne¥ k=1

which states that in equilibrium the probability flux that an individual leaves
colony j is equal to the probability flux that an individual enters colony j.
This statement is clear a priori (and holds even if the transition rates (2.1)
take a more general form) since in equilibrium the mean arrival rate at
colony j must equal the mean departure rate from colony j.

Note that if Ay, k=1,2,...,J, are decreased by a constant factor and
¢,(n), n=0,1,2,..., is increased by the same factor, then neither the
transition rates (2. l) nor the equilibrium distribution r(n) are altered in
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value. Note also that if the solution «,, a,, ..., a; of equations (2.2) is not
normalized to sum to unity the expression (2.3) remains valid; the normaliz-
ing constant B, will alter accordingly. These observations can often simplify
manipulations, but the task of determining By usually remains computation-

ally tedious.
An important class of closed migration processes have the following

property:
A =0 unless k=j+1
and
Ayja=1

for j=1,2,...,J-1
Ay =0 unless k=1

and
Thus an individual repeatedly moves around the cycle of colonies
1,2,...,7J,1,2,.... Such processes are called cyclic queues, and we shall

devote the rest of this section to some examples of them.

The provision of spare components. Suppose that there are s, machines
which each require a certain component in order to operate. A component
in use fails after a period which is exponentially distributed with mean ¢7".
It is then replaced from a store of available components unless this is empty,
in which case the machine lies idle until a component becomes available.
There are s, servicing facilities to deal with failed components, and the
length of time taken to service a component is exponentially distributed with
mean ¢5'. After being serviced a component is returned to the store of
available components. There are a total of N components altogether, and an
issue of interest is the extent to which increasing N reduces the idle time of
the machines.

If we regard the components as customers the system is equivalent to a
cyclic queue with

d’j(",‘) = d’,’ min(np Sj) i=1,2
where n; is the number of components in use and in store, and n,=N—n,.

For a cyclic queue a solution of equation (2.2) is a;=a,=-*-=a; =1 and
so Theorem 2.3 shows that the equilibrium distribution is

Bn
[Ty &1(N [1r2y &2(r)

w(ny, ny) =
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Fig. 2.3 The dependence of the average number of machines idle on the number
of spare components

Abbreviating w(n, N—n) to w(n) we have that, when N>s,+s,,

By
w(n)= - — Osn=<s,
dinldy "slsy T
By
= — - p—— slsnSN_32
disilst gy "sylsy N
By

= N-s,=n=N
$isilsi 6} "(N=n)! n=n

Of course n is a birth and death process, and this fact could have been used
to derive the above expressions. The normalizing constant By is determined
by the identity ¥ w(n)=1, and elementary calculations show that

_ 51187°18,185 2%
N s 15T F(psy, 81) + (" = pN)/(1 - p) + 8,185 ~*2(pls2)VF(sa/p, 52)

where

B

$252

p—d’lsx
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and

r xn
F(x,r)= ) —
(x r) ,.;0 n!
In equilibrium the average number of machines idle is
I=} (s,—n)m(n)
n=0

The dependence of I on N is illustrated in Fig. 2.3.

A mining operation. Consider a sequence of coal faces which are worked
on in turn by a number of specialized machines. Examples of machines
might be a cutting machine, a loading machine, and a roofing machine. Each
machine proceeds to the next face after completing its task. We could regard
the machines as queueing up at faces (Fig. 2.4a). However, the faces will

I\
) WV 4

.
la) BN  rFoces

0O O A O Machines

™
L

Fig. 2.4 A mining operation

(b)
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usually be a more homogeneous group than the machines, and for this
reason we shall regard the machines as fixed and the faces as queueing up
for service from the machines (Fig. 2.4b). Suppose now that there are J
machines and N faces and that the time taken by machine j to deal with a
face is exponentially distributed with mean ¢;*, for j=1,2,...,J. The
system will then be a cyclic queue. If n; is the number of faces queueing at
machine j, then in equilibrium

By
HRR

Note that the equilibrium probabilities do not depend upon the order in
which machines work on faces. The normalizing constant is

Tr(nb n2’ ey n])=

Bu=[ % srmazme o]

nes
and various quantities of interest depend upon it. For example the identity
¢;' Byt = [ Y biMerm d>?"’]
ne?:n>0
allows the probability that machiné j is working to be written as

Y m)=—oN

ne¥:n;>0 d’jBN-—l

An interesting phenomenon emerges as N — « if one of the machines is
slower than the rest. Suppose that ¢, <¢;, j=2,3,...,J. Then as N—
queue 1 will become a bottleneck with most of the customers in the system
waiting there, and the arrival process at queue 2 will become more and more
like a Poisson process. In the limit queues 2, 3,...,J will behave as the
series of queues considered in Section 2.2. This point is developed further in
Exercise 2.4.5.

Exercises 2.3

1. Show that if the process n(t) is a closed migration process with transition
rates (2.1) then the reversed process m(—t) is also a closed migration
process, with transition rates

q'(n, Tjkn) = )\y{k(bj(n")
where

’ ak)\ki
A ik —
@;

Show that in equilibrium the probability flux that an individual moves
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from colony j to k is

Ay By
By,

and deduce that in equilibrium the mean arrival rate at colony j,
expression (2.7), is

a\;By
Bn-,

. Figure 2.3 suggests that I tends to a limit as N — o, Prove this and show
that the limit is zero if p=1 and is (1-p)s, if p=1.

. Suppose that in the model of a mining operation bi=py=-=¢;=¢.
Show that in equilibrium the probability a given machine is operating is
N/(N+J~-1) and that the average time for a machine to complete one
cycle of faces is (N+J—1)/¢.

. Show that in the model of a mining operation the mean number of faces
queueing for machine j can be written as

E(n) = %(%%)

. Consider a closed migration process in which each colony is a single-
server queue. Suppose that a capacity constraint is put on each queue by
the prohibition of any transition which would raise n; above R, j=
1,2,...,J. Thus if R=Y]_, R, then we must have R=N. Suppose in
addition

R-R;,<N i=1,2,...,7J

so that no queue can become empty. Show that if m; = R;—n; then
(my, m,,...,m;) is a closed migration process, and hence deduce the
equilibrium distribution for (n,, n,, ..., n,).

. Show that the number of distinct states in a closed migration process is

(N +J— 1)
J-1
Thus to calculate By directly as a sum of terms is impractical for even

relatively small values of N and J. Fortunately there is an alternative.
Define the generating functions

= (a,z )"

()= n§0 | | 4’1(’)
B(z)= y 51

N=0 Bn
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Show that

B(Z)=‘H1 ®,(z)

Thus By can be calculated by multiplying together the functions ®;(z),
i=1,2,...,J, after they have each been truncated to the first N+1
terms. The number of steps required to do this is of order JN?, and so
this method is computationally much more efficient.

7. The generating function method readily yields marginal distributions. If
B. is the coefficient of zV

(akz)
=1 d’k(") ,l;lk ®; (Z)

show that the probability colony k contains n individuals is 8, By.

8. In special cases the amount of computation required by the generating
function method can be reduced further. If each colony is a single-server
queue show that the form of the functions ®,(z), j=1,2,...,J, allows
By to be calculated in order JN steps. Show also that the probability
queue k contains n or more customers is

By
¢xBn-n

2.4 OPEN MIGRATION PROCESSES

In this section we shall again consider a set of J colonies but we shall allow
individuals to enter and leave the system as well as to move between
colonies. We will require the operators T;. and T., defined as follows:

T,-.(nl,nz,...,n,,...,n_,)=(n1,n2,...,nj—1,...,n,)
T-k(nl,n2’~'-anka---:n.l):(nl’nZ’---1nk+1a~'-’n1)

Thus T;. removes an individual from colony j and T., introduces one at
colony k. We shall study n under the assumption that it is a Markov process
with transition rates given by

q(m, Tikn) = A;kd’.’("})
q(ﬂ T'.n) = }.L,d);(n,-) (2-8)
qm, T..m) =y,

where ¢;(0)=0. We shall require that ¢;(n)>0 if n>0 and that the
parameters Ay, m;, and v, allow an individual to reach any colony from
outside the system and to leave the system from any colony, either directly
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or indirectly via a chain of other colonies. Under these conditions the
process n is irreducible within the state space IN’, and we shall call it an open
migration process.

