CHAPTER 3
Queueing Networks

In the previous chapter some simple examples of queueing networks were
introduced. This chapter will continue the discussion of queueing networks,
but within a more general framework.

3.1 GENERAL CUSTOMER ROUTES

Consider the queueing network illustrated in Fig. 3.1. In this network there
are five simple queues, and customers can enter the system at queues 1 or 2,
arrivals at these queues forming two independent Poisson processes. Cus-
tomers follow the route through queues 1, 3, and 4 or the route through
queues 2, 3, and 5 before leaving the system. This might be a model of a
manufacturing job-shop with customers representing items of work which
require to be processed at a sequence of machines. This network cannot be
represented by a migration process. The difficulty is that a customer leaving
queue 3 does not choose at random between queues 4 and 5: he moves to
queue 4 if he has previously been to queue 1. In a migration process the past
route of a customer in a given queue is of no use in predicting his future
route, and in this sense the customers in a queue are homogeneous. In this
section we shall see that by dividing customers into different types we can
deal with networks such as the one illustrated in Fig. 3.1.

Suppose that there are I different customer types and that a customer’s
type determines his route through the J queues of the system. More
specifically, suppose that customers of type i (i=1,2,...,I) enter the
system in a Poisson stream at rate »(i) and pass through the sequence of
queues

r(i, 1), r(i,2), ..., r(i, S(i)

before leaving the system. Thus the queue which a customer of type i visits
atstage s (s=1,2,..., S(i)) of his route is queue r(i, s). Note that the route
of a customer may require him to visit the same queue more than once. For
simplicity we shall not allow two successive stages of a customer’s route to
be identical. We shall assume that the I Poisson arrival streams are indepen-
dent. It is not essential that I be finite, but we shall require that Y v(i) be
finite.

By using more than one customer type we can represent the behaviour of
a customer whose future route depends stochastically upon his past route:
we simply use a different type for each possible route. Consider, for
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Fig. 3.1 A job-shop model

example, the network illustrated in Fig. 3.2. Suppose this differs from the
network of Fig. 3.1 in that customers who have been through queue 2 are,
after leaving queue 3, equally likely to move to queue 4 or queue 5. We
require three customer types to model this network: customers of types 1, 2,
and 3 follow the routes 1 >3 —4, 2—> 3— 4, and 2— 3 — 5 respectively,
and the arrival rates v(2) and »(3) are equal.

The above method can deal with the random routes which arise in an
open migration process, but it will be more cumbersome than the approach
of the previous chapter if the migration process allows a customer to visit
the same queue more than once (Exercise 3.1.2). The advantage of the
above method is that it allows much more general routing schemes than can
arise in a migration process. To give two further examples, it can deal with a
system in which a customer visits each queue exactly once, but in a random
order, or a system in which each customer visits a certain queue exactly
twice. :

We have described how customers move between queues: we must now
describe how the queues themselves operate. This is rather more compli-
cated than it was for a migration process, since within each queue we must
now keep track of the different types of customer. We shall suppose that the
customers in each queue are ordered: thus queue j (j=1,2,...,J) will
contain customers in positions 1,2,..., n;, where n; is the total number of
customers in queue j. Assume queue j operates in the following manner:

(i) Each customer requires an amount of service which is a random
variable exponentially distributed with unit mean.

(ii) A total service effort is supplied at the rate ¢;(n;).

(iii) A proportion «;(l, n;) of this effort is directed to the customer in
position I (I=1,2, ..., n;); when this customer leaves the queue, his service
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completed, customers in positions I+1,1+2,..., n; move to positions I, [ +
1,...,n;—1 respectively.

(iv) When a customer arrives at queue j he moves into position [
(I=1,2,...,n+1) with probability §;(l, n,+1); customers previously in
positions [, [ +1, ..., n; move to positions [ +1,1+2, ..., n;+1 respectively.

Of course

.i y(ny=1
=1

Y &(Ln)=1
=1

and we shall insist that ¢;(n)>0 if n>0. Call the amount of service a
customer requires at a queue his service requirement. We shall assume that
all service requirements, even of the same customer at different queues, are
independent of each other and of the times at which customers enter the
system. The way in which a customer’s service requirement is satisfied can
be visualized as follows. While the queue contains n; customers, with him in
position [, he receives service effort at the rate ¢;(n;)v,(l, n;) per unit time.
When the amount of service effort he has received reaches his service
requirement he leaves the queue. Since service requirements are exponen-
tially distributed with unit mean, if queue j contains n; customers then the
probability intensity that the customer in position [ leaves is ¢;(n;)y,(l, n;).

To illustrate the behaviour which can be allowed, if ¢;(n)= A, min(K, n)

l l=1,2,...,n; n=12,...,K
n
v n)= % 1=1,2,...,K;n=K+1,K+2,...
0 otherwise
1 =
8]’(1’”):{ " .
0 otherwise

then queue j behaves as a K-server queue in which customers have their
service commenced in the order of their arrival and each customer has an
exponentially distributed service time with mean A;'. In this example the
service time of a customer can be identified with his service requirement, but
this will not always be so. By varying ¢, we can allow the servers to work
faster when the queue is large. By varying §, we can alter the queue
discipline, making it, for example, last come first served or service in random
order. A more subtle use of ¢; and v, will let a waiting customer defect at a
rate depending upon his position in the queue. Note, however, that we
cannot model a priority discipline based upon the type of a customer; nor
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can we allow a customer’s service time to depend upon his service time at
previous queues.

Let (I) be the type of the customer in position ! in queue j and let s;(1)
be the stage along his route that this customer has reached. We shall call
¢; (D)= (1), 5;(D) the class of this customer; if he can visit queue j more than
once his class will contain more information than his type. The vector

¢ = (C,'(l)a C,-(Z), cees C,'(n,'))
describes the state of queue j and
C =(c15c2, e ’cJ)

is a Markov process representing the state of the system.

What are the transition rates of the process C? If the customer in position
l in queue j is at the last stage of his route then a possible event is that this
customer may leave the system. Let T;;.C be the state of the process after
this event. The probability intensity of the event is

qcC, 1, -, le-C) = ¢i(nj)'Yj(l, n;) 3.1

It may be that T;.C=T,.C for l+ g, for example if all the customers in
queue j are of the same type. The transition rate from the state C to the
state T,;.C is given by

a(C, T;.C)= ) q(C, g+, T;;,.C) (3.2)

where the summation runs over g such that T;,.C = T;;.C. If the customer in
position | in queue j is not at the last stage of his route then let k=
r(4(D), 5;(1) +1) be the next queue he will visit. In this case a possible event is
that this customer may leave queue j and move into position m in queue k.
Let T, C be the state of the process after this event. The probability
intensity of the event is

q(C’ l’ m, T|ilm(:) = ¢i(nl)7i(l) nj)sk(m9 e + 1) (3-3)

The transition rate from the state C to the state T}, C is given by
q(C, ’Tilmc) = Z Z q(C$ ga h: ’Tth) (34)
g h

where the summation runs over g and h such that T},,C = T},,C. Another
possible event is that a customer of type i may enter the system and move
into position m in queue k, where k =r(i, 1). Let T""C be the state of the
process after this event. The probability intensity of the event is

q(C, -, m, T"C)=wv(i)8,(m, n, +1) (3.5)
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The transition rate from the state C to the state T""C is given by

q(C, T"C)=Y q(C, -, h, T"C) (3.6)
h

where the summation runs over h such that T""C = T (.

Of course for a given state C it would not be appropriate to apply certain
of the T operators defined above. However, we can say that any non-zero
transition rate of the process C is of the form (3.2), (3.4), or (3.6).

Let

: {V(i) if r(i,s)=j
a;(i, s)= .
0 otherwise
and let
I S@)
a;= Z Z (i, s)
i=1s=1

If the system is in equilibrium then a; will be the average number of
customers arriving at queue j per unit time. Let

oo n

—1_ a;
b= L a0

n=0
We shall assume that none of b,,b,,..., b, is zero. This condition is
imposed to ensure that an equilibrium distribution for the system exists, and
if it is not satisfied at least one queue will be unable to cope with the number
of customers arriving at it. Define

b, [] 24D ()
;i (ci) bj |l=-[1 d;i (l)

Theorem 3.1. The equilibrium distribution for the open network of queues
described above is

(€)= [] m(c;)
i=1

Proof. First notice that w(C) sums to unity, by the definition of the
constants by, b,,...,b,.

What might the Markov process C(t) look like if we reversed the direction
of time? One possibility is that customers of type i might enter the system in
a Poisson stream at rate v(i) and pass through the sequence of queues

r(i, S(@), r(i, S()—1),...,r(, 1)

before leaving the system, and that the queues of the system might behave
as before but with the functions vy, and §, interchanged. The reversed
process C(—t) would then be of the same form as C(t), but with different
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parameters. With this in mind define, corresponding to the probability
intensities (3.1), (3.3), and (3.5),

q'(T;.C, -, ,C)=v(i)v,(l, n;) where i = (1)
q'(TynC, m, 1, C) = ¢y (my + 1)8, (m, n, + 1)v;(l, m;) where k =r(t(]), 5;(1)+1)
q'(T™C, m,+,C)= ¢ (n +1)8, (m, n; +1) where k=r(i, 1)

Similarly define the transition rates q'(C, D) by analogy with the definition
of the transition rates q(C, D). By substituting the proposed form for #(C)
we see that

w(C)q(C, |, m, T},,,C) = m(T};,.C)q'(T};,C, m, |, C)
Thus, by summation,
7 (€)q(C, Tj;.C) = (Tt C)q'(T;1C, C)
In this way we can establish that for all C and D,
m(C)q(C, D) =w(D)q'(D, C)
We also find that

q(C)=4'(C)= Zl &)+ X, v(i)
i= i=1

Hence Theorem 1.13 allows us to deduce that «(C) is the equilibrium
distribution for the process C(t), which completes the proof of the present
result.

