CHAPTER 7
Population Genetics Models

One theory of evolution holds that favourable mutations are relatively rare
while in contrast selectively neutral mutations are common and account for
much of the diversity between individuals observed at the molecular level.
In this chapter a stochastic model is discussed which provides some insight
into the behaviour of a population subject to recurrent neutral mutation.
The model, introduced below, is closely related to the migration processes of
Chapters 2 and 6 and the invasion model of Chapter 5, but the major
motivation for its inclusion is the use made of reversibility in Section 7.2 to
elucidate some of its properties.

7.1 NEUTRAL ALLELE MODELS

Consider a population of M individuals in which the individuals are of
various genetic (or allelic) types. Suppose there are J types (or alleles)
altogether, and let n; be the number of individuals of allelic type j. The
mechanism by which the population reproduces is as follows. Individuals die
at rate u. When a death occurs an individual, chosen at random from
amongst the remaining M — 1 individuals, gives birth. The offspring is of the
same allelic type as the parent with probability 1 —u and is a mutation of a
different allelic type with probability u. When a mutation occurs the mutant
individual is equally likely to have any of the other J—1 allelic types,
excluding his parent’s type. In this model the population size remains
constant at M and the alleles are neutral, in the sense that an individual’s
type does not affect his ability to survive or to produce offspring.

It follows from the above description that the Markov process n=
(ny, ny, ..., ny) has transition rates
nn(l-w+M-—n.—Du/(J-1
ate, Tum = 22 o(1—u) (M_; ul(I-1)
These are of the form (6.2), and hence the equilibrium distribution is given
by Theorem 6.1. Indeed these transition rates are a special case of the form
(6.9), and so from expression (6.10) it follows that the equilibrium distribu-

tion is
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where
_ (M—-1u
F=ra=w-1 (72

The above model is of more interest when there are an infinite number of
alleles, so that when a mutation occurs the mutant individual has a com-
pletely new allelic type, never before represented in the population. Letting
J — » in expression (7.1) causes problems: the probability that any given
allele is present in the population will tend to zero. It is more helpful to
describe the population by the process M= (M;, M,, ..., My,) where M, is
the number of alleles represented in the population by i individuals. Thus

M
Y iM=M (7.3)
i=1
It follows from the distribution (7.1) that the equilibrium distribution for the
process M is

M) = 1{4!M! T-IM)! (;\f)—l(_ll)M(—zl)M v (J)MM

(7.4

Now let J — o with u held constant; then from (7.2)

M_..
> MDu_, (1.5)
1-u
say. In the limit the form (7.4) becomes (Exercise 7.1.3)

v+M—1\"1% (V)M' 1

'"M(M)’( M ) G M (7.6)

for M satisfying (7.3). We shall call the resulting process M the infinite alleles
model.

The distribution (7.6) is strikingly similar to the equilibrium distribution
for the family size process discussed in Section 2.4, and we shall now show
that the relationship is not coincidental. Consider a family size process in
which individuals with a new allelic type join the population at rate Av,
individuals give birth to new individuals of the same allelic type at rate A,
and individuals die at rate w (this is a slight change from the process
considered in Section 2.4: we have replaced v by Av). It follows from the
discussion contained in Section 2.4 that if M, is the number of alleles
represented in the population by i individuals then M=(M;, M,,...) is
reversible with equilibrium distribution

(M) = H e“""g'—m
i=1 Mi'
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provided A <u. Thus M;, M,,... are independent, each with a Poisson
distribution. Now suppose that we truncate the process M by forbidding
transitions which would cause the total number of individuals alive to drop
below M —1 or rise above M. Then Corollary 1.10 shows that the equilib-
rium distribution will have the form |,
M

W(M)“Bnﬁl-‘
i—1 M;!