The major difference between a closed and an open migration process is
that in the latter individuals arrive at colonies from outside the system and
individuals leaving colonies may well leave the system entirely. The transi-
tion rates (2.8) imply that arrivals at colony k from outside the system form
a Poisson process of rate v, and that when an individual leaves colony j he
will leave the system with probability w;/A; where

A=y ) Ay
k

It is often convenient to scale the function ¢; so that A, =1,

A series of simple queues (Fig. 2.2) is an example of an open migration
process with ¢;(n)=¢;, n>0, where &; is the service rate at queue j, and
with the only other non-zero parameters being v, =v and A, =Ayy=---=
As-15 =y =1. If we alter this system by setting p; = A;; =1 we obtain the
open migration process illustrated in Fig. 2.5, in which when a customer
leaves queue J he returns to queue 1 with probability 1 and leaves the
system otherwise.

The conditions we have imposed on the parameters Ay, w;, and v, ensure
that the equations

ai(ui+§A,-k)=V,-+§ak)\k,- i=1,2,...,J (2.9)

have a unique solution for o}, a,, ..., a;, which is positive (Exercise 2.4.1).
We shall require as normalizing constants by, b,, ..., by, where

o

b—l = a;l
y ngo n:‘=1 d’i(r)

Let b; be zero if the sum is infinite.
Theorem 2.4. If by, by, ..., by are all positive then the open migration
process has an equilibrium distribution. In equilibrium n,,n,,...,n, are
independent and

ah

W;(n;)=b,~m i=12,...,7
ny n2 —— e —— s — nJ‘

Fig. 2.5 An open migration process
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Proof. The equilibrium equations are
w(n)[z am, T,.m)+Y, Y qm, Tm)+ ), qm, T.kn)]
i Pk K

= Zw(T n)q(T;.n, n)+z Zn(T,kn)q( i, n)+an-(T «q(T..,n,n)

which will be satisfied if we can find a distribution or(n) which satisfies the
partial balance equations

w(n)[q(n, T;.m)+ Z q(n, kn)]

—ﬂnmmrmm+2ﬂkm«mnm i=12,...,7J
and

ar(m) ; qm, T.ym) = Z w(T..n)q(T..n, n)

k

Substitution will verify that

()= BH':%m

satisfies the partial balance equations. For example the final partial balance
equation reduces to, after substitution,

Z Vi = zakuk
k k

the truth of which is established by summing equations (2.9). Since

(2.10)

by, b,, ..., b, are positive the choice B = b,b, - - * b; ensures that w(n) sums
to unity. Thus 7 (m) is the equilibrium distribution and the independence of
ny, N, . .., 1y follows from the fact that both m(n) and the state space N’

have a product form.

The independence established in Theorem 2.4 is of the random variables

Ry, Na, ..., ny; observed at a fixed point in time. Viewed as stochastic
processes, defined for teR, ny(t), ny(t), ..., n,(¢) are clearly not indepen-
dent.

It is interesting to note that the equilibrium distribution for colony j is just
what it would be if it were the only colony in the system, with individuals
arriving there in a Poisson stream of rate a;A; and leaving at rate A;¢;(n;).
This is especially intriguing since the combined arrival process at a colony,
from other colonies and from outside, is not in general Poisson (Exercise
2.4.2).
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If any of b,, b,, ..., b, are zero the process does not have an equilibrium
distribution: there is a colony which individuals enter more quickly than
they leave.

Observe that for the process to be reversible ay, 0y, ..., a; must satisfy

ai/\ik = ak)\ki
Qi = v

Even when the process is not reversible the reversed process is of a similar
form.

(2.11)

Theorem 2.5. If n(t) is a stationary open migration process then so is the
reversed process n(—t).

Proof. Using Theorem 1.12 the transition rates of the reversed process
n(—t) can be calculated from the rates (2.8) and the equilibrium distribution
(2.10). For example

’"’(Ttkn)‘I(Tikn, n)

q'(n, Tym)= ()
= A;kd)j(ni)
where
, _ Ay
"= ,~
Similarly,
q'(n, T,.n)= llv;‘f’i(ni)
and
q'm, T.em)=vj
where
v
pi= a—:
and
Vi = Oy

Thus the reversed process is also an open migration process.

Call the points in time at which an individual leaves the system from
colony j the exit process from colony j. By the departure process from
colony j we shall mean the points in time at which an individual leaves
colony j, either for another colony or to leave the system.
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Corollary 2.6, If n(t) is a stationary open migration process then the exit
process from colony j is a Poisson process of rate oy, Further, the exit
processes from colonies 1,2, ..., J are independent and n(t,) is independent of
the exit processes prior to time t,.

Proof. In the reversed process arrivals at colony j from outside the
system form a Poisson process of rate v;=a;u; But these arrivals corres-
pond precisely to departures from the system in the original process, and the
result follows,

Neither the departure process from a colony nor the stream of customers
moving from one colony to another is in general Poisson (Exercise 2.4.2).
This again is intriguing. In the migration process illustrated in Fig. 2.5 an
individual leaving colony J chooses at random and independently of every-
thing that has gone before whether to leave the system or to return to
colony 1. Yet while the departure process from colony J is not Poisson the
exit process is. Note that the individual’s decision on whether or not to
return to colony 1 may be independent of past departures, but it is not
independent of future departures.

Corollary 2.7. Suppose that colony j in a stationary open migration
process is a queue with s servers at which the queue discipline is first come first
served. Let ¢;(n)= ¢; min(n, s) and A; =1, so that service times are exponen-
tially distributed with mean ¢;'. Then the waiting time of a customer at queue
j has the same distribution as if queue j were an isolated M/M]s queue with a
Poisson arrival process of rate a;.

Proof. In a stationary open migration process the probability flux that a
customer departs from queue j leaving n; customers behind is m;(n; +
1)A;¢;(n; +1). Thus if at time ¢ a customer leaves queue j the probability
there will be n; customers left in queue j is

i+ D(m+1)
poy = 771(”,')
Yr=o m(r+1)¢;(r+1)

Consideration of the reversed process m(—t) shows that this is also the
probability that a typical customer arriving at queue j finds n; customers
already there. But m;(n;) is just what this probability would be if queue i
were in isolation with customers arriving in a Poisson stream of rate o;. The
queue discipline ensures that the distribution of the waiting time of a
customer is determined by the distribution of the number of customers he
finds on his arrival, and the result follows.

Some of the simplest examples of open migration processes are those for
which ¢;(n)=n for all j, ie. linear migration processes. For these,
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by, b,, ..., b, will always be positive and so an equilibrium distribution will
always exist. Indeed,
W

()= e
so0 that the number of individuals in colony j has a Poisson distribution. This
result provides an alternative interpretation for the constants oy, 0. .., 0,
«a; is the expected number of individuals in colony j when individuals move
independently with transition intensities Ajs 1y, and v,

Until now we have assumed that the number of colonies, J, is finite. In
fact the proof of Theorem 2.4 goes through unchanged when J is infinite
provided B =b,b, - - - is positive; note that when this is so the equilibrium
distribution (2.10) assigns probability one to the countable set of states
satisfying . n; <co. In the following example we discuss a linear migration

process with J infinite.

