CHAPTER 2
Migration Processes

In this chapter we shall meet some of the simpler systems in which
customers (or individuals) move about between a number of queues (or
colonies). First we shall consider further the simple queue introduced in
Section 1.3.

2.1 THE OUTPUT FROM A SIMPLE QUEUE

In Section 1.3 it was shown that if n(t) is the number of customers in an
M/M/1 queue at time t then in equilibrium n(t) is a reversible Markov
process. A typical realization of n(t) is illustrated in Fig. 2.1. Note that the
points in time at which n(t) jumps upwards form a Poisson process of rate v
since these points correspond to arrivals at the queue. Now n(t) is reversible
and hence the points in time at which n(—t) jumps upwards must also form a
Poisson process of rate v. But if n(—t) jumps upwards at time —¢, then n(t)
jumps downwards at time ,, and so the points in time at which n(t) jumps
downwards must form a Poisson process of rate v. But these points corres-
pond to departures from the queue. We have thus shown that in equilibrium
the points in time at which customers leave the queue (the departure
process) form a Poisson process of rate v. The line of argument can be used
to establish a little more. Let t;, be a fixed instant in time. Since n(t) is
reversible, the departure process up until time t, and the number in the
queue at time t, have the same joint distribution as the arrival process after
time —t, and the number in the queue at time —¢,. But the arrival process
after time —t, is independent of the number in the queue at time —t,, and
hence the departure process prior to time {, is independent of the number in
the queue at time #,. The next theorem summarizes these results.

Theorem 2.1. In equilibrium the departure process from an M/MJ1 queue
is a Poisson process, and the number in the queue at time t, is independent of
the departure process prior to time t,.

In some ways this result is surprising, since while the server is busy
departures occur at rate u and while the server is idle departures occur at
rate zero. It is difficult, however, to analyse the departure process using this
approach since the length of a busy period and the departure process during
this period are not independent. The dependence is such that if we observe
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n(t)

arrivals x x x x

departures X x X x
Fig. 2.1 A realization of the process n(t)

the entire departure process from an M/M/1 queue for —o < t <o, but know
nothing of the times of arrival or the numbers in the queue, then we can
determine the arrival rate » but can learn nothing of the service rate p.

The reasoning which led to Theorem 2.1 will apply to any queue with a
Poisson arrival process for which the number in the queue is a birth and
death process, for example the M/M/s queue (Exercise 1.3.3). More gener-
ally it will apply whenever a queue with a Poisson arrival process can be
represented by a reversible Markov process, provided an arrival causes the
process to change state and the reverse transition corresponds to a depar-
ture. A further example of such a queue is the two-server queue discussed in
Section 1.5. It occasionally requires some guile to find an appropriate
process, as the following example illustrates.

A telephone exchange. Consider the model of a telephone exchange with
K lines described in Section 1.3. The number of calls in progress at time ¢, n,
is a reversible Markov process, but one which does not always change state
when a call is initiated. Consider, however, the process (n, f) where the
flip-flop variable f takes the value zero or unity and changes value whenever
a call is lost. Clearly this process changes state whenever a call is initiated,
and it is easily checked that the process is reversible with equilibrium
distribution

w(n, f)=1im(n) n=0,1,...,K; f=0,1

where w(n) is the equilibrium distribution of the process n. Moreover,
transitions of the process associated with the completion of a call or the loss
of a call are just the reverse transitions of those associated with the initiation
of a call. Thus the points in time at which a call is lost or is completed form a
Poisson process. If the points in time at which a call is lost are considered
alone they form a more complicated point process, but one which is
reversible (Exercise 2.1.3).
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A two-server queue. Consider now the two-server queue introduced in
Section 1.7. The Markov process representing this queue (Fig. 1.4a) is not
reversible. Nevertheless, we do know the form of the reversed process (Fig.
1.4b). Indeed the reversed process can be regarded as representing an
identical two-server queue but with a different interpretation being given to
states 0A and 0B (Exercise 1.7.5). Observe that if a transition in the
reversed process corresponds to an arrival then the reverse transition in the
original process corresponds to a departure. Arrivals at the queue rep-
resented by the reversed process form a Poisson process and the arrival
process at this queue after time —t, is independent of the state of the
reversed process at time —t,. Hence departures from the queue represented
by the original process form a Poisson process and the state of the original
process at time {, is independent of the departure process prior to time f.
This example shows that it is not reversibility as such that leads to the
results, but rather the particular form of the reversed process.

Exercises 2.1

1. Consider a queue with s identical servers who each take an exponentially
distributed amount of time to serve a customer. Suppose that an arriving
customer leaves immediately without being served (he balks), with a
probability depending on the number in the queue, and that if he does
join the queue he gives up and defects after an exponentially distributed
amount of time unless his service has begun beforehand. Use both of the
following approaches to show that if the arrival process is Poisson then in
equilibrium the departure process is Poisson, provided all departing
customers are counted.