We can also deduce from Theorem 1.13 that C(—¢) does indeed take the
form suggested; thus we obtain the following result.

Theorem 3.2. If C(t) is a stationary open network of queues of the form
described in this section then so is the reversed process C(—t).

Theorems 3.1 and 3.2 parallel Theorems 2.4 and 2.5, and as in Chapter 2
there are some immediate consequences. Theorem 3.2 has the following
corollary.

Corollary 3.3. In equilibrium customers of type i (i=1,2,...,1I) leave
the system in a Poisson stream at rate v(i). These I Poisson streams are
independent, and C(t,) is independent of departures from the system prior to
time t,.

If ¢;,¢,,...,¢; are possible states for the queues 1,2,...,J then C=
(€1, ¢€,,...,¢;) is a possible state for the system. This implies that the state
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space & has a product form and hence we can deduce from Theorem 3.1
that in equilibrium ¢,, ¢,,. .., ¢, are independent.

Corollary 3.4. In equilibrium the state of queue j is independent of the
state of the rest of the system and is ¢; with probability m;(¢c;). The probability
that queue j contains n customers is
a;
P(ny=n)=bj——"—r 3.7
' Tli-1 (D)

If a customer is in position | in queue j then the probability that he is a type i
customer at stage s of his route is o;(i, s)/a;.

Equation (3.7) is exactly the expression we obtain if queue j is a single
queue with customers arriving in a Poisson stream at rate a,. Note, however,
that in general arrivals at queue j do not form a Poisson process (cf.
Exercise 2.4.2).

Corollary 3.5, When a customer of type i reaches queue j at stage s of his
route the probability that he finds queue j in state ¢; is m;(c;). The probability
that he finds n customers in queue j is given by expression (3.7).

Proof. If s=1 the result follows immediately from the fact that the
arrival process of type i customers at the first queue on their route is
Poisson. For s>1 the proof proceeds along the same lines as the proof of
Corollary 2.7. In equilibrium the probability flux that a customer of type i
will depart from queue j after a given stage of his route and that the queue
will be left in state ¢; with n; customers is

"'f v(i) 18, n,+1) = p(i

Z "’(c‘)¢,(n,+1)¢’(""+ )8;(L, my + 1) = w(i)m;(c;)
Thus if a customer of type i has just left queue j after a given stage of his
route, the probability that he has left queue j in state ¢; is m;(¢;). Considera-
tion of the reversed process now establishes the desired result.

If queue j is a first come first served K-server queue then Corollary 3.5
shows that the waiting time of a customer at this queue has the same
distribution as if queue j were an isolated M/M/K queue with a Poisson
arrival process of rate a,. Note that the waiting time of a customer at queue j
will not in general be independent of his experience elsewhere in the
network (cf. Exercise 2.2.5).

Exercises 3.1

1. Show that for the network illustrated in Fig. 3.1 the process
(ny, ny, ..., ng) is not Markov.
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2.

Consider an open migration process with transition rates (2.8) where
A=1, j=1,2,...,J. Show that the process can be regarded as a
queueing network with customers whose route will be
r(i, 1), r(i, 2), ..., r(i, S(i)) arriving at rate

VeGoA G062 020603 7 ArGSO-Dr S G S6)-

Observe that an infinite number of types will be required if a customer
can visit the same queue more than once. Show that the quantities
a, as, ..., ay; calculated from the queueing network parameters are
equal to the quantities a;, a,, . . ., a; determined by equations (2.9) from
the migration process parameters.

Suppose that in the description given of a K-server queue the function §;

is altered to 1 l=n:n=1,2,....K
&(ln)=41 I=K+1; n=K+1,K+2,...
0 otherwise

Show that the resulting queue discipline is last come first served without
preemption. If

6,(l,n)=;_—1-E I=K+1,K+2,...,n;n=K+1,K+2,...

show that the queue discipline is service in random order (i.e. that the
queue is equivalent to one in which when a customer leaves the queue
the next customer to be served is chosen at random from amongst those
whose service has not yet commenced).

Suppose that ¢;(n)=¢,; forall n>0, j=1,2,...,J, so that each queue is
a single-server queue. Observe that n; is a geometric random variable
with mean a;/(¢, — ;). Show that the number of type i customers at stage
s of their route is also a geometric random variable, with mean v(i)/(¢; -
a;) where j = r(i, s). Observe that for differing values of i and s giving rise
to the same value of j these random variables are dependent. Deduce
from Little’s result (1.12) that the mean time it takes a type i customer to
pass through the system is

Si)
z [¢r(i.s) - ar(l.s)]—l
s=1

. Show that the restriction not allowing two successive stages of a cus-

tomer’s route to be identical can be removed.

. The requirement that ¢;(n)>0 if n >0 can be relaxed. Find the equilib-

rium distribution for a system in which

¢;(K)=0
¢;(n)>0 n>K
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This form of the function ¢; would correspond to the servers at queue
j only operating when more than K customers are present.

7. Show that the results of this section are unaltered if the functions v,(l, n;),
8;(1, n;) are replaced by functions YL ¢;), 6;(1, ¢;), provided the functions
v; and §; are invariant under permutations of ¢, = (¢(1), ¢ (2), ..., ()
and

Y vhe)=3 8(,¢)=1
{=1 =1

3.2 OPEN NETWORKS OF QUASI-REVERSIBLE QUEUES

The routing mechanism introduced in the previous section is general enough
for most purposes, but the queue described there is fairly limited in scope.
In this section we shall show that essentially the same results can be
obtained for any network of queues provided the queues have a certain
important characteristic.

To define this characteristic we shall begin by considering a single isolated
queue. We shall make quite weak assumptions about the nature of this
queue; it could perhaps be visualized as a black box with a stream of
customers entering the box and a further stream of customers leaving the
box. Assume that every customer entering the queue leaves it but, for
simplicity, not immediately. Assume also that at no point in time does more
than one customer enter or leave the queue. Further assume that each
customer has a class ¢ chosen from a countable set € and that customers do
not change class as they pass through the queue. Often the class of a
customer will convey information about him; later we shall use it to provide
an indication of his past and future route in a network and his service
requirements at the various queues of the network. Suppose there is
associated with the queue a Markov process x(t), which we shall call the
state of the queue at time t. Assume that the state of the queue contains
enough information for us to deduce how many customers of each class
there are in the queue. Often the state will contain further information
concerning, for example, the arrangement of customers within the queue or
the amount of service still required by each customer. From now on we shall
identify the queue with the Markov process x(t) giving its state. Observe that
from a realization of the process x(f), —o<t<o, we can construct the
arrival and departure processes of customers of class ¢, since such arrivals
and departures are signalled by changes in the number of customers of class
¢ in the queue.

Definition

A queue is quasi-reversible if its state x(t) is a stationary Markov process
with the property that the state of the queue at time to, X(), is independent
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of:
(i) the arrival times of class ¢ customers, ¢ € 6, subsequent to time t,;
(i) the departure times of class ¢ customers, c € €, prior to time t,.

Theorem 3.6. If a queue is quasi-reversible then:

(i) arrival times of class ¢ customers, for c € €, form independent Poisson
processes;

(ii) departure times of class ¢ customers, for c € 6, form independent Poisson
processes.

Proof. Let %(c, x) be the set of states in which the queue contains one
more customer of class ¢ than in state x, with the same numbers of
customers of other classes. Thus a transition from the state x to a state
x' € (¢, x) indicates the arrival of a customer of class c. Since the queue is
quasi-reversible the probability a customer of class ¢ arrives in the interval
(o, to+ 8t) is independent of the state x(t;). Hence the probability intensity
that a customer of class c arrives when the state is x depends only on ¢ and
not on x; call it

alc)= Y qxx) (3.8)

x'eF(c,x)

Since x(t) is a Markov process the realization x(t), —co<t=<t,, contains no
more information than does x(t,) about whether or not a class ¢ customer
will arrive in the interval (t,, t,+ &8t). But this realization gives the arrival
times of class ¢ customers, for ¢ € ¢, prior to time t,. Hence the probability
intensity that a customer of class ¢ will arrive is a(c), even given all prior
arrival times of class ¢ customers, for c € €. Hence arrival times of class ¢
customers, for ¢ € €, form independent Poisson processes.

Consider now the reversed process x(—t). This can also be regarded as a
queue: again transitions from the state x to a state x'€ ¥(c, x) indicate the
arrival of a customer of class ¢ and transitions to the state x from a state
x' € ¥(c, x) indicate the departure of a customer of class c. Observe that
arrivals at the reversed queue x(—t) subsequent to time —t, correspond to
departures from the queue x(t) prior to time ¢,. Similarly, departures from
the reversed queue x(—t) prior to time —t, correspond to arrivals at the queue
x(t) subsequent to time f,. Since the queue x(t) is quasi-reversible it
therefore follows that the reversed queue x(—t) is also quasi-reversible. Thus
at the reversed queue x(—t) arrival times of class ¢ customers, for ce §,
form independent Poisson processes. Thus at the queue x(¢) departure times
of class ¢ customers, for ¢ € 6, form independent Poisson processes.

Although conclusions (i) and (ii) of Theorem 3.6 are the most obvious
features of a quasi-reversible queue they cannot be taken as the definition of
quasi-reversibility. These conclusions include no mention of the Markov
process x(t) defining the state of the queue, and it is possible to construct
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systems satisfying conclusions (i) and (ii) which are not quasi-reversible
(Exercises 3.2.2 and 3.2.3).

