CHAPTER 9
Spatial Processes

In this chapter we shall be interested in processes n=(ny, n,, ..., n;) capa-
ble of modelling systems containing a finite number of sites or components.
The idea is that n, describes the attribute (or state) of site j and that changes
in this attribute are affected by the attributes of sites adjacent to site j. For
example sites might be fruit trees in an orchard, and n; might take the value
of unity or zero depending on the presence or absence of disease. In
previous chapters the equilibrium distributions obtained have often implied
the independence of ny, n,, ..., n;. Some of the models considered in this
chapter lead to a more complicated equilibrium distribution in which there is
a limited dependence between n,, n,, .. ., n,. Before discussing these models
we shall, in Section 9.1, make precise this concept of limited dependence.
Later, in Section 9.4, we shall use the setting provided by these models to
discuss the relationship between partial balance and insensitivity.

9.1 MARKOV FIELDS

Consider a system consisting of J sites, each of which has associated with it
an attribute. Let n; be the attribute of site j, where n; is chosen from a set
N;, assumed for simplicity to be finite. Thus the state of the system,

n=(n,, n,, ..., ny), takes values in the state space F =Ny XN, X -+ - XN}. A
function
¥ —>{0,1)
is called a random field if
Y mm)=1
ney

Thus a random field is just a probability distribution over the state space of
the system which assigns a positive probability to every state.

To specify the spatial relationship between the sites we shall use a graph
theoretic framework. Suppose the J sites of the system are the vertices of a
graph G, and call sites j and k neighbours if they are joined by an edge of
the graph. Write 8j for the set of neighbours of j. The same symbol will be
used for a graph and its vertex set, and for a site and the set consisting of
just that site; thus G —j will refer to the set of sites other than j. For any
H < G let |H| be the number of sites in H and let ny be the |H|-dimensional
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9.1 Markov Fields 185

vector giving the value associated with each site in H. Let T}* be the
operator which changes the attribute of site j to m. Thus

T;”n=(nl’ L{ZTII n,'—ly m, ni+11 R ] n])

Given a random field 7 we can calculate the conditional distribution of n;
given the attributes of some or all of the other sites of the system. For
example the conditional probability that site j has attribute n; given that the
other sites have attributes ng_; is

ar(n)
Zm €N ™ ( T;"n)

Conversely for a finite graph G the random field 7 can be calculated from
the conditional probabilities.

P(n,- | nG——i) = 9.1)

Lemma 9.1. The conditional probabilities P(n, InG_,-), je G, ne ¥, deter-
mine uniquely the random field w(n), ne &.

Proof. Let O denote one of the attributes from each of the sets
Ni,Np, ..., Ny, and let 0=(0, 0, . .., 0). Observe that the conditional prob-
abilities P(n; | ng_;) determine the ratios (n)/7(T;"n) since

P(n,- lno—i) = r(m)
P(m Ing_,) 7w (T}'n)

Now

am)_ am) a(Tin)  w(TIT3-- - T7_in)
w©0) w(Tin) m(T{Tom)  w(TIT3- - Tom)
and hence this ratio is also determined by the conditional probabilities. The

probability 7(0) can be deduced from the normalization condition ¥, 7(n) =
1, and hence the result is proved.

The conditional probabilities P(n; |mng_;) cannot be chosen arbitrarily.
They must satisfy certain consistency conditions: the ratio 7(n)/7(0) must
not depend on the particular sequence of states n, Tn, T3Ton, . . ., 0 used to
calculate it.

In general P(n;|ng_;) will depend upon the entire vector ng-;, but
occasionally it may depend on only some of the components of this vector.
Call a random field a Markov field if

P(n; |ng_;)=P(n; | ny) 9.2)

Thus with a Markov field the conditional probability distribution for the
attribute of site j given the attributes of all other sites in the system depends
only upon the attributes of sites which are neighbours of site j. Of course if
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every pair of sites in G is connected by an edge then equation (9.2) is always
satisfied. At the other extreme if G contains no edges then condition (9.2)
implies that n,, n,, ..., n, are independent.

An example of a Markov field is provided if n,, n,, ..., n, form successive
observations from a realization of a Markov chain. Then

w(ny, ny, ..., ny)=Pn)p(n,, ny)p(ng, ny) - - p(ny_y, ny)
and so

p(nl—l’ n})P("ja "1+1)
Y P("j—l, m)p(m, nj+1)
=P(n|ny) 2=<jsJ-1

P("i ' nG—j) =

provided we identify the neighbours of j as j—1 and j+ 1. This example
explains why we use the term Markov field. For a Markov chain
ni, n,, ..., ny; are usually regarded as observations taken at different points
in time; here we prefer to regard n,, n,,..., n, as observations taken at
different points in space. From a temporal viewpoint the relation

P(n I Ny, Ny, .., i) = P(ny , ni_1) (9.3)

is the most natural definition of a Markov chain; we shall see that this is
equivalent to the relation

P("j I LSTR TS (TEC T (TFT PRI n1)=P("j I ni_1, "j+1) 9.4)

The main result of this section is the next theorem which establishes the
form a random field must take if it is to be Markov. To state the theorem we
need a little more notation. Call a subset C< G a simplex if an edge joins
any two distinct sites in C, or if C consists of just one site. Let € denote the
set of simplices of the graph G.

Theorem 9.2. A random field m is a Markov field if and only if it can be
written in the form

mm)=B[] écac) ne& 9.5)

Ce%

Proof. Suppose that 7 is a Markov field. Write n; for the J-dimensional
vector whose jth component is n; if je H and is zero otherwise. Define the
functions ¢c(mc), Ce €, by the recursion

¢i(nj) = 77(“?)
_ 7 (n2) (9.6)
de(nc) | | b (ngy)
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Thus m(n) takes the form (9.5) with B =1 whenever n=n. for some Cc €;
to prove it always takes this form we shall work by induction on the number
of non-zero components in n. If n is not equal to n® for some Ce € then
there must be sites j and k which are not neighbours such that n; and n, are
non-zero. Since 7 is a Markov field the ratio m(n)/mw(Tn) does not depend
upon n;. Hence

w(m) _ w(T)n)
w(Tin)  w(T?Tin)

Write this in the alternative form

m(TPn) 7 (Tin)
= A S wrd 9.7
) = T T e
Now T{n, Tyn, and T} Tin all have more zero components than m. Hence
our inductive hypothesis allows us to assume w(T{n), w(Tan), and (T} Tyn)
are of the form (9.5) with B = 1. Substitution into equation (9.7) establishes
that m(m) is also of this form, and so the induction is complete.