(i) Represent the queue by a Markov process (n, f) as in the telephone
exchange model.

(i) Approximate the queue by one at which customers who decide on
arrival that they will leave without service remain in the queue for an
exponentially distributed time with mean £! where ¢ is very large.
Let m be the number of such customers in the queue. Suppose that
while m is positive service and defection are suspended and further
arrivals decide to leave the queue without service, i.e. they increase
m. Let n be the number of other customers in the queue. Find the
equilibrium distribution of the Markov process (n, m).

2. Show that the departure process from the queue considered in the preceding
exercise remains Poisson if the defection rate of a customer depends upon
how many are in front of him in the queue. Show that the departure
processes from the many-server queues considered in Exercises 1.5.6,
1.5.7, and 1.7.6 are Poisson and remain so even if customers may balk or
defect.
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3. Before we can assert that a point process is reversible we need to charac-
terize a point process in a form to which our definition of reversibility
(Section 1.2) can apply. The simplest way to do this is with a flip-flop
variable f(t) defined as follows: f(t) takes the value zero or unity and
changes value at the points in time of the point process. Call the point
process reversible if f(t) is reversible. Show that in the model of a
telephone exchange the intervals between successive lost calls are inde-
pendent, and deduce that the points in time at which a call is lost form a
reversible point process. (A point process in which the intervals between
successive points are independent is called a renewal process.) Observe
that a stationary renewal process is always reversible,

4. In the model of a telephone exchange show that the points in time at
which a call is completed form a point process which when reversed in
time is statistically indistinguishable from that formed by the points in
time at which a call is successfully connected. Show that without the time
reversal the two processes will differ unless K =1.

2.2 A SERIES OF SIMPLE QUEUES

The most obvious application of Theorem 2.1 is to a series of J single-server
queues arranged so that when a customer leaves a queue he joins the next
one, until he has passed through all queues (Fig. 2.2). Suppose the arrival
stream at queue 1 is Poisson at rate v and that service times at queue j are
exponentially distributed with mean p;', where v<y, for j=1,2,...,/J.
Suppose further that service times are independent of each other, including
those of the same customer in different queues, and of the arrival stream at
queue 1. Let n;(t) be the number of customers in queue j at time t. Queue 1
viewed in isolation is simply an M/M/1 queue and hence the departure
process from it is Poisson, by Theorem 2.1. Thus the arrival process at
queue 2 is Poisson, and so it, too, viewed in isolation, is an M/M/1 queue.
Proceeding with this argument we see that queue j viewed in isolation is an
M/MJ1 queue, and hence in equilibrium

=122

What is not yet clear is the joint distribution of (n, n,,...,n;). Now
Theorem 2.1 also states that n,(t,) is independent of the departure process
from queue 1 prior to t,. But (n,(t,), n5(%), . . ., n;(t)) is determined by the
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Fig. 2.2 A series of queues
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departure process from queue 1 prior to ¢ and service times at queues
2,3,...,J. Hence n,(t,) is independent of (n,(t), ns(ty), . . ., ny(to)). Simi-
larly, n;(to) is independent of (n;44(to), ..., n;(to)). Thus n,(ty), nx(to), ...,
n,(t,) are mutually independent, and so in equilibrium

w(ny, Nay e, )= ﬁ (1__1’_)(1)":

i=1 i 7\

The above approach is clearly of much wider applicability. The queues in
the system can be of any of the forms discussed in the last section, and
indeed the final queue need not be restricted even in this way. It is not
essential that customers who leave queue j should join queue j+1; they
may leave the system or jump to a queue between j+1 and J. We shall not
pursue this approach, however, since it breaks down when a customer
leaving queue j is allowed to jump back to a queue between 1 and j. Such
behaviour will be discussed in the following sections.

Consider now the experience of an individual customer as he passes
through the series of J simple queues described at the beginning of this
section.

Theorem 2.2. If the discipline at each queue in a series of J simple queues
is first come first served, then in equilibrium the waiting times of a customer at
each of the J queues are independent.

Proof. The first step of the proof is to establish that in equilibrium the
waiting time of a customer at a first come first served M/MJ/1 queue is
independent of the departure process prior to his departure. Let n(t) be the
number of customers in the queue at time t. Then n(—t) can also be
regarded as the number in a first come first served M/M/1 queue at time ¢,
since its behaviour is statistically indistinguishable from that of n(t). Now if
a customer arrives at the original queue at time f, and leaves at time ¢, then
n(—t) will signal the arrival of a customer at time —t, and the departure of
the same customer at time —t,. But the waiting time of this customer is
independent of the arrivals signalled by n(—t) after time —t,. Hence in the
original queue the departure process prior to time is independent of the
waiting time of the customer who leaves at time ¢;.