It usually follows from the definition of the process x(t) that x(t;) is
independent of subsequent arrivals. Often the form of the reversed process
x(—t) allows us to deduce that x(t,) is also independent of prior departures
and hence that the queue is quasi-reversible. An example of a quasi-
reversible queue is an M/M/1 queue with one class of customer and with x(t)
the number in the queue at time t. Theorem 2.1 establishes that this queue is
quasi-reversible. More generally, if a queue has one class of customer, a
Poisson arrival process, and the state of the queue is a reversible Markov
process independent of future arrivals, then the queue will be quasi-
reversible. More complicated examples are provided by the networks of the
previous section. If the class of a customer is taken to be its type then
Corollary 3.3 shows that a network, considered in its entirety as a single
system, is a quasi-reversible queue. The special case in which the network
consists of just one queue shows that a single queue of the form discussed in
the previous section is quasi-reversible. Further examples of quasi-reversible
queues will be discussed in the next section.

If or(x) is the equilibrium distribution of the queue x(t) then the transition
rates of the reversed queue x(—t) are given by

w(x)q'(x, X) = 7(x')q(x, x) (3.9)

Departures of class ¢ customers from the queue x(t) form a Poisson process;
the rate of this process must be a(c) since this is the arrival rate and the
queue is in equilibrium. Hence the arrival rate of class ¢ customers at the
reversed queue x(—t) is also a(c), and so

alc)= Y, q'(xx) (3.10)

x'e¥(c,x)
This is an important result; relations (3.8) and (3.10) characterize the
property of quasi-reversibility for a stationary Markov process x(t). Using
equations (3.8), (3.9), and (3.10) we can obtain the partial balance equations

) L axx)= Y 7x)aK,x) (3.11)
x'e ¥ (c,x) x'e?(c,x)

Thus in equilibrium the probability flux out of a state due to a customer of
class ¢ arriving is equal to the probability flux into that same state due to a
customer of class ¢ departing. Since the probability flux that a customer of
class ¢ arrives at the queue is equal to the probability flux that a customer of
class ¢ departs from the queue, this shows that the distribution over states
found by an arriving customer of class ¢ is the same as that left behind by a
departing customer of class c. If the process x(t) is reversible then the partial
balance equations (3.11) are automatically satisfied; however equations (3.8)
and (3.10) will only be satisfied if the arrival rate of class ¢ customers is
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independent of the state of the queue. Thus quasi-reversibility differs from
reversibility in that a stronger condition (3.8) is imposed on the arrival rates
and a weaker condition (3.11) is imposed on the probability fluxes.

In the remainder of this section we shall extend our previous results on
open networks of queues to apply to the case where the queues are
quasi-reversible. If the network is of a certain fairly simple form this can be
done easily. Suppose that customers pass through the network in accordance
with routes determined by their types as described in the previous section.
Associate with each customer arriving at queue j its class (i, s), i.e. its type
and the stage of its route it has reached. Thus j=r(i,s). Note that a
customer’s class does not alter while it passes through a queue, but changes
as it moves from one queue to another. If the routes through the system
allow the queues to be ordered so that a customer leaving a queue always
moves to a queue later in the order (as in the case in Figs. 3.1 and 3.2) then
the assumption of quasi-reversibility together with the arguments of Section
2.2 show that in equilibrium the states of the queues are independent. In
this simple case the arrival streams at each queue are Poisson; we cannot
hope for this to be true in more general networks, and so for these a
different approach is required.

Let m;(x;) be the equilibrium distribution of a quasi-reversible queue at
which arrivals of customers of class (i, s) form a Poisson process of rate
,(i, s). Let g;(x;, x{) be the transition rates of this process and let S;(i, s, x;)
be the set of states in which the queue contains one more customer of class
(i, s) than in state x;, with the same number of customers of other classes.
Consider now a Markov process X(t) = (x,(t), x,(t), . . ., x,(¢)) whose transi-
tion rates are defined as follows. The probability intensity that a customer of
type i enters the system and causes queue k =r(i, 1) to change from state x,
to state x; € % (i, 1, x,.) is gy (Xx, x}). The probability intensity that a customer
of type i leaves the system and causes queue j=r(i, S(i)) to change from
state x/ € &(i, S(i), x;) to state x; is g;(x/, x;). The probability intensity that a
customer of class (i, s), s <S(i), leaves queue j=r(i,s) and enters queue
k = r(i, s + 1) as a customer of class (i, s + 1), causing queue j to change from
state x/ € (i, 5, x;) to state x; and queue k to change from state x, to state
xte S (i,s+1,%x,), is

i (Xie» XE) = q,(x, %) i (X¢, X5)
Zx’e.‘fk(i.s+1,xk) G (xka X') e ak(ia s+ 1)

using equation (3.8). Finally, the probability intensity that there is an
internal change in queue j from state x; to state x{, without the arrival or
departure of any customer, is g;(x;, x/). The transition rates are thus defined
in the obvious way: a queue behaves just as it would in isolation except that
arrivals of class (i, s) customers, for s> 1, are triggered by departures from
another queue rather than by an independent Poisson process. If queues

a;(x}, x;)
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1,2,...,J would in isolation be quasi-reversible and if the process X is in
equilibrium then we shall call X an open network of quasi-reversible queues.
Note that the jth queue of the network will not in general satisfy the
conditions required for it to be quasi-reversible, and indeed the jth compo-
nent of X, x;, will not in general be a Markov process. Nevertheless, we shall
occasionally abuse terminology and call queue j quasi-reversible—it would
be if it were in isolation.

What might the reversed process X(—t) look like? The obvious possibility
is that customers of type i might enter the system in a Poisson stream and
pass backwards along their route and that the jth component of the system,
x;(—t), might be derived from the reversed version of queue j considered in
isolation. Using Theorem 1.13 it becomes a routine matter to establish that
this is indeed the reversed process and that the equilibrium distribution is

w(Xy, Xa, . - o, Xy) = (X)) mAX0) < - wy(xg) (3.12)

The suggested probability intensity for the reversed process that a customer
of class (i, s + 1) leaves queue k =r(i, s +1) and enters queue j=r(i,s) as a
customer of class (i,s), causing queue k to change from state xje
% (i,s+1,x,) to state x, and queue j to change from state x; to state
x/ € F(i, s, x;), is

q;(x;, x7)

— ! (w! ot A Ll K4
qk(xkv xk) a,(i, s)

qi(x;, x])
x'€F, (i, 5. x;) q;j(x;, x)
from equation (3.10), which in turn followed from the quasi-reversibility of
queue j. To establish condition (1.28) of Theorem 1.13 for transitions arising
from the movement of customers from one queue to another we need
therefore to show that

Qﬁ(xi, xk) z

™) m (0 )4, O, %) (i X4 _ 1, 06) 7 ()i, X)X, X)) 5 15
ak(i,s+1) a,‘(ia s) .

But this follows from equation (3.9) and the observation that a, (i, s +1)=
a;(i, s) = v(i). Condition (1.28) is established even more easily for transitions
associated with the arrival at or departure from the system of a customer.
The only remaining transitions are those where a single queue changes its
state without the arrival or departure of a customer. Equation (3.9) estab-
lishes condition (1.28) directly for such transitions. We must finally check
condition (1.27) of Theorem 1.13:

J
q(x1, X%, . ., X)) = Z (qi(xj) - Z aj(i,s))

j=1 (i.5)

v(i)

J

= (q;’ OEDY “i("’s))

j=1 (4.s)
= ql(xla X2y 00y x.l)

5
i=1

1

+ > v(i)
i=1
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Thus the reversed process does take the conjectured form and the equilib-
rium distribution is given by expression (3.12).

As usual the form of the reversed process allows much to be deduced
about the original process. The probability flux that a customer of class (i, s)
departs from queue j=r(i, s) and that queue j is left in state x; is

Y mOg 0, x) = m(x)ay (i, 5)
x'eP(s, i, x;)
from equations (3.9) and (3.10). Thus if a customer of class (i, s) has just left
queue j the probability he has left queue j in state x; is w;(x;). The
corresponding statement also holds for the reversed process, and hence a
customer of class (i, s) arriving at queue j = r(i, s) finds the queue in state x;
with probability m;(x;).
We can summarize the results of this section as follows.

Theorem 3.7. An open network of quasi-reversible queues has the follow-

ing properties:

(i) The states of the individual queues are independent.

(ii) For an individual queue the equilibrium distribution and the distribution
over states found by an arriving customer of a given class are identical
and are both as they would be if the queue were in isolation with arrivals
of customers of each class forming independent Poisson processes.

(iii) Under time reversal the system becomes another open network of quasi-
reversible queues.

(iv) The system itself is quasi-reversible and so departures from the system of
customers of each type form independent Poisson processes, and the state
of the system at time t,, is independent of departures from the system prior
to time t,.

Exercises 3.2

1. In the description of a quasi-reversible queue it was assumed that every
customer who entered the queue left it, that customers did not change
class as they passed through the queue, and that the process x(t) recorded
how many customers of each class the queue contained. While these
assumptions help us to visualize the queue they are not necessary. Show
that the analysis of this section is unaltered if they are replaced by the
weaker assumptions that the arrivals and departures of class ¢ customers
are signalled by transitions of the process x(¢) and that the equilibrium
arrival and departure rates of class c customers are equal, for c € €.

2. The definition of quasi-reversibility characterizes the Markov process
representing the state of the queue, rather than any more fundamental
property of the queue itself. It is quite possible that there may be two
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representations of the same physical mechanism, one of which is quasi-
reversible and the other not. Consider, for example, an isolated queue of
the form described in the last section. Let the state of the queue be (¢, ¢)
where c is the class of the last customer to leave the queue. Show that
with this representation the queue is not quasi-reversible.