The converse is simple to prove. If (n) is of the form (9.5) then

HCE‘C:jEC dc(nc)
Zme.N', HCe‘C:ieC &c(Ti'mc)
= P(n,~ 'nai)

To illustrate the theorem consider the case where the graph G is a finite
region of a rectangular lattice and the field is binary, i.e. the attributes of
sites are either zero or unity. A site has at most four neighbours, and the
only simplices are single sites and pairs of adjacent sites. Suppose that site 1
is internal to the lattice and that its four neighbours are sites 2, 3, 4, and 5.
If 7 is a Markov field the conditional distribution P(n, | ng_,) is determined
by the ratio

P(ni I nG_,') =

P(n, =1 I Ny, N3, Ny, Ns)

P(n,=0 | Ny, N3, Ny, Ns)
= 4’1(1)4’(1.2)(1’ n2)b.3(1, na)d (1, ne)d 5(1, ns)
$1(0)b(1.2(0, n2)d 1,30, n3)d (1 4(0, n)P(y 50, ns)

Let a, be the value of this ratio when n,=n,=n,=ns=0, and let

B = ¢ 11.(0, 0) g1 1)(1, 1)
9 g (L, 000, 1)

Then
P(n,=1]|ny, ns, ny, ns) _
P(n,=0] ny, ns, n,, ns)

s
a; n Btk
k=2
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Thus a binary Markov field on a rectangular lattice is determined by a
relatively small set of parameters: one for each site and one for each pair of
adjacent sites. Often symmetry considerations reduce this even further to
just two parameters « and B. For an internal site j the conditional prob-
abilities can then be written

a r

P(n; = llnc—,-)=——1+ﬁﬁ, (9.8)
where r is the number of sites neighbouring j whose attribute is unity. The
simplest way to deal with edge effects is to suppose that each lattice point
neighbouring the region G is a site which has a known attribute, either zero
or unity; expression (9.8) can then be taken to define the conditional
probabilities even when j is a site on the boundary of the region, with r
including any neighbouring site outside the region whose attribute is unity.
The field o can be written as

w(n) = Ba™B® 9.9)
where M =Y n; and R is the number of pairs of neighbouring sites in which

the attributes of both sites of the pair are unity.

Exercises 9.1

1. From the recursion (9.6) deduce Grimmett’s formula

dc(nc) = exp( Y (-1 Hlog w(n‘l.))
HaC
2. If w(n) is a Markov field the functions ¢ appearing in the form (9.5) can
be chosen in various ways. For the Markov chain example the obvious
choice is

¢ (ny)=P(n,)
&;(n)=1 2=j=J
d’{i.i+l)(ni, n,'+|)=P(n,'» n,'+1) I=j=J-1

Check that for 2<j=<J—1 Grimmett’s formula gives
¢j("i) = P(O)p(oy 0)1—3"(0’ ni)p(nia 0)

p(n,-, ni+l)
P n.’ n = -
Pussn (% ") = 5G)5(0, 07 2p(n, 0)p(0, )
3. Check that for a sequence of random variables ny, n,, ..., n; relations

(9.3) and (9.4) are equivalent; assume that n, and n,,., take known
values.
4. Consider a binary Markov field on a graph G which has no simplices
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containing more than two sites. Show that if
P(n;=1 | ng_;)=p,

for all j and ng_;, where r is the number of sites neighbouring j whose
attribute is unity, then

__aB’
P = 1+aB’

for some a and B.

5. Show that for a Markov field the probability distribution P(ny [ng_g)
depends on mg_y only through the attributes of sites neighbouring H.
Associate a graph with the subset H by deleting from the graph G all the
sites in G —H and all the edges emanating from these sites. Show that
the probability distribution P(ny | ng_y) is a Markov field over the graph
H. Deduce that if H is a tree in which no site has more than two
neighbours then, conditional on ng_yy, ny is a Markov chain. If G is the
union of three disjoint sets H,, H,, H, and if no edge of G joins a site in
H, to a site in H, show that, conditional on ny,,, the random vectors ny;,
and ng, are independent.

9.2 REVERSIBLE SPATIAL PROCESSES

Under what conditions will the equilibrium distribution (n) of a stochastic
process n(t) be a Markov field? If changes of attribute at site j are influenced
only by the attributes of sites neighbouring j then we might hope that 7 (n)
would be a Markov field. However, the transition rates of the invasion
processes considered in Section 5.3 have this local character and yet their
equilibrium distributions are not Markov fields (Exercise 9.2.1). That a fieid
mw(n) is Markov is an attractive assumption to make but it is not justified
solely by the local character of the transition rates of n(#). Further restric-
tions are necessary.

Call n(t) a spatial process if:

(i) Only one component of n can change at a time.

(i) The transition rate q(n, T;"n) does not depend on ng_;_,;

(iii) For any states m, Tj"n it is possible to reach T from n by a
sequence of transitions which do not alter ng_;.

Condition (iii) can be viewed as a strengthened version of the usual
irreducibility assumption. The invasion processes of Section 5.3 are spatial
processes provided v, and y; are positive for all j.

Theorem 9.3. The equilibrium distribution of a reversible spatial process is
a Markov field.
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Proof. The equilibrium distribution #(n) satisfies the detailed balance

condition
7 (m)q(n, T{"n) = 7(T;"n)q(T}"'n, n)

Hence if q(n, T;"n)> 0 the ratio 7 (n)/7(Tj"n) does not depend upon ng_;_,.
Condition (iii) ensures that this is true even if it takes more than one
transition to reach the state T{'n from n. But these ratios, for meW,,
determine the conditional distribution P(n, | mng_;), which is thus equal to
P(n, | m,;). Hence m(n) is a Markov field.

To illustrate the theorem we shall discuss some examples of spatial
processes. Suppose that ;=N ={1,2,..., N} and that

qa(m, Ti'n) = A (n;, m)é(n,) Y(m)" (9.10)

where r and r’ are the numbers of sites neighbouring j which have attributes
n; and m respectively. We can regard A(n;, m) as the innate tendency of a
site’s attribute to change from n; to m, and ¢(n;) and Y(m) as measures of
the extent to which this tendency is increased or decreased by the existence
of neighbouring sites with attributes n; or m. For example sites may be
individuals and attributes may be views on a subject, to give a setting which
may help visualize the process. Kolmogorov’s criteria readily show that the
process is reversible if and only if the rates A(n, m) define a reversible
process on the state space N, which happens if and only if there exists a
non-zero solution a(n), n=1,2,..., N, to the equations

a(n)A(n, m)=a(m)A(m,n) 9.11)

When this is so the equilibrium distribution for the process n(f) is

B N M(n)[m ]R(n)
m@) =B I] [ 505
where M(n) is the number of sites with attribute n and R(n) is the number
of n-bonds, i.e. edges of the graph G which have sites with attribute n at
both ends. When N =2 equations (9.11) must have a solution and the
equilibrium distribution can be rewritten in the form (9.9).