where

7.7

for M such that 3, iM; = M—1 or M. How does the process M behave when
its state space is truncated in this way? Well, when the population size is M
any particular existing individual dies with probability intensity u. When the
population size is M—1 any particular existing individual gives birth to
another individual of the same type with probability intensity A, and with
probability intensity Av a mutant individual of a new allelic type is born. The
proportion of individuals born which are mutations is v/(v + M —1), which
equals u, by relation (7.5). When the population size is M—1 the process
thus behaves as if each existing individual gives birth at rate (v +M—1)A,
and with probability u the individual born is a mutation. If we now let
A — o the births occur immediately after deaths and we obtain the infinite
alieles model which led to the distribution (7.6). Distribution (7.7) can be

rewritten
A\ZM I (M ]
won-a(2 15
) L lI=-Il i/ M!

for M such that }iM,=M-1 or M, and as A — % this approaches the
distribution (7.6), as of course it must do.

Often it is not possible to observe the entire population, but only a sample
from it. We shall conclude this section by obtaining the sampling distribution
for a sample from the infinite alleles model. Say that a set of M individuals
has the description M= (M, M,, . . .) if there are M, alleles represented by i
individuals in the set. The following theorem shows that the equilibrium
distribution (7.6) of the infinite alleles model has a rather interesting
property.

Theorem 7.1. Suppose that a random sample of size m is chosen without
replacement from a population of size M, m <M. If the population has the
description M with probability (M) then the sample has the description m
with probability m,, (m).
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Proof. Consider the process M described above in which the population
size fluctuates between M —1 and M. The equilibrium distribution is given
by (7.7) and hence the description of the population conditional on the
population size being M —1 is my,_,(M), and conditional on it being M is
m(M). Now when the population size drops from M to M —1 the effect is
the same as that of choosing a random sample of size M —1. Thus when a
random sample of size M —1 is chosen from a population whose description
is M with probability (M), the description of the sample must be m with
probability my_,(m). This establishes the theorem for the case m =M—1.
For general m the theorem follows from the observation that one_way to
choose a sample of size m is first to choose a sample of size M —1, then
from this to choose a sample of size M—2, and so on until only m
individuals are included.

Theorem 7.1 shows that the sampling distribution for a sample of size m
from a population of size M is the same as the equilibrium distribution for a
population of size m, provided both populations have the same value of ».

Exercises 7.1

1. Show that the model described at the beginning of this section remains a
reversnble mlgratlon process if the mean lifetime an individual of allelic
type 7\Ls p;! and if the offspring of an individual of type j is of type k
with probablllty upk(l p,), where Y p;=1.

2. A population of size M is divided into J types in accordance with
expression (7.1), and a random sample of size m (<M) is chosen from
it. Write down the conditional distribution for the composition of the
sample given the composition of the population. Deduce that the
sample will divide into J types in accordance with expression (7.1), but
with M replaced by m.

3. By considering the coefficients of x™ in the power series expansions of
the identity

(1-x)=[]e
ji=1

show that the distribution (7.6) sums to unity. Deduce (7.6) from (7.4).

4. Suppose that M is distributed according to expression (7.6). Show that if
a random sample of size m has the description m, with a particular
allele represented by i individuals in the sample, then an individual
randomly selected from the remaining M —m members of the popula-
tion is of that particular allelic type with probability i/(m +v).

5. The heterozygosity of a population is defined to be the probability that
two distinct individuals, chosen at random from the population, are of
different allelic types. Deduce from Theorem 7.1 that the heterozygosity
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of a population is v/(v + 1) and that the whole population is of the same
allelic type with probability

(v +M- l)‘l
M-1

. If my,(M) is given by expression (7.6) then Theorem 7.1 has established

the following,.

(a) If a random sample of size m is chosen from a set of size M whose
description is M with probability ,,(M), then the description of the
random sample is m-with probability i, (m).

Show also that

(b) If an individual is chosen at random from a set of size M whose
description is M with probability m,,(M) and if the individual is
found to be of the same allelic type as exactly M —m — 1 others in
the set then the remaining m individuals form a set whose descrip-
tion is m with probability r,, (m).