Consider a customer leaving queue 1. Customers who leave queue 1 after
him cannot reach any subsequent queue before him: the queue discipline
and the assumption of a single server at the next J—2 queues ensure this.
Now his waiting time at queue 1 is independent of the arrival process at
queue 2 prior to his arrival, and hence is independent of his waiting time at
gueues 2, 3,...,J. Similarly, his waiting time at queue j is independent of
his waiting times at queues j+1, j+2,...,J, and hence the theorem is
proved.
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It is clear from the proof of Theorem 2.2 that the final queue in the

system is not required to be simple. For example waiting times would still be
independent if the Jth queue were a first come first served M|G/s queue, i.e.
an s-server queue at which service times have a general distribution. Few
other generalizations are possible; the independence of waiting times is a
much less common result than the independence of queue sizes.

Exercises 2.2

1.

2.

4,

If in a series of simple queues p, =, =+ = w; show that the Markov
process (ny, n,, ..., n;) is dynamically reversible.

Observe that in a series of simple queues the waiting time of a customer
at queue j is exponential with mean (y;—v)~'. Deduce that the time
taken for a customer to pass through the system is the sum of J independent
exponentially distributed random variables, and has mean i (i —v)?
and variance Y, (p; —v) 2

Consider two stacks, as described in Exercise 1.3.8, arranged so that
customers leaving the first stack join the second. Show that in equilib-
rium the waiting time of a customer at the first stack is independent of
the departure process subsequent to his departure. Deduce that the
waiting times of a customer at the two stacks are independent,

Let n(t) be the number of customers in an M/MJs queue at time t.
Suppose the queue discipline is first come first served, and let ¢, and ¢, be
points in time at which n(t) increases and decreases respectively. From
the realization n(t), —c<t<o, the probability P that the customer
arriving at time t, is the one leaving at time ¢, can be calculated. Note
that P will be zero or unity if s=1. If the reversed process n(—t) is
regarded as representing the number in a first come first served M/Ms
queue, show that P is the probability that in this queue the customer who
arrives at time —t, is the one who leaves at time —to. Deduce that in
equilibrium the waiting time of a customer at a first come first served
M/M/s queue is independent of the departure process prior to his
departure.

. Consider a series of J first come first served M/M/s queues in equilib-

rium. Let s; be the number of servers at queue j. Deduce from the
previous exercise that the waiting times of a customer at two successive
queues are independent. Consider the case J=3, 5;=83=1, s,=00,
B1 = = 3. Show that if a customer’s waiting time at queue 1 is large
then the probability that the customer entering queue 1 after him will
overtake him and be present in queue 3 when he arrives there is close to
one-eighth. Deduce that although a customer’s waiting times at queues 1
and 2 or at queues 2 and 3 are independent, his waiting times at queues 1
and 3 are dependent. Deduce from the previous exercise that if 5=1
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unless j=1 or J then the waiting times of a customer at each of the J
queues are independent.

6. Consider a series of two simple queues in equilibrium. Suppose that an
arriving customer finds queue 1 empty. Show that the probability queue
2 will be empty when he reaches it is

1_..”_+_‘L(_.£2_‘__"_)
M2 Mo\t pa—v

Deduce that although a customer’s waiting times at the two queues are
independent his queueing times are not.

2.3 CLOSED MIGRATION PROCESSES

The elegant but delicate method of analysis used in the preceding sections
breaks down if customers can rejoin queue 1 after leaving queue J. In this
and the next section we shall use an alternative approach which can deal
with such behaviour. The approach readily yields equilibrium distributions
for the number of customers in each queue, but is not as informative about
the time taken by a customer to pass through a sequence of queues.

We shall call the model to be examined a migration process. The main
applications are to queueing rather than to biological systems, but the idea
of individuals moving between colonies makes exposition easier and the
alternative term ‘queueing network’ seems more appropriate for the model
of the next chapter. In this section we shall consider a closed migration
process where individuals cannot enter or leave the system but can only
move between colonies. Thus the total number of individuals in the system,
N, is fixed.