A drawback of the above model is that the dependence of the transition
rates on r, r' is restricted to the multiplicative form given in expression
(9.10). The adjective multiplicative is used since if r is increased by one the
rate is multiplied by a factor. This form of dependence is typical of processes
which have Markov fields as their equilibrium distributions; for reversible
processes it is generally a consequence of the detailed balance condition
taken together with the multiplicative form enforced by Theorem 9.2.

It is interesting to note that if the functions ¢, ¢ take values close to unity
then the rates (9.10) take an approximately additive form. For example
suppose N=2, A(1,0)=A, A(0,1)=p, ¢(0)=¢(1)=y¢(0)=1, y(1)=1+38.

9.12)
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Consider this process as a model for the ebb and flow of a recurrent
infection over an array of plants, with zero indicating a healthy plant and
unity indicating the presence of disease. The rate at which an infected plant
recovers is A, and the rate at which a healthy plant becomes infected is

n(1+8)

where r' is the number of neighbouring plants which are infected. If § is
small this infection rate is approximately equal to

w+ pdr' (9.13)

This is the form we would expect if plants are infected by germs which come
from the general environment with intensity u and from an adjacent
infected plant with intensity ud. The approximation will thus be reasonable
if germs from the general environment are a significant source of infection,
The equilibrium distribution is

M(1)
1r(n)=B(§£) (1+8§)RM 9.14)
Our next example of a spatial process has a rather different setting.
Suppose the sites are power sources that are connected to power users in
such a way that each user has two possible sources of power. Represent the
users served by sources j and k as an edge joining sources j and k. Let
d(j, k) be the amount of power required by these users; define d(j, k) to be
zero if there is no user served by sources j and k. Let n; be unity or zero
according to whether source j is functioning or broken down. If sources j
and k are both broken down then demand d(j, k) is unsatisfied. If one of the
sources j or k is functioning it supplies the entire demand d(j, k), while if
both sources are functioning they each spupply an amount id(j, k). Thus if
source j is functioning it carries a load 3 Y, (1+n,)d(j, k). If n,=1 let

atn, Tn) = &, exp(ty T (1+n)dG;, b))

This breakdown rate corresponds to the fairly severe assumption that each
additional unit of load a source has to carry increases its failure rate by a
factor €. If n; =0 let
q(n, Tin)= g,

so that source j remains broken down for a period exponentially distributed
with mean p;'. It is readily checked that the detailed balance conditions
hold with

J n,

w=B{[1(4)"}ew(-3v T arm+niai, i)
i=1 i I=j<k=J

With respect to the graph G formed by linking sources j and k if d(j, k)>0
the process n is a reversible spatial process and the equilibrium distribution
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is a Markov field. Exercise 9.2.4 discusses a natural extension of this model
in which the resulting Markov field involves factors arising from simplices
containing more than two sites.

Exercises 9.2

1. For the invasion process of Section 5.3 let n,=0 or 1 depending on
whether site j is white or black. Show that the equilibrium distribution
7r(n) of an invasion process is not in general a Markov field, even when v,
and p,; are positive for all j.

2. Our definition of a random field required that it assign positive probabil-
ity to every state in &. If we remove this restriction we might hope that a
field satisfying (9.2) whenever the conditioning events have positive
probabilities could be expressed in the form (9.5) or as a limiting case of
this form with some of the functions ¢ approaching zero or infinity. This
is not so; there exist counterexamples. Similarly, the strong irreducibility
condition (iii) is more than a restriction introduced to simplify the proof
of Theorem 9.3. Let the graph G consist of three sites with edges joining
sites 1 and 2 and sites 2 and 3, and let /' ={0, 1}. Consider the process
(ny, n,, n3) with transition rates as given in Fig. 9.1. Observe that it is a
reversible process satisfying conditions (i) and (ii) but not (iii). Show that
its equilibrium distribution is not a Markov field.

01,0,1)
A
8

ALELD A

A A’/ \7‘ A
11,0,0) —-g(I.I.O)}\ p o111 %2 10,0,1)
Y

Ao,1,07A
tb
A

(0,0,0)

Fig. 9.1 A reversible process whose equilibrium
distribution is not a Markov field

3. Consider the plant infection model described in the preceding section.
Observe that even with the additive form (9.13) the model is not an
invasion model, since healthy plants do not encourage the recovery of
adjacent infected plants. Consider now the following elaboration of the
model. Suppose that while plant j is infected germs destined to infect
plant k are emitted from it at rate ud,, where §; = §,;. The value of §;
might depend on the distance between plants j and k, and could possibly
be zero. Show that provided the 8’s are small the model approximates a
process whose equilibrium distribution is

w(n)=3(ﬁ)zn' MM a+s)™

A Isj<k=J
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4. In the power supply model it was assumed that each user had exactly two
sources of power. This assumption can be relaxed. Suppose that for each
simplex C e % of the graph G a demand d(C) arises from users who can
take power from any of the sources in C, and that this demand is shared
equally over those sources in C which are functioning. Write down the
breakdown rate for source j and deduce that in equilibrium

1r(n)=B{ﬁ ()%')n‘}exp[—'y Y (1+%+§+ st 1 )d(C)]

j=1 Ce% Ykec ny

9.3 A GENERAL SPATIAL PROCESS

It is easy to construct reversible spatial processes with a given Markov field
as their equilibrium distribution, using the detailed balance condition. In this
section we shall describe a fairly general process which gives some insight
into the way a Markov field can arise as the equilibrium distribution of a
non-reversible process. The closed migration process of Chapter 2 is a
special case of the process to be described, and in the next section we shall
see how this relationship clarifies the phenomenon of partial balance ob-
served in Chapter 2.

Suppose there are defined positive functions ®(n), ®;_;,(ng_;), je G.
Consider the process n(t) with transition rates

O(m)
q)G——j (“G—;)

We can regard A;(n, m) as the innate tendency of site j to change its
attribute from n; to m, and the other term appearing in the rate (9.15) as a
measure of the extent to which this is affected by the attributes of the other
sites in the system. We shall assume that for each j the equations

q(n, T{"n) = X;(n;, m) (9.15)

a;(n) Y M(nym)= Y a(mA(m,n)  nedl, (9.16)

meN; mekN;

have a positive solution for a;(n), n € &}, which is unique up to a multiplying
factor—this is equivalent to the assumption that the state space & of the
process n(t) is irreducible.

Theorem 9.4. The equilibrium distribution for the process n(t) with transi-
tion rates (9.15) is
_ H}J=1 oy (ny)
w(m)=B o) 9.17)

where B is a normalizing constant.
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Proof. The equilibrium equations are
am) Y. Y qm, Tr)=Y, Y w(T"n)q(T"n,n) ne¥
j m i m
By substitution we can verify that (n) satisfies the partial balance equations

wm) Y. qm, T'n)= Y w(Trn)q(T"n,n) ne¥ (9.18)

for each je G. The equilibrium equations follow from these.