The family size process. Consider the following elaboration of the simple
birth, death, and immigration process described in Section 1.3. Suppose that
each immigrating individual has a distinguishing characteristic, such as a
genetic type or a surname, which is passed on to all his descendants but
which is not shared by any other individual. Thus at any point in time the
population can be divided into distinct families, each of which consists of all
those individuals alive with a given characteristic. Let n; be the number of
families of size j. Then the family size process (ny, ny,...) is a linear
migration process with transition rates

qa(n, T;;,n) = jAn ji=1,2,...
am, Tj;_m) = jun;,  j=2,3,...
qm, T.,n)= v
q(m, Ty .m) = pn,

Observe that a family is the basic unit which moves through the colonies of
the system and that the movements of different families are independent,
Equations (2.9) have the solution

o _L(A)"
VAW

and the normalizing constant B =exp(~Y ;) is positive provided A <p,
since then ¥, o is finite. In equilibrium the process is reversible, the number
of families of size j has a Poisson distribution with mean a;, and the total
number of families in the system has a Poisson distribution with mean

Z o = —%log(l——s)
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Optimal allocation of effort. In this example we shall discuss an optimiza-
tion application of Theorem 2.4. Consider an open migration process in
which each colony is a single-server queue: suppose A; =1, ¢;(n)=4d,,
n>0, for j=1,2,...,J. For equilibrium at each queue the service rate (or
effort) ¢; must be greater than the mean arrival rate (or demand) a;, and

then
o IR ",
wr=(1-3))
i\t (bi ¢j
Thus the mean number of customers present at queue j is a;/(d; — ;).

Suppose now that we have control over the values of ¢,, ¢,, ..., ¢,, subject
to the constraint

Lo-F

How should we choose ¢, @5, ..., d; to minimize the mean number of
customers present in the system? This problem can be readily solved using
Lagrangian multipliers. Let

L=3ton(Ze-F)

Setting dL/d¢; =0 we find that L is minimized by the choice

o
¢i=ai+\/%

Substituting this into the constraint shows that we should choose

__1_ _F- i
Vy Ty
Hence the optimal allocation is

Ve, .
¢j=a,+zk:2_!;(F—Zak) i=1,2,...,7

k

Thus the optimal allocation proceeds by first giving to each queue just
enough to satisfy demand and then by allocating the surplus, F—}, o, in
proportion to the square roots of the demands. This result is mildly
surprising; we might have thought that effort would be allocated in propor-
tion to demand. Relative to this allocation the optimal allocation concen-
trates less effort on those queues with high demands.

Little’s result (1.12) shows that the optimal allocation also minimizes the
mean period spent in the system by a customer.

A further discussion is contained in Section 4.1.
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Exercises 2.4

1. By considering a Markov process with J+ 1 states and transition rates
aG. k)=, jk=1,2,...,J

q(ia0)=l~1'i j=1,2,...,.’
‘I(O,k)=1’k k=1,2,...,J

show that equations (2.9) have a unique solution and that this solution
is positive. Show that a;A,/Y. v, is the expected number of times the jump
chain of this process visits state j between successive visits to state 0.
Deduce that in an open migration process a;A; is the mean arrival rate at
colony j, counting arrivals from outside the system and from other
colonies. Obtain the same result by calculating the probability flux that
an individual leaves colony j.

2. Consider the open migration process illustrated in Fig. 2.5 with J=2,
S(n)=n,j=1,2, u,=v,=0,A;,=Ay; = A, v;=», and 2= u. Show that
the arrival process at colony 1, counting arrivals from outside the system
and from colony 2, comprises a Poisson process of rate v together with
for each point of this process a string of further points, where the number
of further points in each string is geometrically distributed with mean Au
and the interval between points in the same string has mean 2A7'.
Suppose now that v is small and A large. Show that the arrival process at
colony 1 is not Poisson. Deduce that the departure process from colony 2
is not Poisson. Show that the points in time at which individuals move
from colony 2 to colony 1 do not form a Poisson process.

3. Consider an open migration process. If it is not possible for an individual
in colony k ever to reach colony j show that the stream of individuals
moving from colony j to colony k is Poisson.

4. Consider an open migration process in which an individual can never visit
a colony more than once, and the graph G, with an edge joining nodes j
and k if either A, or A is positive, is a tree. If each queue is a first
come first served single-server queue show that the waiting times of a
customer at the queues he visits are independent. Note that the condi-
tions ensure that customers cannot overtake one another. Using Exercise
2.2.4 show that the conclusion remains valid if some queues have more
than one server provided these queues are such that a customer can only
visit them immediately on entering or immediately prior to leaving the
system.

5. Consider a stationary closed migration process with colonies labelled
0,1,2,...,7J and with Ao=py Agy=w;, for j=1,2,...,J, and ¢o(n)=1,
n>0. Let ay, @, ..., a; be the solution to equations (2.9) and suppose
the constants by, b,, . .., b, calculated from this solution are all positive.
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Show that if the number of individuals in the system is increased towards
infinity the behaviour of colonies 1,2,...,J approaches that of an open
migration process.

6. The equilibrium distribution obtained for the family size process should
be consistent with that found for the population size in Section 1.3,
Establish this directly by showing that if

M=Zf”1

i=1

where n,, n,,... are independent random variables, n; Poisson with

mean
i)
Aj \u
then M has the negative binomial distribution (1.14).

7. In the family size process show that the total number of individuals M
and the total number of families

satisfy the relations
v A
E(N)=Xlog(1 +2 E(M))

and

cov(M, N)=
®—A
8. Consider the family size process. Show that if an individual is the only
member of his family then he is an immigrant who has not yet given birth
with probability w/(u +A).
9. In the family size process show that the points in time at which a family
becomes extinct form a Poisson process. Show that this remains true even
when the model is amended to allow the birth of twins.



CHAPTER 3
Queueing Networks

In the previous chapter some simple examples of queueing networks were
introduced. This chapter will continue the discussion of queueing networks,
but within a more general framework.

3.1 GENERAL CUSTOMER ROUTES

Consider the queueing network illustrated in Fig. 3.1. In this network there
are five simple queues, and customers can enter the system at queues 1 or 2,
arrivals at these queues forming two independent Poisson processes. Cus-
tomers follow the route through queues 1, 3, and 4 or the route through
queues 2, 3, and 5 before leaving the system. This might be a model of a
manufacturing job-shop with customers representing items of work which
require to be processed at a sequence of machines. This network cannot be
represented by a migration process. The difficulty is that a customer leaving
queue 3 does not choose at random between queues 4 and 5: he moves to
queue 4 if he has previously been to queue 1. In a migration process the past
route of a customer in a given queue is of no use in predicting his future
route, and in this sense the customers in a queue are homogeneous. In this
section we shall see that by dividing customers into different types we can
deal with networks such as the one illustrated in Fig. 3.1.

Suppose that there are I different customer types and that a customer’s
type determines his route through the J queues of the system. More
specifically, suppose that customers of type i (i=1,2,...,I) enter the
system in a Poisson stream at rate »(i) and pass through the sequence of
queues

r(i, 1), r(i,2), ..., r(i, S(i)

before leaving the system. Thus the queue which a customer of type i visits
atstage s (s=1,2,..., S(i)) of his route is queue r(i, s). Note that the route
of a customer may require him to visit the same queue more than once. For
simplicity we shall not allow two successive stages of a customer’s route to
be identical. We shall assume that the I Poisson arrival streams are indepen-
dent. It is not essential that I be finite, but we shall require that Y v(i) be
finite.