Consider a set of J colonies and let n; denote the number of individuals in
colony j, for j=1,2,...,J. Define an operator T to act upon the vector
n=(ny, ny, ..., n;) as follows:

T,~k(n1,n2,...,n,,...,nk,...,n,)=(n1,n2,...,n,—l,...,nk+1,...,n,)
if j <k. Similarly,
T,k(n,,nz,...,nk,...,n,~,...,n,)=(n1,n2,...,nk+1,...,ni—1,...,n,)

if k<j. Thus T, moves an individual from colony j to k. We shall study n
under the assumption that it is a Markov process with transition rates given
by

q(n, Tikn) = Aikd’i(nj) (2.1

where ¢,(0)=0 and for simplicity A; = 0. The parameter Ay can be viewed
as measuring the intrinsic tendency for movement from colony j to colony
k; the function ¢;(n) then measures the extent to which this tendency is
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affected by the number of individuals in colony J- To ensure that n is
irreducible within the state space

J
.9’={nln,20,j=1,2,...,.l; Yy n,=N}
i=1

we shall require that ¢;(n)>0 if n>0 and that the parameters Ay allow an
individual to pass between any two colonies, either directly or indirectly via
a chain of other colonies. We shall call the process n a closed migration

process.
As an example of the behaviour transition rates (2.1) can allow consider

the special case
&;(n) =min(n, 5)

With this function colony j behaves as a queue with s servers at which
service times are exponentially distributed with mean A;l, where

A =Z7‘ik
k

An individual departing from this queue joins colony k with probability
AplA.

If ¢;(n)=n for all j then the migration process is called linear, and the
individuals can be considered to be moving independently of one another. If
N =1 then the single individual in the system performs a random walk on
the set of colonies, and if a,, as, ..., a, is the unique collection of positive
numbers summing to unity which satisfy

aig)\ik=§ak)‘ki i=L2,...,J 2.2)

then a; is the equilibrium probability that the individual is in colony j.

Theorem 2.3. The equilibrium distribution for a closed migration process is
J n
7@)=By[[st— ne? (2.3)

=111k d’j(")

where By is a normalizing constant, chosen so that the distribution sums to
unity.

Proof. The equilibrium equations (1.3) are

am) Y Y qn, Tym)= Y Y #(Tpn)q(Tyn, n)

i=1k=1 i=1 k=1
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which become

ar (m) z Z Ajkd’](nj)—' Z Z (T, kn)Ak1¢k(nk+1) 2.4

i=1k=1 j=1k=1

These will be satisfied if we can find a distribution w(m), ne &, which satisfies

(n) Z A,kqb,(ni)—kzl 7 (Tyem) Ay (1 + 1) (2.5)
If n, =0 then, with the convention that w(n) vanishes if n¢ ¥, equations (2.5)
are satisfied trivially. When n; >0 it is readily verified, using equation (2.2),
that the form proposed for (n) satisfies equations (2.5). Thus m(n), ne ¥,
 satisfies the equilibrium equations (2.4) and, since & is finite, it is clearly
possible to choose By so that the distribution sums to unity.

The process n will be reversible if ay, a,, ..., a; satisfy
oAy = oAy
since then the detailed balance conditions
7 (MAud () = T (T (. + 1) (2.6)

will hold. The relations (2.5) are of a form intermediate between the
detailed balance conditions (2.6) and the full balance conditions (2.4). We
shall call them partial balance equations. Their connection with the partial
balance conditions defined in Exercise 1.6.2 will be explored in Chapter 9;
in this chapter our only use of partial balance will be to simplify the
verification of equilibrium distributions.

The partial balance equations (2.5) state that in equilibrium the probabil-
ity flux out of a state due to an individual moving from colony j is equal to
the probability flux into that same state due to an individual moving to
colony j. This statement is not clear a priori, and should be contrasted with
the balance equation

Y w(n) Z q(n, Tym)= Y Z 7 (T;m)q(Tyn, n) 2.7)

ne¥ ne¥ k=1

which states that in equilibrium the probability flux that an individual leaves
colony j is equal to the probability flux that an individual enters colony j.
This statement is clear a priori (and holds even if the transition rates (2.1)
take a more general form) since in equilibrium the mean arrival rate at
colony j must equal the mean departure rate from colony j.

Note that if Ay, k=1,2,...,J, are decreased by a constant factor and
¢,(n), n=0,1,2,..., is increased by the same factor, then neither the
transition rates (2. l) nor the equilibrium distribution r(n) are altered in
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value. Note also that if the solution «,, a,, ..., a; of equations (2.2) is not
normalized to sum to unity the expression (2.3) remains valid; the normaliz-
ing constant B, will alter accordingly. These observations can often simplify
manipulations, but the task of determining By usually remains computation-

ally tedious.
An important class of closed migration processes have the following

property:
A =0 unless k=j+1
and
Ayja=1

for j=1,2,...,J-1
Ay =0 unless k=1

and
Thus an individual repeatedly moves around the cycle of colonies
1,2,...,7J,1,2,.... Such processes are called cyclic queues, and we shall

devote the rest of this section to some examples of them.

The provision of spare components. Suppose that there are s, machines
which each require a certain component in order to operate. A component
in use fails after a period which is exponentially distributed with mean ¢7".
It is then replaced from a store of available components unless this is empty,
in which case the machine lies idle until a component becomes available.
There are s, servicing facilities to deal with failed components, and the
length of time taken to service a component is exponentially distributed with
mean ¢5'. After being serviced a component is returned to the store of
available components. There are a total of N components altogether, and an
issue of interest is the extent to which increasing N reduces the idle time of
the machines.