If the function ® has the appropriate form then =(n) will be a Markov
field. Whether the process n(t) is a spatial process will depend on the graph
G and on the functions ®_;, j€ G, as well as on ®. For example if

d(n) = H dc(ne)

Ce%
b ng_)= [l oclnc)
Ce%é€:jeC
then
qm, Tra) =N, m) I écme) (9.19)
Ce%:jeC

so that m(t) is a spatial process and the equilibrium distribution is the
Markov field

H,!=1 aj(nj)
[lcee dcnc)
Specializing further suppose A;={1,2,..., N},

¢ (n) if |C|=2 and nc=(n, n)
1 otherwise

w(n)=B (9.20)

dc(nc) = {

and A;(n, m)=A(n, m), so that &;(n)=a(n). Then
q(n, T"n)= A (n, m)d(n;) 9.21)

where r is the number of sites neighbouring site j which have the same
attribute as site j. We could perhaps regard neighbouring sites with the same
attribute as forming a bond which decreases, or increases, the rate of change
of attribute at those sites. The equilibrium distribution for the process is

)M(n)

== [] 2" (9.22)

n=1 ¢(")R(")

where M(n) is the number of sites with attribute n and R(n) is the number
of n-bonds, i.e. edges of the graph G which have sites with attribute n at
both ends.
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The process with transition rates (9.21) and equilibrium distribution (9.22)
is very similar to the process considered in the last section with transition
rates (9.10) and equilibrium distribution (9.12). The process considered
there imposed a restriction on the parameters A(n, m), but it allowed the
transition rates to involve the function y/(m). The relationship between the
two processes is analogous to that between the migration processes of
Section 2.3 and the reversible migration processes of Chapter 6.

We shall now show that the closed migration process of Section 2.3 can
itself be viewed as a spatial process provided the graph G is taken as the
complete graph in which every pair of sites is joined by an edge. Let
N;={1,2,...,N} and A;(n, m)=A(n, m). Let M(i) be the number of sites
with attribute i. Thus M= (M(1), M(2), ..., M(N)) is a function of n. Let

N 1 M(i)
d(n) = 1'[ o II &i(r)
and
_M(n)o®m)
Po-io-) = gttt

Observe that ®_; is indeed a function of ng_;. Substituting these functions
into equation (9.15) gives the transition rates of the process n as

¢, (M(n,))
M(n))

The process M is also Markov and its transition rates take a simpler form.
Using the operator T;, introduced in Section 2.3 the process M has transi-
tion rates

q(m, T{"'n) = A(n;, m)

qM, TuM) = A (i, k) (M(i))

It is thus a closed migration process of the form discussed in Section 2.3.
The process M can be viewed as a summary of the information contained in
the process mn: n; records the colony which contains individual j and M(i)
records the number of individuals in colony i. The transition rates and
equilibrium distribution of the process M take the more natural form. On
the other hand, the process n has the advantage that as a spatial process only
one of its components can change at a time; in the next section we shall see
that this facilitates a discussion of partial balance. The partial balance
equations (2.5) for the closed migration process M can be deduced from the
partial balance equations (9.18) for the spatial process n; the probability flux
out of state M due to an individual moving from colony i is equal to the
probability flux into state M due to an individual moving to colony i, since
the probability flux out of state n due to individual j moving from colony i
is equal to the probability flux into state m due to individual j moving to
colony i.
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Let us return now to the general process with transition rates (9.15).
Consider the period of time for which a site’s attribute remains unchanged.
We can imagine that after the attribute of site j becomes n; the attribute has
a nominal lifetime exponentially distributed with unit mean which it ages
through at rate

d(n)
Ai(ni) q)o—i(nc—;)
where

A(n) =Y A;(ny, m)

m

and that when the attribute’s lifetime ends site j takes on attribute m with
probability A;(n;, m)/A;(n;). It is clear that this description of the evolution of
the system is consistent with the transition rates (9.15). Now suppose that an
attribute’s nominal lifetime has some arbitrary distribution with unit mean,
where this distribution may vary from attribute to attribute and from site to
site. The process n(t) will no longer be a Markov process, but our experience
with migration processes suggests that its equilibrium distribution may still
be given by expression (9.17). We shall now give a brief indication of how
this can be proved; in the next section we shall see it is a consequence of a
more general result. Suppose, to begin with, that all nominal lifetimes are
exponentially distributed apart from one attribute at one site. Suppose that
at site 1 attribute 1 has as a nominal lifetime the sum of w independent
stages, each exponentially distributed with mean w™!, Consider the process
n' =(n}, ny, n,, ..., ny) with n{=n, when n,; #1, and with n;=(1, u) when
n, =1, where the indicator u takes a value between 1 and w depending on
which stage of the attribute’s lifetime is in progress. Although the process
n(t) is not Markov its value can be deduced from the process n'(t) which is
Markov. The transition rates of the process m'(t) are

d(n)
(DG—j(nG—[)

unless j =1, in which case the transition rate must be defined more carefully.
If n, #1 then the rate at which n; changes to (1, 1) is

®d(n)
q’G—i (nc;-,-)

If ny=(1, u) for 1 <=u=w—1 then the rate at which nj changes to (1, u+1)
is

q(’, T{"n') = A(n;, m) (9.23)

Al(n'l’ 1)

®d(m)

Al(l)wq)c—i(nc-j)
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If ny=(1, w) then the rate at which n{ changes to m is
O(n)
(DG—,'(“G—;)
All other transitions involving site 1 have their rates given by expression

(9.23). Thus Theorem 9.4 applies to the process n’, and from this it can be
deduced that the equilibrium distribution is

A1, mw

oy a’l(n'l)nil=2 ai(nj)
7'n)=B () (9.29)
where
ai(n)=ay(n) n#1

i, u)=%a1(1)

All that needs to be checked is that if «, is a solution of equations (9.16)
then a/ is the appropriate solution for the process n'. But now the equilib-
rium distribution for n can be obtained by a simple summation of the
distribution (9.24). This shows that

H;!= 1 & (ni)
d(n)

and so we have established the desired result in the case where one attribute
has a nominal lifetime with a gamma distribution. At the cost of some
additional notation the result can be established when nominal lifetimes of
any number of attributes are distributed as mixtures of gamma distributions.
As in Section 3.3 this strongly suggests the result for arbitrary distributions,
but again the techniques needed for this step are beyond the scope of this
work. ‘

To illustrate the result, consider the process with transition rates (9.21)
where n,=0,1, A(0,1)=A, A(1,0)=p, ¢(0)=1, and ¢$(1)=¢. Interpret O
or 1 as indicating the absence or presence of a plant at a site. Thus sites
remain vacant for periods of time which have mean A~!. The nominal
lifetime is equal to the actual lifetime for a vacant period. Although the
vacant period can be arbitrarily distributed it may be reasonable to suppose
that it has an exponential distribution if, for example, plants appear through
seeds settling at random from the atmosphere. After a plant appears it ages
through its nominal lifetime, arbitrarily distributed with unit mean, at rate
ne' while r of the neighbouring sites have plants at them. Depending on
whether ¢ is greater or less than unity a plant shortens or lengthens the
actual lifetime of its neighbours. The equilibrium distribution is

m(m)=B

w(n)= B(ﬁ)z "R (9.25)
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where R is the number of neighbouring pairs of plants, and this distribution
is insensitive to the form of the nominal lifetime distributions in the model.