By using more than one customer type we can represent the behaviour of
a customer whose future route depends stochastically upon his past route:
we simply use a different type for each possible route. Consider, for
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Fig. 3.1 A job-shop model

example, the network illustrated in Fig. 3.2. Suppose this differs from the
network of Fig. 3.1 in that customers who have been through queue 2 are,
after leaving queue 3, equally likely to move to queue 4 or queue 5. We
require three customer types to model this network: customers of types 1, 2,
and 3 follow the routes 1 >3 —4, 2—> 3— 4, and 2— 3 — 5 respectively,
and the arrival rates v(2) and »(3) are equal.

The above method can deal with the random routes which arise in an
open migration process, but it will be more cumbersome than the approach
of the previous chapter if the migration process allows a customer to visit
the same queue more than once (Exercise 3.1.2). The advantage of the
above method is that it allows much more general routing schemes than can
arise in a migration process. To give two further examples, it can deal with a
system in which a customer visits each queue exactly once, but in a random
order, or a system in which each customer visits a certain queue exactly
twice. :

We have described how customers move between queues: we must now
describe how the queues themselves operate. This is rather more compli-
cated than it was for a migration process, since within each queue we must
now keep track of the different types of customer. We shall suppose that the
customers in each queue are ordered: thus queue j (j=1,2,...,J) will
contain customers in positions 1,2,..., n;, where n; is the total number of
customers in queue j. Assume queue j operates in the following manner:

(i) Each customer requires an amount of service which is a random
variable exponentially distributed with unit mean.

(ii) A total service effort is supplied at the rate ¢;(n;).

(iii) A proportion «;(l, n;) of this effort is directed to the customer in
position I (I=1,2, ..., n;); when this customer leaves the queue, his service

e e e

—_—— e ] - 4 = e —

Fig. 3.2 Random routes
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completed, customers in positions I+1,1+2,..., n; move to positions I, [ +
1,...,n;—1 respectively.

(iv) When a customer arrives at queue j he moves into position [
(I=1,2,...,n+1) with probability §;(l, n,+1); customers previously in
positions [, [ +1, ..., n; move to positions [ +1,1+2, ..., n;+1 respectively.

Of course

.i y(ny=1
=1

Y &(Ln)=1
=1

and we shall insist that ¢;(n)>0 if n>0. Call the amount of service a
customer requires at a queue his service requirement. We shall assume that
all service requirements, even of the same customer at different queues, are
independent of each other and of the times at which customers enter the
system. The way in which a customer’s service requirement is satisfied can
be visualized as follows. While the queue contains n; customers, with him in
position [, he receives service effort at the rate ¢;(n;)v,(l, n;) per unit time.
When the amount of service effort he has received reaches his service
requirement he leaves the queue. Since service requirements are exponen-
tially distributed with unit mean, if queue j contains n; customers then the
probability intensity that the customer in position [ leaves is ¢;(n;)y,(l, n;).

To illustrate the behaviour which can be allowed, if ¢;(n)= A, min(K, n)

l l=1,2,...,n; n=12,...,K
n
v n)= % 1=1,2,...,K;n=K+1,K+2,...
0 otherwise
1 =
8]’(1’”):{ " .
0 otherwise

then queue j behaves as a K-server queue in which customers have their
service commenced in the order of their arrival and each customer has an
exponentially distributed service time with mean A;'. In this example the
service time of a customer can be identified with his service requirement, but
this will not always be so. By varying ¢, we can allow the servers to work
faster when the queue is large. By varying §, we can alter the queue
discipline, making it, for example, last come first served or service in random
order. A more subtle use of ¢; and v, will let a waiting customer defect at a
rate depending upon his position in the queue. Note, however, that we
cannot model a priority discipline based upon the type of a customer; nor
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can we allow a customer’s service time to depend upon his service time at
previous queues.

Let (I) be the type of the customer in position ! in queue j and let s;(1)
be the stage along his route that this customer has reached. We shall call
¢; (D)= (1), 5;(D) the class of this customer; if he can visit queue j more than
once his class will contain more information than his type. The vector

¢ = (C,'(l)a C,-(Z), cees C,'(n,'))
describes the state of queue j and
C =(c15c2, e ’cJ)

is a Markov process representing the state of the system.

What are the transition rates of the process C? If the customer in position
l in queue j is at the last stage of his route then a possible event is that this
customer may leave the system. Let T;;.C be the state of the process after
this event. The probability intensity of the event is

qcC, 1, -, le-C) = ¢i(nj)'Yj(l, n;) 3.1

It may be that T;.C=T,.C for l+ g, for example if all the customers in
queue j are of the same type. The transition rate from the state C to the
state T,;.C is given by

a(C, T;.C)= ) q(C, g+, T;;,.C) (3.2)

where the summation runs over g such that T;,.C = T;;.C. If the customer in
position | in queue j is not at the last stage of his route then let k=
r(4(D), 5;(1) +1) be the next queue he will visit. In this case a possible event is
that this customer may leave queue j and move into position m in queue k.
Let T, C be the state of the process after this event. The probability
intensity of the event is

q(C’ l’ m, T|ilm(:) = ¢i(nl)7i(l) nj)sk(m9 e + 1) (3-3)

The transition rate from the state C to the state T}, C is given by
q(C, ’Tilmc) = Z Z q(C$ ga h: ’Tth) (34)
g h

where the summation runs over g and h such that T},,C = T},,C. Another
possible event is that a customer of type i may enter the system and move
into position m in queue k, where k =r(i, 1). Let T""C be the state of the
process after this event. The probability intensity of the event is

q(C, -, m, T"C)=wv(i)8,(m, n, +1) (3.5)
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The transition rate from the state C to the state T""C is given by

q(C, T"C)=Y q(C, -, h, T"C) (3.6)
h

where the summation runs over h such that T""C = T (.

Of course for a given state C it would not be appropriate to apply certain
of the T operators defined above. However, we can say that any non-zero
transition rate of the process C is of the form (3.2), (3.4), or (3.6).

Let

: {V(i) if r(i,s)=j
a;(i, s)= .
0 otherwise
and let
I S@)
a;= Z Z (i, s)
i=1s=1

If the system is in equilibrium then a; will be the average number of
customers arriving at queue j per unit time. Let

oo n

—1_ a;
b= L a0

n=0
We shall assume that none of b,,b,,..., b, is zero. This condition is
imposed to ensure that an equilibrium distribution for the system exists, and
if it is not satisfied at least one queue will be unable to cope with the number
of customers arriving at it. Define

b, [] 24D ()
;i (ci) bj |l=-[1 d;i (l)

Theorem 3.1. The equilibrium distribution for the open network of queues
described above is

(€)= [] m(c;)
i=1

Proof. First notice that w(C) sums to unity, by the definition of the
constants by, b,,...,b,.

What might the Markov process C(t) look like if we reversed the direction
of time? One possibility is that customers of type i might enter the system in
a Poisson stream at rate v(i) and pass through the sequence of queues

r(i, S(@), r(i, S()—1),...,r(, 1)

before leaving the system, and that the queues of the system might behave
as before but with the functions vy, and §, interchanged. The reversed
process C(—t) would then be of the same form as C(t), but with different
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parameters. With this in mind define, corresponding to the probability
intensities (3.1), (3.3), and (3.5),

q'(T;.C, -, ,C)=v(i)v,(l, n;) where i = (1)
q'(TynC, m, 1, C) = ¢y (my + 1)8, (m, n, + 1)v;(l, m;) where k =r(t(]), 5;(1)+1)
q'(T™C, m,+,C)= ¢ (n +1)8, (m, n; +1) where k=r(i, 1)

Similarly define the transition rates q'(C, D) by analogy with the definition
of the transition rates q(C, D). By substituting the proposed form for #(C)
we see that

w(C)q(C, |, m, T},,,C) = m(T};,.C)q'(T};,C, m, |, C)
Thus, by summation,
7 (€)q(C, Tj;.C) = (Tt C)q'(T;1C, C)
In this way we can establish that for all C and D,
m(C)q(C, D) =w(D)q'(D, C)
We also find that

q(C)=4'(C)= Zl &)+ X, v(i)
i= i=1

Hence Theorem 1.13 allows us to deduce that «(C) is the equilibrium
distribution for the process C(t), which completes the proof of the present
result.