If we regard the components as customers the system is equivalent to a
cyclic queue with

d’j(",‘) = d’,’ min(np Sj) i=1,2
where n; is the number of components in use and in store, and n,=N—n,.

For a cyclic queue a solution of equation (2.2) is a;=a,=-*-=a; =1 and
so Theorem 2.3 shows that the equilibrium distribution is

Bn
[Ty &1(N [1r2y &2(r)

w(ny, ny) =
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Fig. 2.3 The dependence of the average number of machines idle on the number
of spare components

Abbreviating w(n, N—n) to w(n) we have that, when N>s,+s,,

By
w(n)= - — Osn=<s,
dinldy "slsy T
By
= — - p—— slsnSN_32
disilst gy "sylsy N
By

= N-s,=n=N
$isilsi 6} "(N=n)! n=n

Of course n is a birth and death process, and this fact could have been used
to derive the above expressions. The normalizing constant By is determined
by the identity ¥ w(n)=1, and elementary calculations show that

_ 51187°18,185 2%
N s 15T F(psy, 81) + (" = pN)/(1 - p) + 8,185 ~*2(pls2)VF(sa/p, 52)

where

B

$252

p—d’lsx
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and

r xn
F(x,r)= ) —
(x r) ,.;0 n!
In equilibrium the average number of machines idle is
I=} (s,—n)m(n)
n=0

The dependence of I on N is illustrated in Fig. 2.3.

A mining operation. Consider a sequence of coal faces which are worked
on in turn by a number of specialized machines. Examples of machines
might be a cutting machine, a loading machine, and a roofing machine. Each
machine proceeds to the next face after completing its task. We could regard
the machines as queueing up at faces (Fig. 2.4a). However, the faces will

I\
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L

Fig. 2.4 A mining operation
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usually be a more homogeneous group than the machines, and for this
reason we shall regard the machines as fixed and the faces as queueing up
for service from the machines (Fig. 2.4b). Suppose now that there are J
machines and N faces and that the time taken by machine j to deal with a
face is exponentially distributed with mean ¢;*, for j=1,2,...,J. The
system will then be a cyclic queue. If n; is the number of faces queueing at
machine j, then in equilibrium

By
HRR

Note that the equilibrium probabilities do not depend upon the order in
which machines work on faces. The normalizing constant is

Tr(nb n2’ ey n])=

Bu=[ % srmazme o]

nes
and various quantities of interest depend upon it. For example the identity
¢;' Byt = [ Y biMerm d>?"’]
ne?:n>0
allows the probability that machiné j is working to be written as

Y m)=—oN

ne¥:n;>0 d’jBN-—l

An interesting phenomenon emerges as N — « if one of the machines is
slower than the rest. Suppose that ¢, <¢;, j=2,3,...,J. Then as N—
queue 1 will become a bottleneck with most of the customers in the system
waiting there, and the arrival process at queue 2 will become more and more
like a Poisson process. In the limit queues 2, 3,...,J will behave as the
series of queues considered in Section 2.2. This point is developed further in
Exercise 2.4.5.

Exercises 2.3

1. Show that if the process n(t) is a closed migration process with transition
rates (2.1) then the reversed process m(—t) is also a closed migration
process, with transition rates

q'(n, Tjkn) = )\y{k(bj(n")
where

’ ak)\ki
A ik —
@;

Show that in equilibrium the probability flux that an individual moves
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from colony j to k is

Ay By
By,

and deduce that in equilibrium the mean arrival rate at colony j,
expression (2.7), is

a\;By
Bn-,

. Figure 2.3 suggests that I tends to a limit as N — o, Prove this and show
that the limit is zero if p=1 and is (1-p)s, if p=1.

. Suppose that in the model of a mining operation bi=py=-=¢;=¢.
Show that in equilibrium the probability a given machine is operating is
N/(N+J~-1) and that the average time for a machine to complete one
cycle of faces is (N+J—1)/¢.

. Show that in the model of a mining operation the mean number of faces
queueing for machine j can be written as

E(n) = %(%%)

. Consider a closed migration process in which each colony is a single-
server queue. Suppose that a capacity constraint is put on each queue by
the prohibition of any transition which would raise n; above R, j=
1,2,...,J. Thus if R=Y]_, R, then we must have R=N. Suppose in
addition

R-R;,<N i=1,2,...,7J

so that no queue can become empty. Show that if m; = R;—n; then
(my, m,,...,m;) is a closed migration process, and hence deduce the
equilibrium distribution for (n,, n,, ..., n,).