Exercises 9.3

1.

If the process n(f) has transition rates (9.15) show that the reversed
process n(—t) has transition rates of the same form, but with A;(n;, m)
replaced by a;(m)A;(m, n;)/o;(n;).
Show that a closed reversible migration process M, of the form intro-
duced in Section 6.1, can be viewed as a reversible spatial process n in
which
o) = 4., (M(r,))

q(m, Tj"m) = A(n;, m) Y ¢, (M(n,,))
where the relationship between M and n is as in the preceding section.
Observe that the process n is a reversible spatial process but does not
have transition rates of the form (9.15).
Observe that the plant infection model leading to the equilibrium dis-
tribution (9.14) has transition rates of the form (9.15), with

®d(n) = (1+8)"RD®
and
®g_i(ng_;) = P(T|n).

Deduce that the equilibrium distribution (9.14) remains valid even
when the duration of infection is arbitrarily distributed. Do the same for
the plant infection model of Exercise 9.2.3. Observe that the process
n(t), while not Markov, is reversible.

. Show that the equilibrium distribution obtained for the power supply

model of Exercise 9.2.4 is of the same form even when the period for
which a source remains broken down is arbitrarily distributed.

Many of the models discussed in earlier chapters can readily be con-
verted into spatial processes. Consider, for example, the model of a
switching system described in Section 4.4. Show that if each of the
K, +K, lines is regarded as a site this model becomes a special case of
the process described in this section.

A criticism of the plant birth and death model leading to the distribution
(9.25) is that it is unlikely that the plants will be constrained to exist at a
finite number of sites. Consider then the following model. Suppose that
the points in time at which plants are born form a Poisson process and
that when a plant is born its position is chosen at random from a uniform
distribution over a fixed bounded region of the plane. Suppose, further,
that a plant ages through its nominal lifetime at rate u¢” where r is the
number of plants within a distance d of it and ¢ = 1. Approximate the
process by the model of the preceding section, with the graph G taken as



9.3 A General Spatial Process 199

a very fine grid of points covering the region and with two points of this
grid defined as neighbours if they are within a distance d of each other.
Use the approximation to show that conditional on there being N plants
alive at a given point in time the probability they take up a given
configuration in the region depends on that configuration only through R,
the number of pairs of plants within a distance d of each other in the
configuration. When ¢ <1 the process does not have an equilibrium
distribution; the expected number of plants in existence grows without
limit. This difficulty was avoided, of course, when plants could exist at
only a finite number of sites.

. Elaborate migration processes can be constructed which have equilibrium
distributions similar to those encountered in this chapter. In this exercise
and the next we give some examples. Suppose the process n(f) has the
following transition rates:

®(n)
d(T;.n)

q(m, Tyn) = Ay

q(n’ T-kn) =V

Assuming an equilibrium distribution exists, show that it takes the form

_ n11=1 a
w(n)=B o®)
where a,, a,, ..., a, is the solution of equations (2.9). Observe that we

obtain the open migration process of Chapter 2 with

om) =] T[],
f=1r=1

Observe also that the same procedure as used in the preceding section
establishes that an individual’s nominal lifetime in a colony can be
arbitrarily distributed without affecting the equilibrium distribution (n).

. Consider the following process in which each site can contain at most one
particle. Let

q(n, Tikn) = Aik‘b'
q(m, T,.m) = "
qm, T.,m) =y,

for j,k such that n,=1, n, =0, where r is the number of particles
occupying sites neighbouring site j. Show that if a,, a,,...,a, satisfy
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equations (6.4) and (6.7) then the equilibrium distribution for the process
is

wm)=Bo R[] ap
i=1

where R is the number of edges of the graph G which have occupied
sites at both ends. Observe that w(m) is a Markov field.

9.4 PARTIAL BALANCE

We have come across partial balance equations frequently in this work. In
Chapter 3 we saw that quasi-reversibility was equivalent to a particular form
of partial balance, and we have often found that models displaying partial
balance possess an insensitivity property. In this section we shall investigate
further the relationships between reversed processes, partial balance, and
the phenomenon of insensitivity within the relatively simple setting provided
by this chapter’s definition of a spatial process.

The concept of partial balance was introduced in Chapter 1, where it was
shown that some of the properties of a reversible process could be obtained
from an assumption weaker than detailed balance. The following theorem
summarizes Exercises 1.6.2, 1.6.3, 1.6.4, 1.7.7, and 1.7.8.

Theorem 9.5. For a Markov process with transition rates q(j, k), j, k€ ¥,
and equilibrium distribution w(j), je¥, the following statements are

equivalent:
(i) The distribution 7(j), j€ &, satisfies the partial balance conditions

() Y aG k)= Y wkalk,j) jest

ket kest

(ii) If the process is truncated to the set s the equilibrium distribution of the
truncated process is the conditional probability distribution

(j) .
Ykes W(K) jed

(iii) If the process is altered by changing the transition rate q(j, k) to cq(j, k)
for j, k € 4, where c#0 or 1, then the resulting process has the unaltered
equilibrium distribution 7 (j), j€ &.

(iv) If the process is altered by changing the transition rate q(j, k) to cq(j, k)
forjed, ke P —sf, where c#0 or 1, then the equilibrium distribution of
the resulting process takes the form

Bx(j) jed
Bew(j) jeF—o

(v) The operations of time reversal and truncation to the set s commute.
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If in addition
Y Y w()aG k)

jed keP—-oA

is finite, then statements (i) to (v) are equivalent to:

(vi) The Markov chain formed by observing the process at those instants in
time just before it leaves the set A has the same equilibrium distribution as
the Markov chain formed by observing the process at those instants in
time just after it enters the set .

When the Markov process has some additional structure the above results
can usually be reformulated to make use of that structure. If the Markov
process is a spatial process there are various truncations of the state space
which take an intuitively appealing form. For example, single out a particu-
lar site j and suppose that the attributes of the other sites are held fixed at
ng_; with transitions involving changes at these sites forbidden. Under this
truncation of the state space the attribute of site j, n;, becomes a Markov
process; the transition rate from n; to m is q(n, T;"n) and thus depends on
the frozen state of the rest of the system, ng_;, or at least on that part of it,
n,. Let w(n;;ng_;), n; €N}, be the equilibrium distribution for this Markov
process. Observe that a different truncation of the state space, and hence a
different set of associated partial balance conditions, results from each
choice of ng_;. Grouping these sets of partial balance conditions together we
can obtain the following result.