We can also deduce from Theorem 1.13 that C(—¢) does indeed take the
form suggested; thus we obtain the following result.

Theorem 3.2. If C(t) is a stationary open network of queues of the form
described in this section then so is the reversed process C(—t).

Theorems 3.1 and 3.2 parallel Theorems 2.4 and 2.5, and as in Chapter 2
there are some immediate consequences. Theorem 3.2 has the following
corollary.

Corollary 3.3. In equilibrium customers of type i (i=1,2,...,1I) leave
the system in a Poisson stream at rate v(i). These I Poisson streams are
independent, and C(t,) is independent of departures from the system prior to
time t,.

If ¢;,¢,,...,¢; are possible states for the queues 1,2,...,J then C=
(€1, ¢€,,...,¢;) is a possible state for the system. This implies that the state
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space & has a product form and hence we can deduce from Theorem 3.1
that in equilibrium ¢,, ¢,,. .., ¢, are independent.

Corollary 3.4. In equilibrium the state of queue j is independent of the
state of the rest of the system and is ¢; with probability m;(¢c;). The probability
that queue j contains n customers is
a;
P(ny=n)=bj——"—r 3.7
' Tli-1 (D)

If a customer is in position | in queue j then the probability that he is a type i
customer at stage s of his route is o;(i, s)/a;.

Equation (3.7) is exactly the expression we obtain if queue j is a single
queue with customers arriving in a Poisson stream at rate a,. Note, however,
that in general arrivals at queue j do not form a Poisson process (cf.
Exercise 2.4.2).

Corollary 3.5, When a customer of type i reaches queue j at stage s of his
route the probability that he finds queue j in state ¢; is m;(c;). The probability
that he finds n customers in queue j is given by expression (3.7).

Proof. If s=1 the result follows immediately from the fact that the
arrival process of type i customers at the first queue on their route is
Poisson. For s>1 the proof proceeds along the same lines as the proof of
Corollary 2.7. In equilibrium the probability flux that a customer of type i
will depart from queue j after a given stage of his route and that the queue
will be left in state ¢; with n; customers is

"'f v(i) 18, n,+1) = p(i

Z "’(c‘)¢,(n,+1)¢’(""+ )8;(L, my + 1) = w(i)m;(c;)
Thus if a customer of type i has just left queue j after a given stage of his
route, the probability that he has left queue j in state ¢; is m;(¢;). Considera-
tion of the reversed process now establishes the desired result.

If queue j is a first come first served K-server queue then Corollary 3.5
shows that the waiting time of a customer at this queue has the same
distribution as if queue j were an isolated M/M/K queue with a Poisson
arrival process of rate a,. Note that the waiting time of a customer at queue j
will not in general be independent of his experience elsewhere in the
network (cf. Exercise 2.2.5).

Exercises 3.1

1. Show that for the network illustrated in Fig. 3.1 the process
(ny, ny, ..., ng) is not Markov.
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2.

Consider an open migration process with transition rates (2.8) where
A=1, j=1,2,...,J. Show that the process can be regarded as a
queueing network with customers whose route will be
r(i, 1), r(i, 2), ..., r(i, S(i)) arriving at rate

VeGoA G062 020603 7 ArGSO-Dr S G S6)-

Observe that an infinite number of types will be required if a customer
can visit the same queue more than once. Show that the quantities
a, as, ..., ay; calculated from the queueing network parameters are
equal to the quantities a;, a,, . . ., a; determined by equations (2.9) from
the migration process parameters.

Suppose that in the description given of a K-server queue the function §;

is altered to 1 l=n:n=1,2,....K
&(ln)=41 I=K+1; n=K+1,K+2,...
0 otherwise

Show that the resulting queue discipline is last come first served without
preemption. If

6,(l,n)=;_—1-E I=K+1,K+2,...,n;n=K+1,K+2,...

show that the queue discipline is service in random order (i.e. that the
queue is equivalent to one in which when a customer leaves the queue
the next customer to be served is chosen at random from amongst those
whose service has not yet commenced).

Suppose that ¢;(n)=¢,; forall n>0, j=1,2,...,J, so that each queue is
a single-server queue. Observe that n; is a geometric random variable
with mean a;/(¢, — ;). Show that the number of type i customers at stage
s of their route is also a geometric random variable, with mean v(i)/(¢; -
a;) where j = r(i, s). Observe that for differing values of i and s giving rise
to the same value of j these random variables are dependent. Deduce
from Little’s result (1.12) that the mean time it takes a type i customer to
pass through the system is

Si)
z [¢r(i.s) - ar(l.s)]—l
s=1

. Show that the restriction not allowing two successive stages of a cus-

tomer’s route to be identical can be removed.

. The requirement that ¢;(n)>0 if n >0 can be relaxed. Find the equilib-

rium distribution for a system in which

¢;(K)=0
¢;(n)>0 n>K
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This form of the function ¢; would correspond to the servers at queue
j only operating when more than K customers are present.

7. Show that the results of this section are unaltered if the functions v,(l, n;),
8;(1, n;) are replaced by functions YL ¢;), 6;(1, ¢;), provided the functions
v; and §; are invariant under permutations of ¢, = (¢(1), ¢ (2), ..., ()
and

Y vhe)=3 8(,¢)=1
{=1 =1

3.2 OPEN NETWORKS OF QUASI-REVERSIBLE QUEUES

The routing mechanism introduced in the previous section is general enough
for most purposes, but the queue described there is fairly limited in scope.
In this section we shall show that essentially the same results can be
obtained for any network of queues provided the queues have a certain
important characteristic.

To define this characteristic we shall begin by considering a single isolated
queue. We shall make quite weak assumptions about the nature of this
queue; it could perhaps be visualized as a black box with a stream of
customers entering the box and a further stream of customers leaving the
box. Assume that every customer entering the queue leaves it but, for
simplicity, not immediately. Assume also that at no point in time does more
than one customer enter or leave the queue. Further assume that each
customer has a class ¢ chosen from a countable set € and that customers do
not change class as they pass through the queue. Often the class of a
customer will convey information about him; later we shall use it to provide
an indication of his past and future route in a network and his service
requirements at the various queues of the network. Suppose there is
associated with the queue a Markov process x(t), which we shall call the
state of the queue at time t. Assume that the state of the queue contains
enough information for us to deduce how many customers of each class
there are in the queue. Often the state will contain further information
concerning, for example, the arrangement of customers within the queue or
the amount of service still required by each customer. From now on we shall
identify the queue with the Markov process x(t) giving its state. Observe that
from a realization of the process x(f), —o<t<o, we can construct the
arrival and departure processes of customers of class ¢, since such arrivals
and departures are signalled by changes in the number of customers of class
¢ in the queue.

Definition

A queue is quasi-reversible if its state x(t) is a stationary Markov process
with the property that the state of the queue at time to, X(), is independent
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of:
(i) the arrival times of class ¢ customers, ¢ € 6, subsequent to time t,;
(i) the departure times of class ¢ customers, c € €, prior to time t,.