. Show that the number of distinct states in a closed migration process is

(N +J— 1)
J-1
Thus to calculate By directly as a sum of terms is impractical for even

relatively small values of N and J. Fortunately there is an alternative.
Define the generating functions

= (a,z )"

()= n§0 | | 4’1(’)
B(z)= y 51

N=0 Bn
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Show that

B(Z)=‘H1 ®,(z)

Thus By can be calculated by multiplying together the functions ®;(z),
i=1,2,...,J, after they have each been truncated to the first N+1
terms. The number of steps required to do this is of order JN?, and so
this method is computationally much more efficient.

7. The generating function method readily yields marginal distributions. If
B. is the coefficient of zV

(akz)
=1 d’k(") ,l;lk ®; (Z)

show that the probability colony k contains n individuals is 8, By.

8. In special cases the amount of computation required by the generating
function method can be reduced further. If each colony is a single-server
queue show that the form of the functions ®,(z), j=1,2,...,J, allows
By to be calculated in order JN steps. Show also that the probability
queue k contains n or more customers is

By
¢xBn-n

2.4 OPEN MIGRATION PROCESSES

In this section we shall again consider a set of J colonies but we shall allow
individuals to enter and leave the system as well as to move between
colonies. We will require the operators T;. and T., defined as follows:

T,-.(nl,nz,...,n,,...,n_,)=(n1,n2,...,nj—1,...,n,)
T-k(nl,n2’~'-anka---:n.l):(nl’nZ’---1nk+1a~'-’n1)

Thus T;. removes an individual from colony j and T., introduces one at
colony k. We shall study n under the assumption that it is a Markov process
with transition rates given by

q(m, Tikn) = A;kd’.’("})
q(ﬂ T'.n) = }.L,d);(n,-) (2-8)
qm, T..m) =y,

where ¢;(0)=0. We shall require that ¢;(n)>0 if n>0 and that the
parameters Ay, m;, and v, allow an individual to reach any colony from
outside the system and to leave the system from any colony, either directly
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or indirectly via a chain of other colonies. Under these conditions the
process n is irreducible within the state space IN’, and we shall call it an open
migration process.

The major difference between a closed and an open migration process is
that in the latter individuals arrive at colonies from outside the system and
individuals leaving colonies may well leave the system entirely. The transi-
tion rates (2.8) imply that arrivals at colony k from outside the system form
a Poisson process of rate v, and that when an individual leaves colony j he
will leave the system with probability w;/A; where

A=y ) Ay
k

It is often convenient to scale the function ¢; so that A, =1,

A series of simple queues (Fig. 2.2) is an example of an open migration
process with ¢;(n)=¢;, n>0, where &; is the service rate at queue j, and
with the only other non-zero parameters being v, =v and A, =Ayy=---=
As-15 =y =1. If we alter this system by setting p; = A;; =1 we obtain the
open migration process illustrated in Fig. 2.5, in which when a customer
leaves queue J he returns to queue 1 with probability 1 and leaves the
system otherwise.

The conditions we have imposed on the parameters Ay, w;, and v, ensure
that the equations

ai(ui+§A,-k)=V,-+§ak)\k,- i=1,2,...,J (2.9)

have a unique solution for o}, a,, ..., a;, which is positive (Exercise 2.4.1).
We shall require as normalizing constants by, b,, ..., by, where

o

b—l = a;l
y ngo n:‘=1 d’i(r)

Let b; be zero if the sum is infinite.
Theorem 2.4. If by, by, ..., by are all positive then the open migration
process has an equilibrium distribution. In equilibrium n,,n,,...,n, are
independent and

ah

W;(n;)=b,~m i=12,...,7
ny n2 —— e —— s — nJ‘

Fig. 2.5 An open migration process
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Proof. The equilibrium equations are
w(n)[z am, T,.m)+Y, Y qm, Tm)+ ), qm, T.kn)]
i Pk K

= Zw(T n)q(T;.n, n)+z Zn(T,kn)q( i, n)+an-(T «q(T..,n,n)

which will be satisfied if we can find a distribution or(n) which satisfies the
partial balance equations

w(n)[q(n, T;.m)+ Z q(n, kn)]

—ﬂnmmrmm+2ﬂkm«mnm i=12,...,7J
and

ar(m) ; qm, T.ym) = Z w(T..n)q(T..n, n)

k

Substitution will verify that

()= BH':%m

satisfies the partial balance equations. For example the final partial balance
equation reduces to, after substitution,

Z Vi = zakuk
k k

the truth of which is established by summing equations (2.9). Since

(2.10)

by, b,, ..., b, are positive the choice B = b,b, - - * b; ensures that w(n) sums
to unity. Thus 7 (m) is the equilibrium distribution and the independence of
ny, N, . .., 1y follows from the fact that both m(n) and the state space N’

have a product form.