. Consider a stationary M/M/1 queue. Suppose that when a customer
arrives at the queue a clerk issues him with a ticket and that when the
customer leaves the queue he returns the ticket to the clerk (the purpose
of the tickets may be to maintain the queue discipline). Now regard the
clerk’s office as a system in its own right and regard the tickets entering
and leaving the office as customers. Show that although the arrival and
departure streams are Poisson processes the system is not quasi-
reversible however its state is defined, even under the weaker assump-
tions of Exercise 3.2.1.

. Consider a queue with a Poisson arrival process and a state which is a
reversible Markov process independent of future arrivals, e.g. the two-
server queue considered in Section 1.5. Suppose now that each customer
arriving at the queue is randomly allocated a class from the set %, so that
arrival times of class ¢ customers, for c€ %, form independent Poisson
processes. Suppose further that the passage of a customer through the
queue is unaffected by his class. Show that if the state of the queue is
now taken to be the original reversible Markov process together with the
classes of the customers in the queue arranged in order of their arrival,
then the queue is quasi-reversible. If the passage of a customer through
the queue is affected by his class then the queue may not be quasi-
reversible however its state is defined, as the next exercise shows.

. Arrivals of customers of types 1 and 2 at a single-server queue form
independent Poisson processes. The service requirements of customers
are independent and all have the same exponential distribution. The
server gives priority to customers of type 1, and will even interrupt the
service of a type 2 customer if a type 1 customer arrives. Deduce that
departures from the queue form a Poisson process and that departures of
type 1 customers form a Poisson process. Show that departures of type 2
customers do not form a Poisson process.

. It was assumed early in this section that a customer entering a queue
could not leave it immediately. Certain systems, e.g. the telephone
exchange model of Section 2.1 or the queue with balking considered in
Exercise 2.1.1, satisfy all the conditions for quasi-reversibility apart from
this assumption. The assumption can be relaxed provided we deal with
two technical difficulties. The first is that we must require that all arrivals
and departures of class ¢ customers are signalled by changes in the state
of the queue, for each ce 4. If € is finite it is easy to comply with this
requirement using flip-flop variables as described in Section 2.1. The
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second difficulty is that our definition of a network requires that a
customer who enters a queue and leaves it immediately must go on to the
next queue on his route. There will thus exist transitions of the Markov
process X involving more than two queues. Extend the analysis of this
section to deal with this difficulty. Observe that both difficulties can be
avoided by using the method of Exercise 2.1.1(ii), whereby a customer
pauses momentarily instead of leaving the queue immediately.

3.3 SYMMETRIC QUEUES

The quasi-reversible queues considered in Section 3.1 possess the property
that the service requirement of a customer is exponentially distributed. This
property simplifies analysis, since it removes the need for the state of the
queue to include information on the amount of service customers have
received. A more general distribution which can be handled with a little
more effort is the gamma distribution. This arises when a customer requires
a number of stages of service, each of which consists of an independent
exponentially distributed amount of service. In this section we shall consider
a range of queues which turn out to be quasi-reversible even when service
requirements are not exponentially distributed. Initially we shall allow only
service requirements which have a gamma distribution, but later we shall
remove this restriction.

Consider a queue within which customers are ordered, with the queue
containing customers in positions 1,2, ..., n, where n is the total number of
customers in the queue. We shall call such a queue symmetric if it operates
in the following manner:

(i) The service requirement of a customer is a random variable whose
distribution may depend upon the class of the customer.
(ii) A total service effort is supplied at the rate ¢(n).
(iii) A proportion y(l, n) of this effort is directed to the customer in position
| I=1,2,...,n); when this customer leaves the queue customers in

positions +1,1+2,...,n move to positions /,l+1,...,n—1 respec-
tively.

(iv) When a customer arrives at the queue he moves into position [
(I=1,2,...,n+1) with probability y(l, n +1); customers previously in
positions I, 1+1,...,n move to positions [+1,I+2,...,n+1 respec-
tively.

Of course

i v(l,n)=1
{=1

and we shall insist that ¢(n)>0 if n>0. The queue described differs from
those of Section 3.1 in that service requirements are not restricted and the
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symmetry condition y =48 is imposed. This condition rules out many queue
disciplines, e.g. first come first served, and indeed at a symmetric queue
there will be little queueing at all, in the usual sense of the word. Neverthe-
less, some useful systems can be set up as symmetric queues, and we shall
describe four examples.

A server-sharing queue. When
y(l,n)=% I=1,2,...,n;n=1,2,...

the service effort is shared equally between all customers in the queue. If
¢(n)=1 for n>0 then the queue behaves as a single-server queue, and a
customer’s remaining service requirement decreases at rate 1/n.

A stack. When
y{,n)=1 l=n;n=12,...

the total service effort is directed to the customer who last arrived. Such a
queue is best visualized as a stack, with customers arriving at and departing
from the top of the stack. If ¢(n)=1 for n >0 then we have a single-server
queue at which the queue discipline is last come first served with preemption
(cf. Exercise 1.3.8).

A queue with no waiting room. Consider the functions
d(n)=n n=12,...,K
d(n)=¢ n=K+1,K+2,...

‘y(l,n)=% l=12,...,n;n=12,...,K

y{l,n)=1 l=n;n=K+1,K+2,...

where £ is very large. We can regard this queue as one with K available
servers at which a customer who arrives to find all K servers occupied
leaves almost immediately. We have chosen not to make ¢ infinite since this
would entail a minor technical difficulty. It would allow an arrival and a
departure to occur at the same time and not cause a change of state. This
difficulty could be overcome using the flip-flop variable described in Section
2.1 in connection with the telephone exchange model, which would then be
a special case.

An infinite-server queue. If
d(n)=n n=1,2,...

'y(l,n)=% I=12,...,n;n=1,2,...
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then the queue behaves as a queue with an infinite number of servers, with
each customer having a server to himself; in this case customers do not
affect each other within the queue. An infinite-server queue can be regarded
as a special case of either a server-sharing queue or a queue with no waiting
room.

Consider now a symmetric queue at which customers of class ¢ arrive in a
Poisson stream at rate »(c). Suppose that a class ¢ customer requires w(c)
stages of service, each of which consists of an independent exponentially
distributed amount of service with mean d(c). The service requirement of a
class ¢ customer will then have a gamma distribution, with mean w(c)d(c)
and variance w(c)d(c)>.

Let c(l) be the class of the customer in position | and suppose that his
service has reached stage u(l), where 1=u(l)=w(c(l)). Let c()=
(c(D), u(l)). Then

c=(c(1),¢(2),...,¢(n)

(where n is the number in the queue) is a Markov process representing the
state of the queue. We will now show that its equilibrium distribution is

v(c(1))d(c(1)
w(c)= ”,[[1 +0) (3.14)

provided the normalizing constant given by

oo n

1= _a
b ngo [1i-1 ¢ () (3.15)

where

=Y v(c)d(c)w(c)

is positive. Note that a is the average amount of service requirement
arriving at the queue per unit time. It is fairly easy to show that expression
(3.14) is the equilibrium distribution, since there is an obvious candidate for
the reversed process, namely a queue at which arrivais are Poisson and
which operates in precisely the same manner but with u(l) recording the
number of stages yet to be completed before the customer in position [ leaves
the queue. We shall now verify this. The probability intensity that a
customer of class ¢ arrives at the original queue and moves into position [ is
v(c)y(l,n+1), where n was the number previously in the queue. Let this
event cause a transition from the state ¢ to the state ¢’. The probability
intensity that when the state of the reversed queue is ¢’ the customer in
position ! departs from the queue is ¢ (n+1)y(l, n +1)/d(c). From the form
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(3.14) we see that

n— v(c)d(c)
(') =m(c) P ED
and hence that
2 ©u(c)y(l, n+1)=TEB+ Dyl n+1)
d(c)

Hence we can show that condition (1.28) of Theorem 1.13 holds for
transitions arising from arrivals at the queue. Similarly, we can show that it
holds for transitions caused by departures from the queue. The only remain-
ing transitions are those which occur when an intermediate stage of a
customer’s service is completed. But if this causes a transition from ¢ to ¢
then the transition rates g(c,¢’) in the original process and q(c’,¢) in the
reversed process are equal, and so are m(c) and r(¢'). (Observe that it is the
possibility of such a transition which differentiates the queue from those
considered in Section 3.1 and which necessitates the symmetry condition
y=24.) Finally, it is clear that q(c)=gq’(c), and hence Theorem 1.13 shows
that expression (3.14) does indeed give the equilibrium distribution and that
the reversed process is of the suggested form. This in turn establishes that a
symmetric queue in equilibrium is quasi-reversible, at least when service
requirements have gamma distributions. In fact the queue is dynamically
reversible with the conjugacy relation defined by

utr=wlc)-ul)+1
(D =(c), u*()
¢ =(c*(1),¢*(2),...,c*(n)
If the sum in equation (3.15) is infinite then the queue cannot reach
equilibrium: work arrives at the queue more quickly than it can be dealt
with,

The equilibrium distribution (3.14) has some interesting implications. The
probability there are n customers in the queue is

ba"
ST (3.16)
[Ti-s ()
Further, given there are n customers in the queue, ¢(1), ¢(2), . .. ,¢(n) are
independent. The customer in position ! is of class ¢ with probability
v(c)dic)w(c) 3.17)

and u(l) is equally likely to be any value in the range 1<u(l)< w(c(D)). The
constant a and the probabilities (3.16) and (3.17) depend on the values d(c)
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and w(c) only through the product d(c)w(c), which is the mean of the
service requirement distribution.