Theorem 3.6. If a queue is quasi-reversible then:

(i) arrival times of class ¢ customers, for c € €, form independent Poisson
processes;

(ii) departure times of class ¢ customers, for c € 6, form independent Poisson
processes.

Proof. Let %(c, x) be the set of states in which the queue contains one
more customer of class ¢ than in state x, with the same numbers of
customers of other classes. Thus a transition from the state x to a state
x' € (¢, x) indicates the arrival of a customer of class c. Since the queue is
quasi-reversible the probability a customer of class ¢ arrives in the interval
(o, to+ 8t) is independent of the state x(t;). Hence the probability intensity
that a customer of class c arrives when the state is x depends only on ¢ and
not on x; call it

alc)= Y qxx) (3.8)

x'eF(c,x)

Since x(t) is a Markov process the realization x(t), —co<t=<t,, contains no
more information than does x(t,) about whether or not a class ¢ customer
will arrive in the interval (t,, t,+ &8t). But this realization gives the arrival
times of class ¢ customers, for ¢ € ¢, prior to time t,. Hence the probability
intensity that a customer of class ¢ will arrive is a(c), even given all prior
arrival times of class ¢ customers, for c € €. Hence arrival times of class ¢
customers, for ¢ € €, form independent Poisson processes.

Consider now the reversed process x(—t). This can also be regarded as a
queue: again transitions from the state x to a state x'€ ¥(c, x) indicate the
arrival of a customer of class ¢ and transitions to the state x from a state
x' € ¥(c, x) indicate the departure of a customer of class c. Observe that
arrivals at the reversed queue x(—t) subsequent to time —t, correspond to
departures from the queue x(t) prior to time ¢,. Similarly, departures from
the reversed queue x(—t) prior to time —t, correspond to arrivals at the queue
x(t) subsequent to time f,. Since the queue x(t) is quasi-reversible it
therefore follows that the reversed queue x(—t) is also quasi-reversible. Thus
at the reversed queue x(—t) arrival times of class ¢ customers, for ce §,
form independent Poisson processes. Thus at the queue x(¢) departure times
of class ¢ customers, for ¢ € 6, form independent Poisson processes.

Although conclusions (i) and (ii) of Theorem 3.6 are the most obvious
features of a quasi-reversible queue they cannot be taken as the definition of
quasi-reversibility. These conclusions include no mention of the Markov
process x(t) defining the state of the queue, and it is possible to construct
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systems satisfying conclusions (i) and (ii) which are not quasi-reversible
(Exercises 3.2.2 and 3.2.3).

It usually follows from the definition of the process x(t) that x(t;) is
independent of subsequent arrivals. Often the form of the reversed process
x(—t) allows us to deduce that x(t,) is also independent of prior departures
and hence that the queue is quasi-reversible. An example of a quasi-
reversible queue is an M/M/1 queue with one class of customer and with x(t)
the number in the queue at time t. Theorem 2.1 establishes that this queue is
quasi-reversible. More generally, if a queue has one class of customer, a
Poisson arrival process, and the state of the queue is a reversible Markov
process independent of future arrivals, then the queue will be quasi-
reversible. More complicated examples are provided by the networks of the
previous section. If the class of a customer is taken to be its type then
Corollary 3.3 shows that a network, considered in its entirety as a single
system, is a quasi-reversible queue. The special case in which the network
consists of just one queue shows that a single queue of the form discussed in
the previous section is quasi-reversible. Further examples of quasi-reversible
queues will be discussed in the next section.

If or(x) is the equilibrium distribution of the queue x(t) then the transition
rates of the reversed queue x(—t) are given by

w(x)q'(x, X) = 7(x')q(x, x) (3.9)

Departures of class ¢ customers from the queue x(t) form a Poisson process;
the rate of this process must be a(c) since this is the arrival rate and the
queue is in equilibrium. Hence the arrival rate of class ¢ customers at the
reversed queue x(—t) is also a(c), and so

alc)= Y, q'(xx) (3.10)

x'e¥(c,x)
This is an important result; relations (3.8) and (3.10) characterize the
property of quasi-reversibility for a stationary Markov process x(t). Using
equations (3.8), (3.9), and (3.10) we can obtain the partial balance equations

) L axx)= Y 7x)aK,x) (3.11)
x'e ¥ (c,x) x'e?(c,x)

Thus in equilibrium the probability flux out of a state due to a customer of
class ¢ arriving is equal to the probability flux into that same state due to a
customer of class ¢ departing. Since the probability flux that a customer of
class ¢ arrives at the queue is equal to the probability flux that a customer of
class ¢ departs from the queue, this shows that the distribution over states
found by an arriving customer of class ¢ is the same as that left behind by a
departing customer of class c. If the process x(t) is reversible then the partial
balance equations (3.11) are automatically satisfied; however equations (3.8)
and (3.10) will only be satisfied if the arrival rate of class ¢ customers is
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independent of the state of the queue. Thus quasi-reversibility differs from
reversibility in that a stronger condition (3.8) is imposed on the arrival rates
and a weaker condition (3.11) is imposed on the probability fluxes.

In the remainder of this section we shall extend our previous results on
open networks of queues to apply to the case where the queues are
quasi-reversible. If the network is of a certain fairly simple form this can be
done easily. Suppose that customers pass through the network in accordance
with routes determined by their types as described in the previous section.
Associate with each customer arriving at queue j its class (i, s), i.e. its type
and the stage of its route it has reached. Thus j=r(i,s). Note that a
customer’s class does not alter while it passes through a queue, but changes
as it moves from one queue to another. If the routes through the system
allow the queues to be ordered so that a customer leaving a queue always
moves to a queue later in the order (as in the case in Figs. 3.1 and 3.2) then
the assumption of quasi-reversibility together with the arguments of Section
2.2 show that in equilibrium the states of the queues are independent. In
this simple case the arrival streams at each queue are Poisson; we cannot
hope for this to be true in more general networks, and so for these a
different approach is required.

Let m;(x;) be the equilibrium distribution of a quasi-reversible queue at
which arrivals of customers of class (i, s) form a Poisson process of rate
,(i, s). Let g;(x;, x{) be the transition rates of this process and let S;(i, s, x;)
be the set of states in which the queue contains one more customer of class
(i, s) than in state x;, with the same number of customers of other classes.
Consider now a Markov process X(t) = (x,(t), x,(t), . . ., x,(¢)) whose transi-
tion rates are defined as follows. The probability intensity that a customer of
type i enters the system and causes queue k =r(i, 1) to change from state x,
to state x; € % (i, 1, x,.) is gy (Xx, x}). The probability intensity that a customer
of type i leaves the system and causes queue j=r(i, S(i)) to change from
state x/ € &(i, S(i), x;) to state x; is g;(x/, x;). The probability intensity that a
customer of class (i, s), s <S(i), leaves queue j=r(i,s) and enters queue
k = r(i, s + 1) as a customer of class (i, s + 1), causing queue j to change from
state x/ € (i, 5, x;) to state x; and queue k to change from state x, to state
xte S (i,s+1,%x,), is

i (Xie» XE) = q,(x, %) i (X¢, X5)
Zx’e.‘fk(i.s+1,xk) G (xka X') e ak(ia s+ 1)

using equation (3.8). Finally, the probability intensity that there is an
internal change in queue j from state x; to state x{, without the arrival or
departure of any customer, is g;(x;, x/). The transition rates are thus defined
in the obvious way: a queue behaves just as it would in isolation except that
arrivals of class (i, s) customers, for s> 1, are triggered by departures from
another queue rather than by an independent Poisson process. If queues

a;(x}, x;)
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1,2,...,J would in isolation be quasi-reversible and if the process X is in
equilibrium then we shall call X an open network of quasi-reversible queues.
Note that the jth queue of the network will not in general satisfy the
conditions required for it to be quasi-reversible, and indeed the jth compo-
nent of X, x;, will not in general be a Markov process. Nevertheless, we shall
occasionally abuse terminology and call queue j quasi-reversible—it would
be if it were in isolation.