The independence established in Theorem 2.4 is of the random variables

Ry, Na, ..., ny; observed at a fixed point in time. Viewed as stochastic
processes, defined for teR, ny(t), ny(t), ..., n,(¢) are clearly not indepen-
dent.

It is interesting to note that the equilibrium distribution for colony j is just
what it would be if it were the only colony in the system, with individuals
arriving there in a Poisson stream of rate a;A; and leaving at rate A;¢;(n;).
This is especially intriguing since the combined arrival process at a colony,
from other colonies and from outside, is not in general Poisson (Exercise
2.4.2).
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If any of b,, b,, ..., b, are zero the process does not have an equilibrium
distribution: there is a colony which individuals enter more quickly than
they leave.

Observe that for the process to be reversible ay, 0y, ..., a; must satisfy

ai/\ik = ak)\ki
Qi = v

Even when the process is not reversible the reversed process is of a similar
form.

(2.11)

Theorem 2.5. If n(t) is a stationary open migration process then so is the
reversed process n(—t).

Proof. Using Theorem 1.12 the transition rates of the reversed process
n(—t) can be calculated from the rates (2.8) and the equilibrium distribution
(2.10). For example

’"’(Ttkn)‘I(Tikn, n)

q'(n, Tym)= ()
= A;kd)j(ni)
where
, _ Ay
"= ,~
Similarly,
q'(n, T,.n)= llv;‘f’i(ni)
and
q'm, T.em)=vj
where
v
pi= a—:
and
Vi = Oy

Thus the reversed process is also an open migration process.

Call the points in time at which an individual leaves the system from
colony j the exit process from colony j. By the departure process from
colony j we shall mean the points in time at which an individual leaves
colony j, either for another colony or to leave the system.
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Corollary 2.6, If n(t) is a stationary open migration process then the exit
process from colony j is a Poisson process of rate oy, Further, the exit
processes from colonies 1,2, ..., J are independent and n(t,) is independent of
the exit processes prior to time t,.

Proof. In the reversed process arrivals at colony j from outside the
system form a Poisson process of rate v;=a;u; But these arrivals corres-
pond precisely to departures from the system in the original process, and the
result follows,

Neither the departure process from a colony nor the stream of customers
moving from one colony to another is in general Poisson (Exercise 2.4.2).
This again is intriguing. In the migration process illustrated in Fig. 2.5 an
individual leaving colony J chooses at random and independently of every-
thing that has gone before whether to leave the system or to return to
colony 1. Yet while the departure process from colony J is not Poisson the
exit process is. Note that the individual’s decision on whether or not to
return to colony 1 may be independent of past departures, but it is not
independent of future departures.

Corollary 2.7. Suppose that colony j in a stationary open migration
process is a queue with s servers at which the queue discipline is first come first
served. Let ¢;(n)= ¢; min(n, s) and A; =1, so that service times are exponen-
tially distributed with mean ¢;'. Then the waiting time of a customer at queue
j has the same distribution as if queue j were an isolated M/M]s queue with a
Poisson arrival process of rate a;.

Proof. In a stationary open migration process the probability flux that a
customer departs from queue j leaving n; customers behind is m;(n; +
1)A;¢;(n; +1). Thus if at time ¢ a customer leaves queue j the probability
there will be n; customers left in queue j is

i+ D(m+1)
poy = 771(”,')
Yr=o m(r+1)¢;(r+1)

Consideration of the reversed process m(—t) shows that this is also the
probability that a typical customer arriving at queue j finds n; customers
already there. But m;(n;) is just what this probability would be if queue i
were in isolation with customers arriving in a Poisson stream of rate o;. The
queue discipline ensures that the distribution of the waiting time of a
customer is determined by the distribution of the number of customers he
finds on his arrival, and the result follows.

Some of the simplest examples of open migration processes are those for
which ¢;(n)=n for all j, ie. linear migration processes. For these,
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by, b,, ..., b, will always be positive and so an equilibrium distribution will
always exist. Indeed,
W

()= e
so0 that the number of individuals in colony j has a Poisson distribution. This
result provides an alternative interpretation for the constants oy, 0. .., 0,
«a; is the expected number of individuals in colony j when individuals move
independently with transition intensities Ajs 1y, and v,

Until now we have assumed that the number of colonies, J, is finite. In
fact the proof of Theorem 2.4 goes through unchanged when J is infinite
provided B =b,b, - - - is positive; note that when this is so the equilibrium
distribution (2.10) assigns probability one to the countable set of states
satisfying . n; <co. In the following example we discuss a linear migration

process with J infinite.