(Hard) The preceding exercise has a converse. Suppose that (M) is a

probability distribution over descriptions of a set of size M and that

m(M)>0 for all M satisfying equation (7.3). Show that if statements

(a) and (b) hold for all m and M satisfying m <M then (M) must be

of the form (7.6).

. If M is distributed according to (7.6) with v an unknown parameter

show that the number of alleles in the population, ¥ M, is a sufficient
statistic for ». If only a random sample from the population is observed
deduce that the number of alleles present in the sample is sufficient for
V.

. In the models described in this section it has been assumed that

individuals’ lifetimes are exponentially distributed with mean et In
fact the equilibrium distributions (7.1) and (7.6) remain unaltered if
individuals’ lifetimes are arbitrarily distributed. Establish this by consid-
ering an infinite server queue at which arrival rates are of the form
(3.27) with

¥(n) = 'l/(zj: "1)ﬁ (f+m-1)!

=1 i=1

If lifetimes are exponentially distributed then the number of offspring
an individual has is geometrically distributed. If lifetimes are constant
show that the number of offspring an individual has is binomially
distributed.

The infinite alleles model and the family size process can be regarded as
special cases of a more general stochastic population model. Let M; be
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11.

12,

the number of families of size i and let M =Y iM; be the total popula-
tion size. Suppose that M= (M;, M,,...) is a Markov process with
transition rates

qM, T, ; .\ M) = iMA (M) i=1,2,...
aM, T;;_ ;M) = iMu(M) i=2,3,...
qM, T..M) = vA(M)
qM, T, M) = M, u(M)
Thus birth, death, and immigration rates are affected by the total

population size. Verify that in equilibrium the process M is reversible
with

-s{[ACDI (L
wow=s{[1 TR 5
Show that if a random sample of size m is taken from the population
then its description m has distribution (7.6) with M replaced by m.
Show that this property of a random sample remains true if the
population size at time ¢ =0 is zero and the functions A (M) and p(M)
are replaced by functions of time A(M, t) and w(M, t). Deduce that the
property remains true if A(M, t) and n(M, t) are themselves stochastic
processes.
Suppose the family size process (or more generally the process de-
scribed in the previous exercise) is used to model the numbers of moths
present in a particular location, with each family representing a distinct
species of moth., Deduce from Exercise 7.1.4 that if a trap catches a
random sample of m moths then the expected number of species caught
is
1 4

i=1 v+i—1

oz

Observe that this depends upon the parameter v alone, unlike the
corresponding relationship based upon the expected value of m, found
in Exercise 2.4.7.

Consider a population process in which the population size fluctuates
between M and M’ as follows. After the population size has been M for
a certain time a reproduction period is entered, when only births and
immigrations are allowed. During this reproduction period each indi-
vidual gives birth at rate A to a new member of its family, and
immigrants arrive at rate vA to found new families. Individuals appear-
ing during the reproduction period are allowed to give birth themselves
during that same period, and the period ends when the population size
reaches M'. Then a random sample of M individuals is chosen from the
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population to form the next generation and the procedure is repeated.
Show that if the process M is observed in discrete time just before each
reproduction period begins then it is reversible with equilibrium dis-
tribution (7.6). Show that the same is true if the process is observed
immediately after each reproduction period, with M replaced by M’ in
expression (7.6).

13. Amend the model described in the previous exercise so that the
reproduction period ends when the population size reaches 2M, and
then suppose the original M individuals die, leaving a new generation of
size M. Show that the process M observed just before each reproduction
period begins is identical to that for the unamended model with M’
infinite,

14. Suppose that in the model of the previous exercise individuals appearing
during a reproduction period are not allowed to give birth. The resulting
model can be viewed as follows. The parent of each individual in the
new generation is chosen independently and at random from among the
M individuals alive in the previous generation, and each birth may
result in a new mutation, mutations arising independently over the M
births. Observe that the number of offspring an individual has is
binomially distributed and that when an allele appears for the first time
it is represented by just one individual in the population. Deduce that the
process M obtained from this model is not reversible.