What might the reversed process X(—t) look like? The obvious possibility
is that customers of type i might enter the system in a Poisson stream and
pass backwards along their route and that the jth component of the system,
x;(—t), might be derived from the reversed version of queue j considered in
isolation. Using Theorem 1.13 it becomes a routine matter to establish that
this is indeed the reversed process and that the equilibrium distribution is

w(Xy, Xa, . - o, Xy) = (X)) mAX0) < - wy(xg) (3.12)

The suggested probability intensity for the reversed process that a customer
of class (i, s + 1) leaves queue k =r(i, s +1) and enters queue j=r(i,s) as a
customer of class (i,s), causing queue k to change from state xje
% (i,s+1,x,) to state x, and queue j to change from state x; to state
x/ € F(i, s, x;), is

q;(x;, x7)

— ! (w! ot A Ll K4
qk(xkv xk) a,(i, s)

qi(x;, x])
x'€F, (i, 5. x;) q;j(x;, x)
from equation (3.10), which in turn followed from the quasi-reversibility of
queue j. To establish condition (1.28) of Theorem 1.13 for transitions arising
from the movement of customers from one queue to another we need
therefore to show that

Qﬁ(xi, xk) z

™) m (0 )4, O, %) (i X4 _ 1, 06) 7 ()i, X)X, X)) 5 15
ak(i,s+1) a,‘(ia s) .

But this follows from equation (3.9) and the observation that a, (i, s +1)=
a;(i, s) = v(i). Condition (1.28) is established even more easily for transitions
associated with the arrival at or departure from the system of a customer.
The only remaining transitions are those where a single queue changes its
state without the arrival or departure of a customer. Equation (3.9) estab-
lishes condition (1.28) directly for such transitions. We must finally check
condition (1.27) of Theorem 1.13:

J
q(x1, X%, . ., X)) = Z (qi(xj) - Z aj(i,s))

j=1 (i.5)

v(i)

J

= (q;’ OEDY “i("’s))

j=1 (4.s)
= ql(xla X2y 00y x.l)

5
i=1

1

+ > v(i)
i=1
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Thus the reversed process does take the conjectured form and the equilib-
rium distribution is given by expression (3.12).

As usual the form of the reversed process allows much to be deduced
about the original process. The probability flux that a customer of class (i, s)
departs from queue j=r(i, s) and that queue j is left in state x; is

Y mOg 0, x) = m(x)ay (i, 5)
x'eP(s, i, x;)
from equations (3.9) and (3.10). Thus if a customer of class (i, s) has just left
queue j the probability he has left queue j in state x; is w;(x;). The
corresponding statement also holds for the reversed process, and hence a
customer of class (i, s) arriving at queue j = r(i, s) finds the queue in state x;
with probability m;(x;).
We can summarize the results of this section as follows.

Theorem 3.7. An open network of quasi-reversible queues has the follow-

ing properties:

(i) The states of the individual queues are independent.

(ii) For an individual queue the equilibrium distribution and the distribution
over states found by an arriving customer of a given class are identical
and are both as they would be if the queue were in isolation with arrivals
of customers of each class forming independent Poisson processes.

(iii) Under time reversal the system becomes another open network of quasi-
reversible queues.

(iv) The system itself is quasi-reversible and so departures from the system of
customers of each type form independent Poisson processes, and the state
of the system at time t,, is independent of departures from the system prior
to time t,.

Exercises 3.2

1. In the description of a quasi-reversible queue it was assumed that every
customer who entered the queue left it, that customers did not change
class as they passed through the queue, and that the process x(t) recorded
how many customers of each class the queue contained. While these
assumptions help us to visualize the queue they are not necessary. Show
that the analysis of this section is unaltered if they are replaced by the
weaker assumptions that the arrivals and departures of class ¢ customers
are signalled by transitions of the process x(¢) and that the equilibrium
arrival and departure rates of class c customers are equal, for c € €.

2. The definition of quasi-reversibility characterizes the Markov process
representing the state of the queue, rather than any more fundamental
property of the queue itself. It is quite possible that there may be two
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representations of the same physical mechanism, one of which is quasi-
reversible and the other not. Consider, for example, an isolated queue of
the form described in the last section. Let the state of the queue be (¢, ¢)
where c is the class of the last customer to leave the queue. Show that
with this representation the queue is not quasi-reversible.

. Consider a stationary M/M/1 queue. Suppose that when a customer
arrives at the queue a clerk issues him with a ticket and that when the
customer leaves the queue he returns the ticket to the clerk (the purpose
of the tickets may be to maintain the queue discipline). Now regard the
clerk’s office as a system in its own right and regard the tickets entering
and leaving the office as customers. Show that although the arrival and
departure streams are Poisson processes the system is not quasi-
reversible however its state is defined, even under the weaker assump-
tions of Exercise 3.2.1.

. Consider a queue with a Poisson arrival process and a state which is a
reversible Markov process independent of future arrivals, e.g. the two-
server queue considered in Section 1.5. Suppose now that each customer
arriving at the queue is randomly allocated a class from the set %, so that
arrival times of class ¢ customers, for c€ %, form independent Poisson
processes. Suppose further that the passage of a customer through the
queue is unaffected by his class. Show that if the state of the queue is
now taken to be the original reversible Markov process together with the
classes of the customers in the queue arranged in order of their arrival,
then the queue is quasi-reversible. If the passage of a customer through
the queue is affected by his class then the queue may not be quasi-
reversible however its state is defined, as the next exercise shows.

. Arrivals of customers of types 1 and 2 at a single-server queue form
independent Poisson processes. The service requirements of customers
are independent and all have the same exponential distribution. The
server gives priority to customers of type 1, and will even interrupt the
service of a type 2 customer if a type 1 customer arrives. Deduce that
departures from the queue form a Poisson process and that departures of
type 1 customers form a Poisson process. Show that departures of type 2
customers do not form a Poisson process.

. It was assumed early in this section that a customer entering a queue
could not leave it immediately. Certain systems, e.g. the telephone
exchange model of Section 2.1 or the queue with balking considered in
Exercise 2.1.1, satisfy all the conditions for quasi-reversibility apart from
this assumption. The assumption can be relaxed provided we deal with
two technical difficulties. The first is that we must require that all arrivals
and departures of class ¢ customers are signalled by changes in the state
of the queue, for each ce 4. If € is finite it is easy to comply with this
requirement using flip-flop variables as described in Section 2.1. The
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second difficulty is that our definition of a network requires that a
customer who enters a queue and leaves it immediately must go on to the
next queue on his route. There will thus exist transitions of the Markov
process X involving more than two queues. Extend the analysis of this
section to deal with this difficulty. Observe that both difficulties can be
avoided by using the method of Exercise 2.1.1(ii), whereby a customer
pauses momentarily instead of leaving the queue immediately.

3.3 SYMMETRIC QUEUES

The quasi-reversible queues considered in Section 3.1 possess the property
that the service requirement of a customer is exponentially distributed. This
property simplifies analysis, since it removes the need for the state of the
queue to include information on the amount of service customers have
received. A more general distribution which can be handled with a little
more effort is the gamma distribution. This arises when a customer requires
a number of stages of service, each of which consists of an independent
exponentially distributed amount of service. In this section we shall consider
a range of queues which turn out to be quasi-reversible even when service
requirements are not exponentially distributed. Initially we shall allow only
service requirements which have a gamma distribution, but later we shall
remove this restriction.