Suppose now that when a customer of class ¢ arrives at the queue he is
allocated a finer classification, (c, z), with probability p(c, z), where 2z
belongs to a countable set Z, and ¥, p(c, z) =1 for each c. Then arrivals at
the queue of customers of class (c,z) form a Poisson process of rate
v(c)p(c, z). If the service requirement of a customer of class (c,z) has a
gamma distribution with mean w(c, z)d(c, z) and variance w(c, z)d(c, z)*,
then the preceding analysis still applies with regard to the finer classification.
The service requirement distribution of a customer of class ¢ is now a
gamma distribution with mean w(c, z)d(c, z) and variance w(c, z)d(c, z)*
with probability p(c, z) for z€ %, i.e. it is a mixture of gamma distributions.
The mean service requirement of a customer of class c is

a(c)= Z plc, 2)w(c, 2)d(c, 2)

and the average amount of service requirement arriving at the queue per
unit time is

a=Y Y v(c)p(c, 2)wlc, 2)d(c, 2)
=Y v(c)alc)

Let e(1) =(c(l), z(1), u(1)) where (c(l), z(1)) is the refined classification of the
customer in position , and again take ¢ =(¢(1), ¢(2), ... ., ¢(n)) to be the state
of the queue. Then the equilibrium distribution is now

v(c(Dp(c), z(N)d(c(D), (1))
()

where b is defined as before by equation (3.15). Thus the probability there
are n customers in the queue is again (3.16), and if there is a customer in
position I the probability he is of class ¢ is v(c)a(c)/a. These probabilities
depend on the parameters p(c, z), d(c, z), and w(c, z) defining the distribu-
tion of service requirement for a class ¢ customer only through the mean
service requirement a(c). If we are given the class ¢ of the customer in
position [ then the probability his refined classification is (c,z) is
p(c, 2)d(c, z)w(c, z)/a(c). If we are given the refined classification (¢, z) of
the customer in position I then we will know w(c, z), i.e. how many stages
his service consists of; the number of the stage he has reached, u(l), is
equally likely to be any number between 1 and w(c, z). Let us record some
of these conclusions in the following theorem.

w(e)=>b l'[ (3.18)
=1

Theorem 3.8. A stationary symmetric queue ¢ at which service require-
ment distributions are mixtures of gamma distributions has the following
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properties:
(i) The probability the queue contains n customers is
ba"
ITi-: ()

(ii) Given there are n customers in the queue the classes of the customers are
independent and the probability the customer in a given position is of class
cis

v(c)a(c)
a

(iii) The queue is quasi-reversible with respect to either the classification ¢ or
the refined classification (c, z).

Suppose now that & is a collection of positive numbers. For each z € & let
d(c, z) become very small and w(c, z) very large, with w(c, z)d(c, z) fixed at
the value z. The variance of the gamma distribution associated with the
refined classification (c, z), w(c, z)d(c, z)?, tends to zero, while the mean
remains at z. We can thus approximate a service requirement of exactly z.
By using several refined classifications (c, z) for the class c it is possible to
approximate as closely as we please an arbitrary distribution of service
requirement; this is stated more precisely in the next result, which we shall
prove in Exercise 3.3.3.

Lemma 3.9, Let F(x) be the distribution function of a positive random
variable. Then it is possible to choose a sequence of distribution functions
F,,(x), each of which corresponds to a mixture of gamma distributions, so that

lim F,,(x)=F(x)

m-—»o0

for all x at which F is continuous.

Lemma 3.9 strongly suggests that Theorem 3.8 will remain valid without
the restriction that service requirement distributions be mixtures of gamma
distributions. This is in fact the case although we will not be able to prove it
here, since a symmetric queue with arbitrary service requirement distribu-
tions cannot be represented by a Markov process with a countable state
space. A continuous state space is required, and we shall have to content
ourselves with a brief sketch of the results.

Consider then a symmetric queue at which customers of class ¢ arrive in a
Poisson stream of rate »(c), and suppose the service requirement distribu-
tion of a class ¢ customer has distribution function F,(x), with mean a(c).

Let
a= Z v(c)a(c)
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and define b as before by equation (3.15). Let c(l)€ € be the class of the
customer in position I, let z(l)€(0,) be his service requirement, and let
u(D) (0, z(1)) be the amount of service effort he has so far received. Let
e()=(c(), z(1), u(})) and take ¢=(¢(1), ¢(2), ..., c(n)) to be the state of the
queue. Observe that the process ¢ is Markov with a continuous state space.
Jumps in the process ¢ occur when a customer arrives or departs, but
between these jumps ¢ changes continuously, with u(l) increasing linearly at
rate ¢(n)y(l, n). When u(l) reaches z(l) the customer in position [ leaves
the queue.

Theorem 3.10. A stationary symmetric queue ¢ at which service require-
ments are arbitrarily distributed has properties (i) to (iii) listed in Theorem 3.8.
In addition:

(iv) Given the number of customers in the queue and the class of each of
them, the amounts of service effort the customers have received are
independent, and the probability a customer of class ¢ has received an
amount of service effort not greater than x is

F*(x)———L (1-F.(z))dz

Outline of proof. The theorem is proved by showing that the equilibrium
distribution is the probability density

b l—l du(l) df‘;cl()l)(z(l)) V(C(l)) (3.19)

n=0,1,2,...,c(De%, 0<z(l) <o, 0<u()<z(l),1=1,2,...,n, and that
the reversed process is an identical symmetric queue but with u(l) recording
the amount of service effort yet to be received by the customer in position .
These facts can be established by a direct consideration of the process ¢ or
by a limiting argument based on a sequence of symmetric queues chosen so
that the limit of the sequence is the process ¢, but where at each queue in
the sequence service requirement distributions are mixtures of gamma
distributions.

The equilibrium distribution (3.19) is a density with respect to
u(l), u),...,u(n), z(1), 2(2), ..., z(n) for each value of n and for each
arrangement (c(1), c(2),. .., c(n)). Properties (i), (ii), and (iv) follow by
integrating this density over the appropriate values of these variables. For
example the distribution (3.19) shows that, given the number of customers
in the queue and the class of each of them, z(l) is distributed with density

alc (l)) ————— 2() dE, ,(z(1)) 0<z(<w>
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and, given z(l), u(l) is distributed uniformly on (0, z(1)). Hence the proba-
bility a customer of class ¢ has received an amount of service effort greater

than x is
ﬁ‘[m[fdu]dﬁ(z)

which reduces to 1—F*(x).

The probabilities in (i) and (ii) are insensitive to the form of the distribu-
tion functions F,(x) in that they depend upon them only through their
means a(c). Thus, for example, Erlang’s formula (1.13), calculated for a
telephone exchange model in which call lengths are exponentially distri-
buted, holds even when call lengths are arbitrarily distributed since the
model is a symmetric queue.

The distribution function F¥(x) is familiar as the equilibrium age distribu-
tion of a renewal process in which components have lifetime distribution
F,.(x). We can in fact derive this from our results. Consider a queue with no
waiting room and with just one server. Suppose that there is just one class of
customer ¢ and that the arrival rate »(c) is very large. This queue is
equivalent to a renewal process, since as soon as the single customer in the
queue is served (a component fails) he is replaced by another customer (a
new component). Thus in equilibrium the age of the component in use has
distribution function F¥*(x).

The above example illustrates a minor difficulty which can arise with
arbitrary distributions. If lifetimes are all the same fixed constant, the
‘renewal process is periodic and will not approach equilibrium unless it starts
there. Periodicity cannot arise when distributions are mixtures of gamma
distributions, but must be watched for in general.

The number in a symmetric queue will not usually be a Markov process.
Nevertheless, the form of the reversed process leads immediately to the
following result.

Theorem 3.11. The number in a stationary symmetric queue is a reversible
stochastic process.

This property, like quasi-reversibility, is lost when the queue is part of a
network of queues,

A major difference between the symmetric queues considered in this
section and the queues considered in Section 3.1 is that at a symmetric
queue the service requirement of a customer can depend upon his class. In a
network of quasi-reversible queues this has two important consequences
which we shall explore further in the next chapter. First, a customer’s service
requirement at a symmetric queue can depend upon the queues he has
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previously visited and the queues he has yet to visit. This follows naturally
since his class depends upon his type, which determines his route through
the queues of the network. Hence if the type of a customer in a symmetric
queue is unknown then his future route can depend upon his service
requirement at that queue. Second, given a customer’s route through the
queues of the network, his service requirements at symmetric queues along
that route may be dependent. This will happen when a variety of customer
types correspond to the same route through the system but to different
service requirements at the symmetric queues along that route. Indeed, by
using enough customer types it is possible to approximate as closely as we
please any desired pattern of dependence between the service requirements
at the symmetric queues along a route (Exercise 3.3.12) and between these
service requirements and the route itself. This strongly suggests that arbit-
rary patterns of dependence can be allowed, but once again to establish this
would take us beyond the realm of countable state space Markov processes.

Although symmetric queues are not the only quasi-reversible queues
whose operation involves arbitrary distributions (see, for example, Exercise
3.5.11), they form a class large enough to include all the special cases of
such queues which we shall need in the next chapter when we discuss
examples of queueing networks.

Exercises 3.3

1. The queue with no waiting room described above has the property that
when a customer arrives to find all the servers occupied the servers
pause momentarily until he leaves. Redefine the functions ¢ and vy so
that this does not occur.

2. Show how the functions ¢ and y can be chosen to represent a
server-sharing queue with a maximum size of N, so that customers who
arrive when N customers are being served are turned away.