7.2 THE AGE OF AN ALLELE

Suppose that a population has been evolving according to the infinite alleles
model for a long period. It is observed at time ¢, and it is found that K
alleles are present in the population, M; of them represented by i individu-
als, for i=1,2,.... What does this information tell us about the ages of the -
K alleles?

We would like to be able to deduce from the reversibility of the process
M(t) that the future of an allele represented in the population is stochasti-
cally similar to its past. Unfortunately such a conclusion does not im-
mediately follow, since from a realization of the process M(t), —0 < t <+,
it is not possible to discern the progress between first occurrence and
eventual extinction of a particular allele. The problem could be overcome by
using the finite allele model of the previous section and a limiting argument,
but we shall use an alternative labelling method.

Suppose that the allelic type of each individual in the population is
associated with an integer in the range from zero to M. When a non-mutant
individual is born its allelic type is that of its parent. When a mutant
individual is born its allelic type is not that of its parent, nor that of any of
the other alleles present in the population. Since the population size is M
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there will be at least one integer in the range from zero to M which can be
assigned to the new allele; if there is more than one possible integer the
choice is made at random. The integer associated with an allele is not
intended to represent any physical characteristic of the allele—it simply
labels it. As time progresses the same label will be used repeatedly for
different alleles, but note that after an allele becomes extinct an interval
will elapse before its label is used again. Describe the state of the population
by

(M’ l) = (Mh M2a v MM; 1(1’ 1)’ l(ly 2)’ Teey l(ls Ml);

1(2’ 1)’ 1(2’ 2)’ sy 1(2’ MZ);
oo UM, Myy)

with (i, k) the label of the kth allele among those represented in the
population by i individuals. The effect of the death of an individual whose
allelic type had j representatives is to be equivalent to randomly choosing
one of the M, labels from among I(j, 1), I(j, 2), ..., I(j, M;} and inserting it
at random into one of the M, ;+1 positions among I(j—1,1),
I(j-1,2),...,1(j—1, M,_,). A birth is to be dealt with similarly.

Theorem 7.2. The labelled process (M, 1) is reversible and has equilibrium
distribution

(M—ZM+1)!(11+M—1)‘1 M IAM 1

Ml)=—Z=— = -} —

M) =" M ilJ, (;) M;!

Proof. The detailed balance conditions are easily checked and the result

follows from these. Observe that the first term of the equilibrium distribu-

tion is the reciprocal of the number of distinct orderings of Y M, different

labels. In equilibrium M has the distribution (7.6) and given M every

possible arrangement of labels, 1, is equally likely.

A realization of the labelled process (M,1) for —o <t <o allows us to
trace the history of any particular allele from the point in time when it first
appears until it becomes extinct. Consider the problem of estimating, from
an observation M on the process at a particular time ¢, the age of an allele
present in the population. From the reversibility of the process (M, 1) we see
that the age of the allele has the same distribution as the time to extinction
of that allele. But to calculate the distribution of the time to extinction it is
not necessary to have the frequencies of the other alleles in the population:
the future frequency of an allele in the population at time ¢ follows a
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random walk with transition intensities

_ M-j j-1 )
a(,j-D=n—= (M 1+M T
(7.8)
M-j j
G, j+D=p M= 1(1 u)

Thus the age distribution of an allele represented in the population by j
individuals can be calculated (Exercise 7.2.1); it depends upon j but not
upon the entire state M.

The rest of this section will be devoted to some other consequences of
Theorem 7.2, but before we embark on these it is worth clarifying the
contribution reversibility makes to the solution of problems concerning the
age of an allele. The labelled process (M,l) arising from some genetic
models (e.g. that described in Exercise 7.1.14) is not reversible. Neverthe-
less, if it is a stationary Markov process then the reversed process obtained
from it will also be a stationary Markov process, and given the state (M, 1) at
a fixed point in time the age of an allele in the original process will have the
same distribution as the time to extinction of that allele in the reversed
process. The difficulty is that the reversed process is likely to have extremely
complex transition rates. The results obtained in this section follow from the
tractability of the reversed process in the case where (M, 1) is reversible.