Consider a queue within which customers are ordered, with the queue
containing customers in positions 1,2, ..., n, where n is the total number of
customers in the queue. We shall call such a queue symmetric if it operates
in the following manner:

(i) The service requirement of a customer is a random variable whose
distribution may depend upon the class of the customer.
(ii) A total service effort is supplied at the rate ¢(n).
(iii) A proportion y(l, n) of this effort is directed to the customer in position
| I=1,2,...,n); when this customer leaves the queue customers in

positions +1,1+2,...,n move to positions /,l+1,...,n—1 respec-
tively.

(iv) When a customer arrives at the queue he moves into position [
(I=1,2,...,n+1) with probability y(l, n +1); customers previously in
positions I, 1+1,...,n move to positions [+1,I+2,...,n+1 respec-
tively.

Of course

i v(l,n)=1
{=1

and we shall insist that ¢(n)>0 if n>0. The queue described differs from
those of Section 3.1 in that service requirements are not restricted and the
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symmetry condition y =48 is imposed. This condition rules out many queue
disciplines, e.g. first come first served, and indeed at a symmetric queue
there will be little queueing at all, in the usual sense of the word. Neverthe-
less, some useful systems can be set up as symmetric queues, and we shall
describe four examples.

A server-sharing queue. When
y(l,n)=% I=1,2,...,n;n=1,2,...

the service effort is shared equally between all customers in the queue. If
¢(n)=1 for n>0 then the queue behaves as a single-server queue, and a
customer’s remaining service requirement decreases at rate 1/n.

A stack. When
y{,n)=1 l=n;n=12,...

the total service effort is directed to the customer who last arrived. Such a
queue is best visualized as a stack, with customers arriving at and departing
from the top of the stack. If ¢(n)=1 for n >0 then we have a single-server
queue at which the queue discipline is last come first served with preemption
(cf. Exercise 1.3.8).

A queue with no waiting room. Consider the functions
d(n)=n n=12,...,K
d(n)=¢ n=K+1,K+2,...

‘y(l,n)=% l=12,...,n;n=12,...,K

y{l,n)=1 l=n;n=K+1,K+2,...

where £ is very large. We can regard this queue as one with K available
servers at which a customer who arrives to find all K servers occupied
leaves almost immediately. We have chosen not to make ¢ infinite since this
would entail a minor technical difficulty. It would allow an arrival and a
departure to occur at the same time and not cause a change of state. This
difficulty could be overcome using the flip-flop variable described in Section
2.1 in connection with the telephone exchange model, which would then be
a special case.

An infinite-server queue. If
d(n)=n n=1,2,...

'y(l,n)=% I=12,...,n;n=1,2,...
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then the queue behaves as a queue with an infinite number of servers, with
each customer having a server to himself; in this case customers do not
affect each other within the queue. An infinite-server queue can be regarded
as a special case of either a server-sharing queue or a queue with no waiting
room.

Consider now a symmetric queue at which customers of class ¢ arrive in a
Poisson stream at rate »(c). Suppose that a class ¢ customer requires w(c)
stages of service, each of which consists of an independent exponentially
distributed amount of service with mean d(c). The service requirement of a
class ¢ customer will then have a gamma distribution, with mean w(c)d(c)
and variance w(c)d(c)>.

Let c(l) be the class of the customer in position | and suppose that his
service has reached stage u(l), where 1=u(l)=w(c(l)). Let c()=
(c(D), u(l)). Then

c=(c(1),¢(2),...,¢(n)

(where n is the number in the queue) is a Markov process representing the
state of the queue. We will now show that its equilibrium distribution is

v(c(1))d(c(1)
w(c)= ”,[[1 +0) (3.14)

provided the normalizing constant given by

oo n

1= _a
b ngo [1i-1 ¢ () (3.15)

where

=Y v(c)d(c)w(c)

is positive. Note that a is the average amount of service requirement
arriving at the queue per unit time. It is fairly easy to show that expression
(3.14) is the equilibrium distribution, since there is an obvious candidate for
the reversed process, namely a queue at which arrivais are Poisson and
which operates in precisely the same manner but with u(l) recording the
number of stages yet to be completed before the customer in position [ leaves
the queue. We shall now verify this. The probability intensity that a
customer of class ¢ arrives at the original queue and moves into position [ is
v(c)y(l,n+1), where n was the number previously in the queue. Let this
event cause a transition from the state ¢ to the state ¢’. The probability
intensity that when the state of the reversed queue is ¢’ the customer in
position ! departs from the queue is ¢ (n+1)y(l, n +1)/d(c). From the form
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(3.14) we see that

n— v(c)d(c)
(') =m(c) P ED
and hence that
2 ©u(c)y(l, n+1)=TEB+ Dyl n+1)
d(c)

Hence we can show that condition (1.28) of Theorem 1.13 holds for
transitions arising from arrivals at the queue. Similarly, we can show that it
holds for transitions caused by departures from the queue. The only remain-
ing transitions are those which occur when an intermediate stage of a
customer’s service is completed. But if this causes a transition from ¢ to ¢
then the transition rates g(c,¢’) in the original process and q(c’,¢) in the
reversed process are equal, and so are m(c) and r(¢'). (Observe that it is the
possibility of such a transition which differentiates the queue from those
considered in Section 3.1 and which necessitates the symmetry condition
y=24.) Finally, it is clear that q(c)=gq’(c), and hence Theorem 1.13 shows
that expression (3.14) does indeed give the equilibrium distribution and that
the reversed process is of the suggested form. This in turn establishes that a
symmetric queue in equilibrium is quasi-reversible, at least when service
requirements have gamma distributions. In fact the queue is dynamically
reversible with the conjugacy relation defined by

utr=wlc)-ul)+1
(D =(c), u*()
¢ =(c*(1),¢*(2),...,c*(n)
If the sum in equation (3.15) is infinite then the queue cannot reach
equilibrium: work arrives at the queue more quickly than it can be dealt
with,

The equilibrium distribution (3.14) has some interesting implications. The
probability there are n customers in the queue is

ba"
ST (3.16)
[Ti-s ()
Further, given there are n customers in the queue, ¢(1), ¢(2), . .. ,¢(n) are
independent. The customer in position ! is of class ¢ with probability
v(c)dic)w(c) 3.17)

and u(l) is equally likely to be any value in the range 1<u(l)< w(c(D)). The
constant a and the probabilities (3.16) and (3.17) depend on the values d(c)
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and w(c) only through the product d(c)w(c), which is the mean of the
service requirement distribution.

Suppose now that when a customer of class ¢ arrives at the queue he is
allocated a finer classification, (c, z), with probability p(c, z), where 2z
belongs to a countable set Z, and ¥, p(c, z) =1 for each c. Then arrivals at
the queue of customers of class (c,z) form a Poisson process of rate
v(c)p(c, z). If the service requirement of a customer of class (c,z) has a
gamma distribution with mean w(c, z)d(c, z) and variance w(c, z)d(c, z)*,
then the preceding analysis still applies with regard to the finer classification.
The service requirement distribution of a customer of class ¢ is now a
gamma distribution with mean w(c, z)d(c, z) and variance w(c, z)d(c, z)*
with probability p(c, z) for z€ %, i.e. it is a mixture of gamma distributions.
The mean service requirement of a customer of class c is

a(c)= Z plc, 2)w(c, 2)d(c, 2)

and the average amount of service requirement arriving at the queue per
unit time is

a=Y Y v(c)p(c, 2)wlc, 2)d(c, 2)
=Y v(c)alc)

Let e(1) =(c(l), z(1), u(1)) where (c(l), z(1)) is the refined classification of the
customer in position , and again take ¢ =(¢(1), ¢(2), ... ., ¢(n)) to be the state
o