3. Prove Lemma 3.9, using

F,(x)= ) [F(—k—)—F(E-—l)]G',;(x) x=0
k=1 m m

where

(i) Gk is the distribution function of a gamma distribution with mean
k/m and variance k/m? (i.e. the distribution function of the sum of k
exponential random variables each with mean 1/m),

(ii) G¥ is the distribution function of a gamma distribution with mean
g(k, m) and variance g(k, m)/m where

Kfm x dF(x)
k—1ym F(kim)—F((k—1)/m)

Show that in this case the mean of F,, is equal to the mean of F.

a(k, m)={
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Show that F(x)= F*(x) if and only if F is the exponential distribution.

. If F.(x), ce%, correspond to mixtures of gamma distributions establish

property (iv) of Theorem 3.10 directly from the equilibrium distribution
(3.18).
Show that the service requirement yet to be received by a customer in a
symmetric queue has mean

Mz +g2

2p

where p and o? are the mean and variance respectively of the service
requirement distribution.

. Suppose that an M/G/1 queue has a queue discipline which allows it to

be considered as a symmetric queue, e.g. last come first served with
preemption or server sharing. Let W be the service requirement yet to
be received summed over all the customers in the queue. Show that the
distribution of W is the same as that of a geometric sum of independent
random variables each with distribution function F*. Use the previous
exercise to deduce that

v(u?+o0?)
2(1-wp)

where v is the arrival rate at the queue. Observe that the distribution of
W does not depend upon the queue discipline. If the queue discipline is
first come first served W is called the virtual waiting time and is the time
a typical customer would have to queue to before his service started;
expression (3.20) is known as the Pollaczek—-Khinchin formula.

E(W)= (3.20)

. Show that the examples of symmetric queues given in this section can

each be constructed from the queues of Section 3.1. Begin by showing
that a service requirement with a gamma distribution can be obtained
by requiring a customer to pass through the same queue a fixed number
of times before moving on to the next queue.

. Show that the waiting time of a customer at a stack has the same

distribution as the busy period in an M/G/1 queue.

Show that at either the server-sharing queue or the queue with no
waiting room the order of the customers in the queue is independent of
the order of arrival of these customers. Suppose now that customers of
class ¢ require an amount of service which is exponentially distributed
with mean 1/A(c). If the queue contains n customers show that the
probability the customers arrived in a given order is

ﬁ Alc(D)

1=1 an=1 A(c(m))
where c(l), [=1,2,...,n, is the class of the customer who is Ith in the
given order.



82
11.

12.

13.

14.

15.

Queueing Networks

Suppose that in the telephone exchange model considered in Sections
1.3 and 2.1 call lengths are arbitrarily distributed. Show that the points
in time at which a call is lost or is completed form a Poisson process.
Show that the points in time at which a call is lost form a reversible
point process. Establish the result stated in Exercise 2.1.4.

Let F(x;, x5,...,X,) be the joint distribution function of n positive
random variables. Show that if

Fm(xla X2 000y xn)
=X X L Ghx)Glix) - Glilx,)

1 k=1 k,=1

k,/m k,/m k /m
[ J I dF(zy, 23, ..., 2,)
( (

ki—1)/m ko—1)/m k,~1)/m

X

where G, is defined as in either part (i) or (ii) of Exercise 3.3.3 then

m F, (xy, X3, ..., %) =F(X3, X3, ..., X,)
for all {(x,, x,, ..., x,) at which F is continuous.
Consider a symmetric queue within an open network of quasi-reversible
queues. Suppose that customers enter the system at rate v and that the
mean service requirement of a customer at the symmetric queue,
summed over all the customer’s visits to the queue and averaged over
all customer types, is a. Show that the equilibrium distribution for the
number in the symmetric queue is just what it would be if that queue
were in isolation and customers with mean service requirement a
arrived in a Poisson stream at rate ».
Consider a symmetric queue within an open network of quasi-reversible
queues. Deduce from Theorem 3.8(ii) that the mean number of class ¢
customers in the symmetric queue is proportional to wv{(c)a(c). By
supposing that the classification ¢ is fine enough to determine the
customer’s service requirement deduce from Theorem 3.10 and Little’s
result that the mean period a customer spends in the symmetric queue is
proportional to his service requirement there.
Show that for a stack the function ¢(n) can be replaced by a function
¢(c(1),¢c(2),...,c(n)) without destroying the property of quasi-
reversibility.

3.4 CLOSED NETWORKS

In the open networks considered previously in this chapter customers of
type i entered the system in a Poisson stream at rate »(i) and passed
through the sequence of queues

r(i, 1), r(i,2), ..., r(i, S())
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before leaving the system. Suppose now that customers of type i return to
queue r(i, 1) after leaving queue r(i, S(i)) and repeat their route through the
system. The network will become closed, with customers neither entering
nor leaving the system. The number of customers of type i within the
system, N(i) say, will remain fixed for i=1,2,..., L

If the queues of the system would in isolation be quasi-reversible the
equilibrium distribution takes a simple form. Let (x;) again be the equilib-
rium distribution of the jth queue in the network if it were in isolation, with
arrivals of customers of class (i, s) forming a Poisson process of rate ;(i, s).
Let

(X1, X, . . ., XJ)=B771(X1)772("2) sy (xy) (3.21)

where B is chosen so that the distribution 7 sums to unity, with the sum
taken over ¥, the set of states (x,, x,, . . ., x;) for which the total number of
type i customers is N(i), for i =1,2,..., L Itis fairly easy to check that  is
the equilibrium distribution for the system and that the reversed process
consists of the reversed queues with customers moving backwards around
their routes. Indeed we have done most of the work already in Section 3.2
when dealing with open networks. The relations established there for
transitions arising from the movement of a customer from one queue to
another (equation 3.13) or from internal changes in a queue (equation 3.9)
apply here also. The movement of a type i customer from queue r(i, S(i)) to
queue r(i, 1) can be dealt with in precisely the same way as a movement
from queue r(i, s) to r(i, s +1). Finally,

_ Z (‘11( )= > ai(i’s))

q(xh X2, . x.l) @i.5)

J
=3 (a1 - )
j=1 (i,5)
=q" (X1, X2, . . ., X)) (3.22)
and so Theorem 1.13 establishes the desired result.

Some comments on the distribution (3.21) are in order. First, since
(%1, %z, ..., %;) is constrained to lic in the set & it does not follow from
(3.21) that x,,x,,...,x; are independent. Second, the distributions
mi(x,), wa(Xp), . . ., m;(x,) depend upon v(i), i=1,2,..., 1, yet the distribu-
tion #(xy, X,, ..., X;) cannot since in a closed network the values of these
parameters do not affect the process. The resolution of this apparent
contradiction lies in the role of the normalizing constant B. If (i) is changed
then mr,(x,), m2(xz), ..., 7 (x;) do indeed change, but so does B, and B
changes in such a way that m(x,,x,,...,x,) remains unaltered (cf. the
discussion following Theorem 2.3).
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In an open network we represented the behaviour of a customer with a
random route by using a set of types, one of which was allocated to him at
random (see Fig. 3.2). In the closed network just described a customer’s
type never changes, and this prevents us from modelling the network
illustrated in Fig. 3.3 where a customer leaving queue 2 chooses at random
whether to go to queue 1 or queue 3. We shall solve this problem by
allowing a customer’s type to change randomly in a closed network. Thus for
the network in Fig. 3.3 suppose there are two customer types, and suppose a
customer of type 1 follows the route 1, 2 and a customer of type 2 the route
3, 2. If we allow a customer leaving queue 2 to choose his type at random
from the set {1, 2} then customers will behave in the required way.

More generally, suppose the set of types {1,2,...,I} is divided into
disjoint subsets $(1), $(2),..., and that on leaving queue r(i, S(i)) a cus-
tomer of type i€$(m) becomes a customer of type i'e $(m) with
probability @

v(i
Zie&(m) V(i) (3.23)

He then proceeds through queues r(i’, 1), r(i’,2), ..., r(i’, S(i')) before re-
choosing his type again. His type will always belong to the set $(m) and thus

M(m)= ), N()
ief(m)
will remain constant for m=1,2,.... The above mechanism will allow very

general routing schemes and certainly those which can arise in closed
migration processes (Exercise 3.4.1). It would be possible to regard m as the
type of a customer and i € $(m) as a finer indication of his progress: with
this terminology the type of a customer would not keep changing. We prefer
to call i the type since for open networks at least it is helpful to have the
route of a customer determined by his type. Observe that in a closed
network the points in time at which a customer rechooses his type can be
regarded as regeneration points for him.

Consider then a system X =(xy,X,,...,X;) with the above routing
mechanism and containing queues which would in isolation be quasi-
reversible. If the process X =(x;, X,, ..., X;) is in equilibrium then call X a
closed network of quasi-reversible queues. An obvious possibility for the
equilibrium distribution is

(X, Xy, . . ., X)) =B(M(1), M(2), .. dm(Xy)ma(x,) - - - mp(xy)  (3.24)

| 2 3
e

Fig. 3.3 A closed network
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where the normalizing constant B(M(1), M(2),...) is chosen so that the
distribution 7 sums to unity, with the sum taken over the state space

Y N()=M(m), m=1,2,...}

ie#(m)

FM),MQ2),..)= {(xl, X35 ..., Xy)

We shall use Theorem 1.13 to check that (3.24) is the equilibrium distribu-
tion and that the reversed process consists of the reversed queues with
customers moving backwards around their routes and changing from type i
to type i’ after leaving queue r(i, 1) with probability (3.23). Consider the
transition which arises when a customer of type i leaves queue j = r(i, S(@i)),
changes to type i’, and enters queue k=r(i",1). To establish condition
(1.28) for this transition we must show that

m; (x))m (%, )q; (x], x;) qc,::?,k', ’;ﬁ) Y, :((l,)v(i)

qi(x;, x))  v(i)
aj(i’ S(l)) Zief(m) V(l)

All but the final terms in equation (3.25) arise in the same way as did the
corresponding terms in equation (3.13). But since a,(i’,1)=»(i") and
a;(i, S(i)) = v(i), equation (3.25) reduces to equation (3.13) which has al-
ready been established. For all the other transitions arising in a closed
network condition (1.28) takes the same form as for the corresponding
transitions in an open network and has thus already been established.
Finally, condition (1.27) follows from equation (3.22). Hence the equilib-
rium distribution and the reversed process are of the suggested form.