Corollary 9.6. For a spatial process with equilibrium distribution mw(n),
ne %, the following statements are equivalent:
(i) The distribution w(n), ne &, satisfies the partial balance equations

w@m) Y qm, Tr) =Y, w(T'm)q(T'n,m) ne¥  (9.26)
(i) The equilibrium distribution for the truncated process n; obtained when
sites other than j are frozen at ng_; satisfies

ﬂ(nj;nG—]).:P(n] Ino..]) ned

where P(n; | ng_;) is the conditional probability distribution (9.1).

(iii) If the process is altered by changing the transition rate q(m, T;"n) to
cq(n, T{'n) for ne &, me N, where c#0 or 1, then the resulting process
has the unaltered equilibrium distribution w(n), ne &.

(iv) The operations of reversing time and freezing sites other than j at ng_;
commute, for all values of ng_;.
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The alteration to the process proposed in statement (ii) corresponds to a
speeding up or slowing down of transitions altering the attribute of site J-
Since the equilibrium distribution is unaffected by the value of the constant ¢
the statement can be strengthened to allow a time-varying function c(t).
Indeed, a version of the statement can be formulated in which c(¢) is itself a
stochastic process.

Since the transition rates q(n, T}"n) of the truncated process n; do not
depend on ng_;_ its equilibrium distribution m(n;; ns_;) cannot depend on
NG-;_ either. Hence from statement (ii) of Corollary 9.6 we obtain the
following strengthening of Theorem 9.3.

Corollary 9.7. If the equilibrium distribution of a spatial process satisfies
the partial balance equations (9.26) for each j € G then it is a Markov field.

From now on we shall not be much concerned with the spatial aspects of
the process n(f) and the graph G may as well be the complete graph in
which every pair of sites is connected by an edge. In this case the main
feature of a spatial process n(f) is that only one of its components can
change at a time.

Rather than freezing all sites except one suppose now that just one site is
frozen. In particular suppose that the attribute of site j is frozen at n,.

Corollary 9.8. For a spatial process with equilibrium distribution m(n),
ne Y, the following statements are equivalent:
(i) The distribution w(n), ne &, satisfies the partial balance equations

w(n) 2, q(n, T'n) = Y. w(T"n)q(T™"n, n) (9.27)
for the particular attribute n; and for all values of ng_j.

(i) The equilibrium distribution for the truncated process ng_; obtained when
site j is frozen at n; is the conditional probability distribution P(ng_; | ny)
induced by the equilibrium distribution m(n), ne .

(iii) If the process is altered by changing the transition rates q(n, T"n) to
cq(n, T;"n) for the particular attribute n; and for all values of ng_;, m,
where c#0 or 1, then the equilibrium probability that the resulting process
is in state T{"n takes the form

Bmr(n) m=n;
Ben(Ti"m) otherwise
(iv) The operations of reversing time and freezing site j at n, commulte.
(v) The equilibrium probability that the process is in state n given that the
attribute of site j has just become n; is the same as the equilibrium

probability that the process is in state n given that the attribute of site j is
about to change from ny, for all values of ns_;.
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Proof. Let the set o be all states in & in which site j has the particular
attribute n;. Statement (i) is obtained from statement (i) of Theorem 9.5 by
subtracting the partial balance conditions from the equilibrium equations.
Statements (i), (iii), and (iv) are just statements (ii), (iv), and (v) of Theorem
9.5. The probability flux out of the set o is finite since &, and hence «, is
assumed to be finite. Thus statement (vi) of Theorem 9.5 applies, giving
statement (v) of the present corollary.

Observe that the alteration to the process described in statement (iii)
corresponds to a speeding up or slowing down of transitions ending the
particular attribute n;.

Of course freezing all sites other than one is not in principle very different
from freezing just one site. Indeed, if we regard all sites other than one as
forming a composite site the operations are identical. The important differ-
ence between Corollary 9.6 and Corollary 9.8 is that the partial balance
equations (9.27) concern a particular attribute n; while the partial balance
equations (9.26) allow n; to range over the set A,

The consequences of partial balance described above are reminiscent of
results obtained by other means in earlier chapters. There is, for example, a
close relationship between statement (ii) of Theorem 9.5 and part (iii) of
Theorem 3.12, or between statement (iv) of Theorem 9.5 and the product
form obtained in Section 2.3. Statement (iv) of Corollary 9.6 gives an insight
into why the reversed process obtained from a migration process takes such
a simple form. These correspondences can be made precise by appropriately
reformulating the models of earlier chapters, but this approach is generally
too cumbersome to be useful.

We have not yet discussed the relationship between partial balance and
the phenomenon of insensitivity, but the equivalence between statements (i)
and (ii) of Corollary 9.6 suggests the following very rough line of
argument. If the nominal lifetimes of the attributes at site j are arbitrarily
rather than exponentially distributed then this will not affect the equilibrium
distribution of the truncated process n,, Hence it should not affect the
equilibrium distribution 7(n) of the process n(t). We shall now make this
argument more precise.

Let x=(x4, x5,...,x;) be a spatial process with state space ¥, X%, X
<+ X&), and let w(x;; X6 —;), x; €&, be the equilibrium distribution for the
truncated process x; obtained when sites other than j are frozen at xg_,.
Thus

(%3 X6—5) 2 4%, T)x) = Y. 7(y; %6 _;)q(TIx, %) (9.28)

Suppose that for each je G there is a function
[ %, — A,
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Let n; = fi(x;) and write n=(ny,ny ..., 0 for f(x)=
(fi(x1), fa(x2), . . ., fi(xy)). Thus n; is a less detailed description than x; of the
attribute of site j. We can imagine that the dependence between site j and
sites other than j is through n; rather than x;. To formalize this idea we shall
make two assumptions about the truncated process x;. The first assumption
is that the transition rates q(x, T}x) depend on xg_; only through ng ;. Thus
m(x;; Xg;) can depend on xg_; only through ng_ —j and so can be wrltten
(x;; ng_;). Let

~

mlnsmg_)= Y w(x;ng_;)

xi:fi(x))=ny
The second assumption is that 7z(x;; ng_;) can be written in the form
(x5 Mg ;) = (s ng ;)P (x; , n;) (9.29)

This assumption is best regarded as a condition on the function f;; put in
statistical terms relation (9.29) asserts that the statistic n; = f,(x;) obtained
from the data x; is sufficient for the parameter ng_;. Put another way the
assumption is that conditional on n; the attribute x; has a distribution
P,(x; | n;) which does not depend on ng ;. Both assumptions together allow
us to write
W(x,' 3 XGg—j) = ‘"'("i; nc—,’)Pi(xi l n.') (9.30)
where n = f(x).
If we had to choose transition rates for a spatial process so that it
resembled the process n=f(x) how would we do it? One way would be to

set
qn, Ti"n) = X P(x; | n) Z q(x, T}x) 9.31)
X+ i (x))=n, y:fi(y)=m
Observe that if the truncated process x; is in equilibrium the right-hand side
of equation (9.31) is the probability intensity that f,(x;) changes to m given
that it starts equal to n,.