Corollary 7.3. If at a given time an allele is represented by j individuals in
the population the probability that this allele is the oldest of the alleles then
existing is jIM.

Proof. Suppose that at a given time M different alleles are represented in
the population; thus no two individuals have the same allelic type. The
probability that a particular allele (not individual) will outlive the other
M —1 alleles is M~', by symmetry. It follows from this that if at a given time
an allele is represented by j individuals in the population the probability that
this allele will outlive the other alleles then existing is j/M. The reversibility
established in Theorem 7.2 implies that the probability this allele is the
oldest is also j/M.

Corollary 7.4, At a given time the age of the oldest allele is independent
of its frequency in the population.

Proof. The time to extinction of all the alleles currently existing in the
population does not depend upon M; it is simply the time a random walk
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with transition rates (7.8) takes to reach zero starting from M. The distribu-
tion of this time will remain unchanged if we are given which of the
currently existing individuals is the ancestor of the last surviving individual
with a currently existing allelic type, and so will remain unchanged if we are
given which allele will survive the longest. Interchanging times to extinction
with ages, as Theorem 7.2 allows us to do, gives the result.

An extension of Corollary 7.4 is given in Exercise 7.2.2.

Corollary 7.5. In equilibrium the probability that the oldest allele existing
is represented by i individuals in the population is, for i=1,2,..., M,

w0 @9

Proof. Let the random variable x be the frequency of the oldest allele.
Theorem 7.2 implies that x has the sam€ distribution as the frequency of the
allele which will survive the longest, but this in turn has the same distribu-
tion as the frequency of the allelic type of a randomly chosen individual
from the population. Thus, using equation (7.6), -

Prob{x =i} = g’: Prob{x = i | M}mp (M)
() o)
-5 ()

Suppose a sample of size m (=M) is chosen from the population. We
have seen in Theorem 7.1 that the sample has the description m with
probability mr,,(m). Given the description m of the sample it is possible to
make some deductions about the relative ages of the alleles represented in
the sample.

Theorem 7.6. An allele represented by i individuals in a sample of size m
is the oldest allele in the population with probability

iv+M)

M(v+m)

Proof. We must calculate the probability that an individual chosen at
random from the population is of the given allelic type. With probability
m/M the randomly chosen individual will belong to the sample, and if this
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happens the probability that it is of the given allelic type is i/m. With
probability (M —m)/M the randomly chosen individual will be in the M—m
members of the population outside the sample, and if this happens the
probability that it is of the given allelic type is i/(m +v) (Exercise 7.1.4).
Thus the probability we are seeking is

_rr_t_i+M—m i i(v+M)
Mm M m+v M@p+m)

Corollary 7.7. The probability a sample of size m contains the oldest

allele in the population is
m(v+M)

M@py+m)

Proof. This follows directly from Theorem 7.6 by summing over all the
alleles represented in the sample,

Corollary 7.8. An allele represented by i individuals in a sample of size m
is the oldest allele in the sample with probability i/m.

Proof. The probability in question is just the probability that an indi-
vidual chosen at random from the population is of the given allelic type,
conditional on the individual chosen having an allelic type which is rep-
resented in the sample. The probability that a randomly chosen individual is

of the given allelic type is
i(lv+M)

M@y+m)

and the probability that it is of an allelic type represented in the sample is
m(v+M)
M(v+m)

Hence the conditional probability sought is i/m.

Exercises 7.2

1. If an allele is represented in the population by j individuals show that the
probability the age of the allele is less than x, P,(x), satisfies

dP;(x)
dx

where q(j,j—1) and q(j, j+1) are given by equations (7.8). Obtain a
recursion for the probability that there have been exactly a births since
the allele first appeared.

=q(, j = DIP,1(x) = P,(x)]- q(j, j + DIP,(x)— P14 (x)]
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2.