Consider now the instant at which a customer of class (i, s), ie$(m),
leaves queue j =r(j, s). Let x,, for k# j, be the state of queue k immediately
before this instant. Call (x,,x,, ..., x;) the disposition of the other custom-
ers in the system; note that it is a member of the set
S(M@1),M(2),...,M(m)—1,...), since one customer of type i€ $(m) is
not included in the description (x;,x,,...,x,). The probability flux that a
customer of class (i, s) departs from queue j = r(i, s) with (x,, x, . . ., x;) the
disposition of the other customers in the system is

= ;) () q i (xk, X)) (3.25)

B, M@, (T mw)) T maw,x)

b #f X'eF(s,ix;)

=B(M(1), M(2), .. D (xg)ma(xy) - Wl(xj)aj(i, s)

from equations (3.8) and (3.9). Thus if a customer of class (i, s) has just left
queue j the probability that the disposition of the other customers in
the system is (x,,X,,...,X;) is proportional to (X)) my(xy) « « - m(x;). The
constant of proportionality is found by summing over the set
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P(MQ), MQ2),...,M(m)—1,...) and is hence B(M(1), M(2),..., M(m)—
1,...). This is an intriguing result: the disposition of the other customers in
the system is distributed in accordance with the equilibrium distribution
which would obtain if they were the only customers in the system. Consider-
ation of the reversed process shows that the same statement is valid at the
instant when a customer of class (i, s) arrives at queue j=r(i, s).

We can summarize the results of this section as follows.

Theorem 3.12. A closed network of quasi-reversible queues has the fol-

lowing properties:

(i) The equilibrium distribution is of the form (3.24).

(ii) Under time reversal the system becomes another closed network of quasi-
reversible queues.

(iii) When a customer of a given class arrives at a queue the disposition of the
other customers in the system is distributed in accordance with the
equilibrium distribution which would obtain if they were the only custom-
ers in the system.

If a closed network of quasi-reversible queues contains symmetric queues
then by using various customer types as described in Section 3.3 it is
possible to allow dependences between a customer’s service requirements at
the symmetric queues he visits and between these service requirements and
his route. We shall discuss this point further in Section 4.2, where it can be
illustrated with some simple examples.

Exercises 3.4

1. Consider a closed migration process with transition rates (2.1) where
A =1,j=1,2,...,J. Show that the process can be regarded as a closed
queueing network with customers whose route will be
r(i, 1), r(i, 2), ..., r(i, S(i)), where r(i,1)=1, r(i,s) # 1 for s# 1, having
the parameter

V(i) = A-r(i,l).r(i,2)Ar(i,2).v(i,3) e Ar(i.S(i)—l).r(i.S(i))Ar(i.S(i)).r(i,l)

Show that the quantities a,, a,, ..., a; calculated from the queueing

network parameters are proportional to the quantities ay, a,,...,a;

determined by equations (2.2) from the migration process parameters.
2. Let

W](A'Ij(l), M(Z), )= Z 'Wj(xi)
where the summation runs over all x; such that queue j contains M;(m)

customers whose type is in the set $(m), for m=1,2,.... Show that
the equilibrium distribution (3.24) implies that the probability queue j
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contains M;(m) customers of type ie$(m), for m=1,2,..., j=
1,2,...,J, is

BM(1), M®),..) [TmM1), M), ...)

provided
YM(m)=M(@m) form=1,2,...
i

. The normalizing constant B(M(1), M(2),...) can be calculated using
the generating function method introduced in Exercise 2.3.6. Define the
generating functions

D(2(1),2(2),.. )=} Y m(M(1), M(2),..)z(MDz2M@ . ..

m M;(m)

3 z(l)M(l)z(Z)M(z) e
BGM.2@),. =2 ¥ SOt M@

Show that
— B),z(2),..)=]19,(z),2(2),..)

. Consider a closed network of quasi-reversible queues containing a
symmetric queue. The service requirement of a customer visiting the
symmetric queue may well be dependent on his earlier service require-
ments at this and other symmetric queues, because these may all be
related to his type. Use Exercise 3.4.2 to show that the equilibrium
distribution for the number of customers in the various queues of the
network is insensitive to these dependencies and that it will be unaltered
if each customer arriving at the symmetric queue has a service require-
ment independent of his previous service requirements so long as the
mean service requirement of each customer at the queue is unaltered.
. By considering the probability flux that a customer of class (i, s),
i€ $(m), leaves queue j=r(i,s) show that in equilibrium the mean
arrival rate of customers of class (i, s) at queue j is

a;(i, ) B(M(1), M(2), ..., M(m),...)
B(M(1), M(2),...,M(m)—-1,...)

. Exercise 3.3.14 has a parallel for a closed network. Consider a symmet-
ric queue within a closed network of quasi-reversible queues. Show that
for a given customer entering the symmetric queue the mean period he
will remain in the queue is proportional to his service requirement
there. Observe that, unlike the parallel result for open networks, the
constant of proportionality depends on the chosen customer. This is not
surprising: when a given customer arrives at a symmetric queue the
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disposition of the other customers does not depend on the class of the
given customer if the network is open, but it does if the network is
closed.

A haulage firm has a fleet of N lorries, but at any one time some of
these are being overhauled. While there are n lorries available the firm
is able to handle an amount ¢{(n) of work, measured in miles per day,
and this is shared out equally between the n lorries. A lorry requires an
overhaul when it has travelled X miles since its last overhaul. An
overhaul takes Y days. The quantities X and Y may be random
variables; if so these random variables are independent between differ-
ent lorries, but values relating to the same lorry may be dependent.
Derive an expression for the mean amount of work handled per day by
the firm.

A complex device consists of n main units, all of which must be
operative for the normal operation of the device. Each main unit may
fail within time h with probability Ah +o(h), independently of the other
service units and of its previous service life. There are m +! additional
units, m of which are active, i.e. may fail with the same probability as
the main units, while the remaining I are passive and cannot fail. Failed
units are sent for repair and take a mean time u~! to repair. If some of
the main units fail these are replaced by units from the active redundant
system, and these in turn by units of the passive redundant system.
Describe the system as a closed network of queues and obtain the
equilibrium probability that the device is operative.

. Consider the model of a mining operation described in Section 2.3.

Suppose that after machine j has dealt with face i the face must be left
for a period until the dust has settled before the next machine can start
work on it; let this period have mean X Obtain the equilibrium
distribution for the system.

Consider again the model of mining operation described in Section 2.3.
The model assumed that it took no time for a machine to travel from
one face to the next. Suppose now that it takes a mean period Yj; for
machine j to travel from face i to the next face. Obtain the equilibrium
distribution for the system when ¢, =¢,="-"*=¢;=¢.

All the queues we have considered so far which convert a Poisson
arrival process into a Poisson departure process have the property that
the number in the queue is a reversible stochastic process. This property
does not follow necessarily, as the following example shows. Consider a
closed network with two customers and two queues. Queue 1 would in
isolation behave as a first come first served M/M/1 queue. Queue 2
would in isolation behave as a queue with one server and no waiting
room. The first customer’s service requirement at queue 2 is 1. The
second customer’s service requirement at queue 2 changes in the cycle
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2,3,...,52,3,.... Both customers’ service requirements at queue 1
are independent exponentially distributed random variables with mean
A1, Show that the arrival process at and the departure process from
queue 2 are both Poisson. Show that the number of customers in queue
2 is not a reversible stochastic process. Observe that these statements
are true for queue 1 as well.

3.5 MORE GENERAL ARRIVAL RATES

In the open networks considered in Section 3.2 the state of the system did
not affect the streams of customers entering the system. In this section we
shall show that results can be obtained when the rates of arrival at the
system are influenced by the state of the system, provided the influence
takes a certain fairly restricted form.

It is illuminating to approach these results by consideration of the follow-
ing queue. Suppose a queue is such that its state is (n(1), n(2),...), where
n(c) is the number of customers of class ¢ that it contains, and suppose
arrivals of class ¢ customers form a Poisson stream of rate v(c), ¢ € 6, where
the arrival streams are independent of each other. Write

v(c)d:(n(1), n(2),...)

for the probability intensity that a customer of class c leaves the queue when
its state is (n(1), n(2),...).

Lemma 3.13. If the above queue is in equilibrium the following statements
are equivalent:
(i) The process (n(1), n(2),...) is reversible.
(ii) The queue is quasi-reversible.
(iii) There exists a function ®(n(1), n(2),...) such that

®(n(1), n(2),...,n(c),...)=¢.(n(1),n(2),...,n(c),...)
Xx®(n(1),n?2),...,n()-1,...) (3.26)

Proof. Let
_ b

®(n(1),n(2),...)
If relation (3.26) holds then = satisfies the detailed balance conditions;
hence statement (iii) implies statement (i). Conversely, if the process is
reversible the equilibrium distribution ar(n(1), n(2), .. .) satisfies the detailed
balance condition

w(n(1),nQ2),...,n(c)-1,.. )v(c)=m(n(),n@),...,n),...)