Theorem 9.9, Suppose a spatial process x(t) is such that the truncated
process x; satisfies both the above assumptions for each je G. Let the rates
q(n, T;'n) be defined by equation (9.31). If there exists a distribution (n)
satisfying the partial balance equations (9.26) for each j€ G then the equilib-
rium distribution for the process x(t) is

w(x)=m(n) ﬁ P(x; | n;) (9.32)

and it satisfies the partial balance equations

w(x) Y q(x, T = Y, m(T'x)q(T’x, x)

veX; vex;

for each je G and for all x.
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Proof. Substituting the form (9.30) into equations (9.28) we obtain

"("1;110—1)1’1(’5;'"1) Z Z q(x, T}x)

medN; y:fi{y)=m

=2 Y w(ming)P(y|ma(Tix,x) (9.33)

mel; y:fi(y)=m

If these equations are summed over x; such fj(x;)=n; they reduce to

(3 m6—) 2 q(, Tym) = Y w(m;ng_;)q(T;n, n) (9.34)
using equation (9.31). Since r(n) satisfies the partial balance equations the
distribution satisfying equations (9.34) is

) _ w(m)
Tr(ni ’ nG—,) B Zme.N‘, '"(ijn)

Substituting this back into equations (9.33) confirms that the proposed
equilibrium distribution r(x) satisfies the partial balance equations for the
process x(t). Hence w(x) is indeed the equilibrium distribution for the
process x(t).

Consider now a spatial process n with transition rates q(n, T;"n). Consider
in particular the period of time for which a site’s attribute remains un-
changed. We can imagine that after the attribute of site j becomes n; the
attribute has a nominal lifetime exponentially distributed with unit mean
which it ages through at rate

Y q(n, T'n) (9.35)

and that when the attribute’s lifetime ends site j takes on attribute n with
probability
q(m, T{'m)

Ywmdam, Ti'n)

Clearly this description of the evolution of the system is consistent with the
transition rates q(m, T{"n). Now suppose that an attribute’s nominal lifetime
has some arbitrary distribution with unit mean, where this distribution may
vary from attribute to attribute and from site to site. The process n(t) will no
longer be a Markov process, but if the partial balance equations (9.26) are
satisfied its equilibrium distribution will still be given by w(n). We shall
establish this fact for the case where nominal lifetimes are distributed as
mixtures of gamma distributions using the method of stages.

Suppose that when site j takes on attribute m it in fact takes on a finer
attribute, (m, z), with probability p;(m, z), where z belongs to a countable set

(9.36)
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% and ¥, p;(m, z) =1 for each j and 2. Suppose that the nominal lifetime of
the finer attribute is made up of w;(m, z) independent stages, each exponen-
tially distributed with mean d;(m, z). This framework allows the nominal
lifetime of attribute m at site j to have any distribution which can be
expressed as a mixture of gamma distributions. Set

Y. pi(m, z)w;(m, 2)d;(m, z) =1 (9.37)

so that nominal lifetimes have unit mean. Use x; =(ny, z;, ;) to describe site j
where (n;, 2;) is the finer attribute of the site and u(1=u =<wn, z;)) is the
stage currently in progress. Observe that the description x = (x,, x,, . . ., X;)
is detailed enough to be a Markov process. Consider now the reduction
n=f(x) given by n,=f(x,), je G. The transition rates of the truncated
process x; depend on x_; only through ng_;, and hence we can write

’"'(x]; XG—1)= ‘"'(x;; nG-i)

Considering the truncated process x; more closely it is apparent that
although ng_; affects the rate at which transition occur it does not affect
which transitions occur except possibly when n, changes. If we observe the
truncated process x; only while n; takes the value m the proportion of time
for which (z;, ;) takes the value (z, u) is p;(m, z)d;(m, z) and is unaffected
by ng.;. Hence we can write

(%3 Mg ) = w(n;; mg ) Py(x; | ny)
where
Pi(xi I nl) = Pj(Zj, U l n,) = p,(n,, Z,)d,-(n!, z,.) z €e¥ 1= w= wi(nb zi)

Equation (9.37) ensures that the distribution P(x; | n;) sums to unity. It is
readily checked that the rates q(n, Ti"'n) are consistent with the definition
(9.31). We can thus use Theorem 9.9 to deduce that if m(n) satisfies the
partial balance equations (9.26) then the equilibrium distribution for the
process x takes the form (9.32). Hence the process n has the equilibrium
distribution #r(n) and is insensitive to the exact form of the nominal lifetime
distributions provided they arise as mixtures of gamma distributions. The
restriction to mixtures of gamma distributions can be removed, but we shall
not discuss this.

There are stronger forms of insensitivity than that just described, and we
shall briefly describe one. Suppose the transition rates q(n, T' 'n) allow a
solution to the partial balance equations (9.26) and further suppose the ratio
(9.36) does not depend upon ng_,, as, for example, in the general spatial
process described in the last section. We can then allow the next attribute to
be taken on by site j and that attribute’s nominal lifetime to depend upon
the previous sequence of attributes taken by site j and upon their nominal
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lifetimes: if the process is stationary the equilibrium distribution for n will be
insensitive to these dependencies. The reader will observe the parallel with
the pattern of dependencies allowed in closed queueing networks. We shall
not prove the result, but the idea is to extend the description x; to include a
summary of the history of site j. The condition on the ratio (9.36) ensures
that the jump chain of the truncated process x; is independent of ng-;, and
this in turn shows that ns_; and x; are independent, conditional on n,. The
result is not really surprising in view of Corollary 9.6; the equilibrium
distribution for the truncated process n; will be determined by the propor-
tion of time for which site j takes each attribute, no matter how complicated
the pattern of dependencies.

In the above discussion it was assumed that the equilibrium distribution of
the spatial process satisfied all the partial balance equations (9.26). If the
equilibrium distribution satisfies the smaller set of partial balance equations
described in statement (i) of Corollary 9.8 then it is possible to show that the
nominal lifetime of the particular attribute n, can be arbitrarily distributed
with unit mean without it affecting the equilibrium distribution (n)
(Exercise 9.4.1); this might be intuitively expected in view of the equivalence
between statements (i) and (ii) of Corollary 9.8. We shall now prove a
converse to this resuit.