A

Suppose that (fy, f>, . . ., fx) gives the frequencies of the alleles present in
the population in order of the ages of the alieles, so that f; and f; are the
frequencies of the newest and oldest alleles respectively. Thus
(fis f25 - - ., fx) contains rather more information than M. Show that the
age of the oldest allele is independent of (fy, fs, ..., fx)-

Show that expression (7.9) is increasing or decreasing in i according to
whether v is less than or greater than unity. Show that in equilibrium the
expected number of individuals of the oldest allelic type is (v + M)/(v +
1).

. Establish Corollary 7.8 for a sample from the model of Exercise 7.1.10.
. If alleles 1,2, ..., k are represented in a sample by n,, n,,..., n, indi-

viduals respectively, show that the probability allele r is older than allele
r+1,forr=1,2,... k—1,is
k

n,
n Zr=r n;

r=1

A sample of size m is to be taken from a population in equilibrium.
Deduce from Corollary 7.8 that the probability the oldest allele in the
sample will be represented by i individuals in the sample is given by
expression (7.9) with M replaced by m.

We have seen that, for the reversible model considered, if we observe the
state of the process at a fixed point in time the age of an allele present in
the population has the same distribution as the time to extinction of that
same allele. Consider now the labelled process (M,1) arising from the
non-reversible genetic model of Exercise 7.1.14; 2M labels are required
to ensure an interval between successive uses of the same label for
different alleles, and it is simplest to suppose that at each point in
(discrete) time the labels I(j, 1), I(j, 2), ..., I(j, M;) are the labels of those
alleles represented by j individuals in the population arranged in a
random order. Use Exercise 1.4.3 to show that if we do not observe the
state of the process then at a fixed point in time the age of an allele given
to be present in the population has the same distribution as the time to
extinction of that same allele. Observe that this result follows from the
stationarity of the model; the stronger property of reversibility is only
required if we are given information about the state of the process at the
fixed point in time.

7.3 FIXATION TIMES

If the mutation rate u is low it is quite likely that every individual in the
population will be of the same allelic type. Recurrent mutation ensures,
however, that no allele can become permanently fixed in the population.
Call an allele quasi-fixed if it is the only allele present in the population. We
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shall begin this section by calculating the probability that an allele becomes
quasi-fixed and also the mean time between quasi-fixations of different
alleles.

Theorem 7.9. The probability that a new allele will become quasi-fixed is

Q where
0= (M.— 1)—*(1; +M- 1)

i=0 1 [ 4

Proof. When a new allele appears it will be represented by one indi-
vidual in a population of M. The future frequency of the allele in the
population will follow a random walk with transition intensities (7.8); we are
interested in the probability that this random walk reaches M before it
reaches zero. This can be determined by the standard means for obtaining
absorption probabilities or by using the electrical analogue described in
Section 5.2. In the electrical analogue the resistance between nodes i and

i+1 is proportional t,‘o
(M— 1)“‘(v+M—1)
i i

and so if nodes 0 and M are held at potentials of 0 and 1 respectively the
potential of node 1 will be Q, establishing the theorem.

When v=1 the expression for Q' becomes M(1+3+:: - +1/M)=
M log M. As v approaches zero, Q! approaches M.

Corollary 7.10. The intervals between first quasi-fixations of different
alleles are independent and identically distributed with mean (QMuu)™".

Proof. The same allele may become quasi-fixed more than once during
its existence, but if we consider only those points in time at which an allele
becomes quasi-fixed for the first time then it is clear that the intervening
intervals are independent and identically distributed. Let the mean interval
length be x. Now the mean period between successive mutations is (Mpu)™,
‘and so the long-run proportion of alleles which become quasi-fixed must be
(Muux)™'. But this long-run proportion is Q by the previous theorem, and
hence x =(QMpu)™’.

When a mutation occurs the new allele will generally bear a close
resemblance to the allelic type of the mutant’s parent. This is because an
allele is made up of a large number of smaller units, called nucleotides, and
when a mutation occurs it is unlikely to affect more than one of these units.