Xv(c)¢.(n(1),n(2),...,n(),...)

a(n(1),n2),...)
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and hence
®(n(1), n(2),..)=m(n1),n?),..)"!

satisfies the relation (3.26). Thus statement (i) implies statement (iii).
Statement (i) immediately implies statement (ii). Conversely, if the queue

is quasi-reversible then equation (3.11) shows that the detailed balance

condition is satisfied, and thus statement (ii) implies statement (i).

Consider now a closed network in which customers do not change type, of
the sort discussed early in the previous section. Suppose that a quasi-
reversible queue of the above form is appended to the network as queue 0,
and that a visit to this queue is added as an extra stage at the beginning of
the route of each customer; thus r(i,0)=0, for i=1,2,.... Let N(i) be the
number of customers of type i in queues 1,2,...,J and N*(i) the number
in queues 0,1,2,...,J. Thus N*@i)=N(i)+n(i). Now define a function ¥
by

[D(n(1), n(2),.. )]*  if NGO)=N*G),i=1,2,...

‘F(N(l)’ N(Z), M ) = { 0 otherwise

where n(i)= N*(i)— N(i). If we confine our attention to queues 1,2,...,J
how does the system behave? If these queues contain between them N(i)
customers of type i, for i=1,2,..., then the probability intensity a cus-
tomer of type i leaves queue 0 and enters the system is

d(n(1),n(2),...,n(@),...)
&(n(1),n2),...,n@-1,...)
— 50) W(N(1),N@2),...,N@+1,...)
W(N(1),NQ2),...,N@),...)

The equilibrium distribution for the system is, by Theorem 3.12, of the form

1
B n.. )
=BW(N(1), N(2), .. Jm(x)my(x) - - - m5(x;)  (3.28)

The above discussion strongly suggests that in an open network of queues
if we relax the assumption of Poisson arrival streams, and suppose instead
that the probability intensity a customer of type i arrives takes the form
(3.27), then the equilibrium distribution is given by expression (3.28).
Indeed the discussion proves this assertion if there exist numbers
N*(1), N*(2), ... such that ¥(N(1), N(2),...)=0 if N(i)>N*(i). This re-
striction can be removed by proving the assertion directly.

v(i)

(3.27)

T (x)a(x5) - -+ (%)

Theorem 3.14. If in a stationary network of quasi-reversible queues the
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arrival rates at the system take the form (3.27) then the equilibrium distribu-
tion is given by expression (3.28).

Proof. The reversed process might consist of the reversed queues with
customers of type i entering the system at rate (3.27) and moving backwards
through their route. We can use Theorem 1.13 to check that the reversed
process does indeed take this form and that (3.28) is the equilibrium
distribution. The conditions of Theorem 1.13 are readily verified; they take
the same form as before apart from a straightforward embellishment for
transitions caused by a customer entering or leaving the system.

To illustrate how we might use Theorem 3.14 let $(1), $(2), ... be sets of
customer types (not necessarily disjoint) and let

N($)= L NG
If ¥ is of the form
N($)—1
P(N(1), N(2),...) =I;I Nﬂo s (N)

then the arrival rate of customers of type i is

IT vs(N))
F:ies

If Y5 =1 for all $ then customers of type i arrive at the system in a Poisson
stream at rate v(i), and we have the ordinary open network of queues. By
varying the function y;; we can make the rate of arrival of customers of type
i depend upon the number of such customers already in the system. If $
corresponds to the set of types used to represent a customer whose route is
random then it may be appropriate to use the function y, rather than the
of all customer types to be affected by the total number of customers in the
system; for example if we let ¥, ;(N*)=0 then the system will saturate
when the number of customers in it reaches N*,

In spite of these examples the arrival rates allowed by Theorem 3.14 are
of a fairly restricted form. They can depend upon the number of customers
of each type in the system but not upon the position within the network of
these customers. Further, the dependence upon the number of customers of
each type must be expressible in terms of the function ¥,

We shall end this section with a simple example to illustrate Theorem
3.14.

A repair shop. Consider a repair shop that accepts two types of job. The
shop employs K repairmen altogether, of whom K, can deal with jobs of
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type 1, K, can deal with jobs of type 2, and the remainder, K;, can deal with
both types of job. The shop is interested in choosing the best arrangement
(K,, K, K;). Suppose that jobs of type 1 and 2 arrive in independent
Poisson streams of states v; and v, respectively, When a job arrives it is
accepted if there is a repairman free who can deal with it; otherwise the job
is lost. Jobs being dealt with can be reshuffled amongst the repairmen if this
allows an extra job to be accepted. The time taken to deal with a job of type
i is arbitrarily distributed with mean ;' and is not affected by any
reshuflling that may be necessary.
Let n; be the number of jobs of type i in the shop and let

n=K+K; n=K,+K; n+n,=K;+K,+ K,

_J1
¥(ny, ny) = {0 otherwise

The rules we have specified above imply that the probability intensity a job
of type i will arrive and be accepted when n; jobs of type j are already there
is

) ¥(n,+1, ny) i=1
! Y(n,, ny)
and
¥(n,, n,+1) )
—_ i=2

V2 Y(ny, ny)

The entire system thus behaves as an infinite-server queue with two types of
customer whose arrival pattern is of the form (3.27). Theorem 3.14 thus
shows that in equilibrium

1 nol "
1) = B, ) ()" L (2)
nei\py/ npt\p,

Exercise 3.5.5 shows that the system appropriately augmented is quasi-
reversible and that, counting lost jobs, the departure streams formed by jobs
of types 1 and 2 are independent and Poisson.

Exercises 3.5

1. Write down Kolmogorov’s criteria for the queue considered in Lemma
3.13. Observe that these conditions on the functions ¢ (n(1), n(2),...)
are equivalent to the existence of a function ® satisfying equation
(3.26).

2. Choose a function ¥ so that the queues considered in Exercise 1.6.1
have arrival rates of the form (3.27).

3. Show that if ¥ takes the value zero unless N($)= N*(#) for each ¥
then the resulting network is equivalent to the closed network consi-
dered in Section 3.4. Observe that an appropriate choice of ¥ produces
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a mixed system in which certain types of customer can enter and leave
the system while customers of other types can do neither.

. Show that when a customer of type i arrives at queue j =r(j, s) at stage
s of his route the probability that the disposition of the other customers
in the system is (xq, X5, ..., X;) is proportional to

W(N(1),N@),...,N@+1,.. )w(x)m(x,) -+ - mw(x;)

where (N(1), N(2),...,N(i),...) is calculated from the disposition
(X1, X3, .+ 0, Xp).

. Suppose that expression (3.27) takes values not greater than v(i). Then
the apparent arrival rate (3.27) will arise if customers of type i arrive at
the system in a Poisson stream of rate »(i) but a customer of type i is
lost with probability

_W(NQ),NQ),...,N@)+1,...)
¥(N(1), N(2),...,NG),...)

Show that if I is finite and the state of the system is augmented so that it
signals when customers are lost, then the resulting process is quasi-
reversible with the class of a customer given by his type.

. Generalize the model of a repair shop to atlow I types of job, with each
repairman able to deal with a subset of the I types.

. Amend the queue considered in Lemma 3.13 so that service require-
ments at it can be arbitrarily distributed. Show that Lemma 3.13 still
holds.

. Let x be a quasi-reversible process with equilibrium distribution r(x).
Suppose now that all transition rates g(x, x’) which do not correspond to
the arrival of a customer are multiplied by ¢(N), where N is the
number of customers in the system in state x. Deduce that the resulting
system is quasi-reversible with equilibrium distribution

m(x)
Lo

either from the equilibrium equations and the partial balance equations
(3.11) for the process x, or from Theorem 3.14 and a dilation of the
time scale.

. There are quite subtle ways in which a system with the general arrival
rates discussed in this section can be rendered quasi-reversible. Con-
sider a system with three types of customer and with arrival rates of the
form (3.27) where ¥(0,0,0)=¥(1,0,0)=¥(0,0,1)=¥(0,1,1)=1,
and ¥(N(1), N(2), N(3))=0 for other arguments. Then the apparent
arrival rate (3.27) could arise as described in Exercise 3.5.5, but if
v(1) = »(2) it could also arise in the following way. Customers of classes
1 and 2 arrive in independent Poisson streams of rates »(1) and »(3)

B
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respectively. When a customer of class 2 arrives he is lost unless the
system is empty, in which case he enters it as a customer of type 3. If
when a customer of class 1 arrives the system is empty he enters the
system as a customer of type 1; if the system contains one customer of
type 3 he enters the system as a customer of type 2; otherwise he is lost.
Show that, counting lost customers, this system is quasi-reversible with
respect to the classes 1 and 2, but not with respect to the types 1, 2, and
3.

Consider the following loss priority queueing system with one server.
Customers of classes 1 and 2 arrive at a single server in independent
Poisson streams of rates v, and v,. Customers of class 1 have a higher
priority and an arriving customer of class 1 interrupts the service of a
customer of class 2; the interrupted service is resumed when the
customer of class 1 has his service completed. An arriving customer is
lost if a customer of the same or higher priority is being served at the
time of arrival. Service times of customers of class i are arbitrarily
distributed with mean p;!, i =1,2. Show that this system arises when
the system considered in the previous exercise contains just a stack.
Deduce that the equilibrium probability the system is empty is

Moy
(Vl + p) (v, + t2)

Generalize the model to deal with I priority classes.

Suppose that the system described in the preceding exercise is amended
in the following way: the service time of a customer of type 1 depends
upon whether or not he is the only customer in the system. If he is it is
arbitrarily distributed with mean wu'; if he has interrupted the service
of a customer of type 2 then his service time is arbitrarily distributed
with mean p~'. Show that the equilibrium probability the system is
empty is now

Ly (o b
plpippo+vppt+ Vo) F V1Vl
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