Theorem 9.10. If in a spatial process the nominal lifetime of a particular
attribute, n;, can have any distribution with unit mean without it affecting the
equilibrium distribution w(n), ne &, then

() ), q(n, Trn) = Y, w(T"n)q(T™n, n) (9.38)

for the particular attribute n; and for all values of Ng_j.

Proof. The equilibrium equations for the case where the nominal lifetime
of attribute n; is exponentially distributed show that

am) X Y qm, Trn) =Y. 3. w(T;'m)q(T;"n, n) (9.39)

Now let the nominal lifetime of attribute n; be a mixture of two exponential
random variables. Suppose that when site j takes on attribute n; the nominal
lifetime of the attribute is exponentially distributed with mean either a, or
a,, each possibility being equally likely. To ensure that the mean nominal
lifetime is unity, set a,+a,=2. The process n can be rendered Markov if
when site j has attribute n; we append an indication of which exponential
random variable has been chosen for the attribute’s nominal lifetime. Write
w(m, 1), w(n,2), w(T"n) for the equilibrium distribution of the resulting
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process. The equilibrium equations for this process show that

ar(n, 1)(a1 Z an, Trm)+ ), Y. q(n, T} n))

i#f m

=1 Y w(Trm)q(TPn,m)+ Y, Y. w(Ti"n, )q(Ti'n,m)  (9.40)

m izl m
and .
m(n, 2)(a2 Z a(n, Tym)+ . 3. q(n, T'"n))
=1 Z w(Trm)q(Trn,n)+ ) Y w(Trn, 2)q(T™n,n)  (9.41)
i#f m
Now
am, 1)+ 7, 2)=mn) 9.42)
and

7w (T'n, D+ 7 (Ti"n, 2) = w(T"n)
so if equations (9.40) and (9.41) are added together and the result compared
with equation (9.39) we obtain
w(n, ai'+aw(n, 2)az' = m(n) (9.43)
Solving equations (9.42) and (9.43) gives
m(n, 1) =3a,m(n)
w(m, 2)=3a,7(n)

Substituting for 7r(m, 1), w(T}"n, 1) in equation (9.40) we obtain

'n'(n)( Z qn, T'n)+a, ), Y. q(n, T"‘n))

itji m

=2 Z w(Tr)q(Tim,m)+a, Y, Y, w(T'n)q(T;"n, n)
i#j m
and since this equation holds for more than one value of a; we can deduce
the result stated.

Exercises 9.4

1. If equations (9.38) hold for the particular attribute n; and for all values of
ng-; then the equilibrium distribution 7(m) is insensitive to the form of
the nominal lifetime distribution of attribute n;, even if all the partial
balance equations (9.26) do not hold. Establish this either directly or by
appending a marker site to the system in such a way that all the partial
balance equations for the extra site hold.
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. Section 6.1 contained the assertion that the equilibrium distribution 7 (n)
of a closed reversible migration process is insensitive to the form of the
nominal lifetime distributions. In fact the nominal lifetimes of an indi-
vidual at successive colonies can even be dependent on each other
without it affecting the equilibrium distribution 7 (n). Establish this in the
case where the process can be represented by a stationary Markov
process with a countable state space. Observe that since the ratio (9.36)
depends on ng_; it is not easy to formulate a version of the process in
which there exist arbitrary dependencies between the route of an indi-
vidual and the nominal lifetimes along that route.

. Consider the following model of competition between two species. Let n,
be the population size of species i, for i =1, 2. The probability intensity
that a new individual of species 1 is born is n, +1 and that an individual
of species 1 dies is n, exp(—a +y(n,—1)+8n,), v, 8>0. The birth and
death rates for species 2 are the same, with n, and n, interchanged.
Observe that the form of the birth rate prevents a species from becoming
extinct and corresponds to immigration at unit rate. The probability
intensity that a given individual dies is increased by a factor e by each
other existing individual of the same species and by a factor e® by each
other existing individual of the other species. Show that in equilibrium

m(ny, n)=B exp{a(m + nz)—%’[nl(nl— 1)+ny(n,— 1)]—6n1n2}

The most probable states (n,, n,) fall within regions whose position
depends upon the parameters a, v, and 8. Sketch the quadratic contours
along which the function m(n,, n,) takes a constant value and obtain Fig.
9.2. Show that the equilibrium distribution w{(n,, n,) is unaffected if
individuals have arbitrarily distributed nominal lifetimes.

. Suppose the equilibrium distribution w(n), ne ¥, of a spatial process
satisfies the partial balance equations (9.26) for each je G. Suppose now
that the process is amended so that the nominal lifetimes of attributes are
allowed to be arbitrarily distributed with any mean. Let a;(n;) be the
mean nominal lifetime of attribute n; at site j. Use Corollary 9.8 to show
that the equilibrium probability that n describes the state of the amended
process is of the form

Brm) [l e(n) nes
i

. Exercise 9.4.1 and Theorem 9.10 characterize a certain form of insen-
sitivity in terms of partial balance equations, within the framework
provided by the definition of a spatial process. Use Exercise 4.6.9 to
define a spatial process exhibiting an alternative form of insensitivity.

. Statement (vi) of Theorem 9.5 provides an alternative explanation of the
connection between partial balance and insensitivity. Suppose that for a
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Fig. 9.2 A competition model

Markov process X(t) with transition rates q(j, k), j, k€ ¥, and equilib-
rium distribution 7 (j), j € &, statement (i) of Theorem 9.5 holds. Suppose
also that ¥y co—4 q(j, k) is the same for each j € &, equal to q(sf) say, and
that o is finite; hence statement (vi) of Theorem 9.5 is true. Show that in
equilibrium the distribution over states at an instant in time when the
process has just entered the set &/ and the distribution over states at an
instant in time when the process is just about to leave the set & are both
identical to the equilibrium distribution of the truncated process referred
to in statement (ii) of Theorem 9.5. Consider now a realization of the
process X(t). The process will alternate between the set o and the set
% -4, and the periods spent in the set & will be exponentially distri-
buted with parameter q(sf). Because of the identity between the three
distributions referred to above the behaviour of the process during a
period in the set & is as if it were generated by the following procedure.
When the process enters the set & choose a random variable 7, expo-
nentially distributed with parameter q(&f). For a period of length 7 allow
the process to evolve in accordance with the transition rates q(j, k),
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j» ke o, of the truncated process. At the end of this period eject the
process from the set of: if the process is in state j€ & move it to state
ke ¥ - with probability q(j, k)/q(«f). The advantage of viewing the
process in this way is that it becomes natural to allow the periods spent in
the set o to be arbitrary rather than exponential random variables. The
proportion of time the process spends in the set o will then be deter-
mined by the overall mean of these periods, and of the time spent in the
set & a proportion 7(j)/Yic. w(k) will be spent in state j.
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