158 Population Genetics Models

Suppose then that an allele is made up of an infinite number of nucleotides
and that a mutation affects just one of these nucleotides, with no nucleotide
ever affected more than once by a mutation. Thus a mutation gives rise to a
new allele, which will eventually disappear from the population, and a new
nucleotide, which may or may not disappear from the population. Indeed,
since the population will eventually consist entirely of the descendents of
one of the M individuals alive at a given time the probability that a new
nucleotide will eventually be fixed in the population is M~'. We shall devote
the rest of this section to the elucidation of this process of gene substitution.

Call the birth of a mutant individual a determining mutation if the entire
population will eventually be descended from that individual. Thus a deter-
mining mutation gives rise to a nucleotide which will eventually become fixed
in the population.

Theorem 7.11. Determining mutations form a Poisson process of rate pu.

Proof. We started this chapter by obtaining the infinite alleles model as a
limiting case of the reversible migration processes of the last chapter. It is
also possible to view the infinite alleles model as an invasion process of the
form discussed in Chapter 5: regard the M individuals as s:tes and when an
individual gives birth to an offspring regard this as one site mvadmg another.
Each time an invasion occurs there is a probability u that the invaded site
becomes a completely new colour, corresponding to a mutation. Viewed in
this light it is natural to choose an individual alive at time O and trace the
ancestry of this individual. As we move backwards through time the points
in time at which his ancestors were born form a Poisson process of rate p.
Further, the points in time at which an ancestor of his was born a mutant
form a Poisson process of rate pu. This is true for each of the M individuals
alive at time 0. We thus have M (dependent) Poisson processes; one of them
is the sequence of determining mutations up until time 0, but we do not
know which one since we cannot tell from which of the M individuals alive
at time O the population will eventually be descended. Nevertheless, it will
be one of these processes and since they are all Poisson processes of rate pu
the theorem is proved.

Thus nucleotides destined to be fixed in the population arise as a Poisson
process, and the number of nucleotides by which an individual alive at time ¢
differs from his ancestor at time O is Poisson with mean put. The points in
time at which nucleotides actually become fixed form a much more compli-
cated point process (Exercise 7.3.4).

Exercises 7.3

1. Show that the mean time between first quasi-fixations tends to infinity
when the mutation rate u tends to either zero or infinity (with the
population size M held fixed).
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2. Show that the expected time till a new nucleotide is fixed or lost is
M_ 1 M-—-1 l
[T

-

3. Show that the frequency of a nucleotide destined to be fixed performs a
random walk with transition intensities

c. o (=DM -i)
q(l,t—l)—u——-—M(M_l)
G+1DM-i)

qGi,i+)=pu MM—1)

Prove that for a new nucleotide destined to be fixed the expected time
till fixation is

(M-1)
®

and for a new nycleotide destined to be lost the expected time till loss is

M¥1

M=z i

4. Observe that arbitrarily many nucleotides may become fixed in the
population at the same moment. Show that if X(¢) is the number of
nucleotides which become fixed in the population in the interval (0, t)
then

E[X()]= put
and

Var{ X(t)] = put +0(1)

where 0(1) is a term which remains bounded as t — o,

5. Suppose that two distinct individuals are chosen at random from the
population. Show that the number of nucleotides by which they differ has
the same distribution as X =Y +Z where Y is geometric with mean
(M —2)u, Z is Bernoulli with mean u, and Y and Z are independent.

6. Suppose that at time O a population of size M is subdivided into a
number of colonies, which henceforth evolve separately from each other
with the original values of x and u. Show that two individuals chosen at
random from distinct colonies at time ¢ differ by a number of nucleotides
which has the same distribution as W+ X where W has a Poisson distri-
bution with mean 2uut, X is as in the previous exercise, and W and X
are independent.
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7. The proof of Theorem 7.11 does not depend upon the reversibility of the
genetic model considered. Show that in the non-reversible genetic model
of Exercise 7.1.14 the intervals between successive determining muta-
tions are independent and have the same distribution as Y +1 where Y
has a geometric distribution.
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