The family size process. Consider the following elaboration of the simple
birth, death, and immigration process described in Section 1.3. Suppose that
each immigrating individual has a distinguishing characteristic, such as a
genetic type or a surname, which is passed on to all his descendants but
which is not shared by any other individual. Thus at any point in time the
population can be divided into distinct families, each of which consists of all
those individuals alive with a given characteristic. Let n; be the number of
families of size j. Then the family size process (ny, ny,...) is a linear
migration process with transition rates

qa(n, T;;,n) = jAn ji=1,2,...
am, Tj;_m) = jun;,  j=2,3,...
qm, T.,n)= v
q(m, Ty .m) = pn,

Observe that a family is the basic unit which moves through the colonies of
the system and that the movements of different families are independent,
Equations (2.9) have the solution

o _L(A)"
VAW

and the normalizing constant B =exp(~Y ;) is positive provided A <p,
since then ¥, o is finite. In equilibrium the process is reversible, the number
of families of size j has a Poisson distribution with mean a;, and the total
number of families in the system has a Poisson distribution with mean

Z o = —%log(l——s)



54 Migration Processes

Optimal allocation of effort. In this example we shall discuss an optimiza-
tion application of Theorem 2.4. Consider an open migration process in
which each colony is a single-server queue: suppose A; =1, ¢;(n)=4d,,
n>0, for j=1,2,...,J. For equilibrium at each queue the service rate (or
effort) ¢; must be greater than the mean arrival rate (or demand) a;, and

then
o IR ",
wr=(1-3))
i\t (bi ¢j
Thus the mean number of customers present at queue j is a;/(d; — ;).

Suppose now that we have control over the values of ¢,, ¢,, ..., ¢,, subject
to the constraint

Lo-F

How should we choose ¢, @5, ..., d; to minimize the mean number of
customers present in the system? This problem can be readily solved using
Lagrangian multipliers. Let

L=3ton(Ze-F)

Setting dL/d¢; =0 we find that L is minimized by the choice

o
¢i=ai+\/%

Substituting this into the constraint shows that we should choose

__1_ _F- i
Vy Ty
Hence the optimal allocation is

Ve, .
¢j=a,+zk:2_!;(F—Zak) i=1,2,...,7

k

Thus the optimal allocation proceeds by first giving to each queue just
enough to satisfy demand and then by allocating the surplus, F—}, o, in
proportion to the square roots of the demands. This result is mildly
surprising; we might have thought that effort would be allocated in propor-
tion to demand. Relative to this allocation the optimal allocation concen-
trates less effort on those queues with high demands.

Little’s result (1.12) shows that the optimal allocation also minimizes the
mean period spent in the system by a customer.

A further discussion is contained in Section 4.1.
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Exercises 2.4

1. By considering a Markov process with J+ 1 states and transition rates
aG. k)=, jk=1,2,...,J

q(ia0)=l~1'i j=1,2,...,.’
‘I(O,k)=1’k k=1,2,...,J

show that equations (2.9) have a unique solution and that this solution
is positive. Show that a;A,/Y. v, is the expected number of times the jump
chain of this process visits state j between successive visits to state 0.
Deduce that in an open migration process a;A; is the mean arrival rate at
colony j, counting arrivals from outside the system and from other
colonies. Obtain the same result by calculating the probability flux that
an individual leaves colony j.

2. Consider the open migration process illustrated in Fig. 2.5 with J=2,
S(n)=n,j=1,2, u,=v,=0,A;,=Ay; = A, v;=», and 2= u. Show that
the arrival process at colony 1, counting arrivals from outside the system
and from colony 2, comprises a Poisson process of rate v together with
for each point of this process a string of further points, where the number
of further points in each string is geometrically distributed with mean Au
and the interval between points in the same string has mean 2A7'.
Suppose now that v is small and A large. Show that the arrival process at
colony 1 is not Poisson. Deduce that the departure process from colony 2
is not Poisson. Show that the points in time at which individuals move
from colony 2 to colony 1 do not form a Poisson process.

3. Consider an open migration process. If it is not possible for an individual
in colony k ever to reach colony j show that the stream of individuals
moving from colony j to colony k is Poisson.

4. Consider an open migration process in which an individual can never visit
a colony more than once, and the graph G, with an edge joining nodes j
and k if either A, or A is positive, is a tree. If each queue is a first
come first served single-server queue show that the waiting times of a
customer at the queues he visits are independent. Note that the condi-
tions ensure that customers cannot overtake one another. Using Exercise
2.2.4 show that the conclusion remains valid if some queues have more
than one server provided these queues are such that a customer can only
visit them immediately on entering or immediately prior to leaving the
system.

5. Consider a stationary closed migration process with colonies labelled
0,1,2,...,7J and with Ao=py Agy=w;, for j=1,2,...,J, and ¢o(n)=1,
n>0. Let ay, @, ..., a; be the solution to equations (2.9) and suppose
the constants by, b,, . .., b, calculated from this solution are all positive.
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Show that if the number of individuals in the system is increased towards
infinity the behaviour of colonies 1,2,...,J approaches that of an open
migration process.

6. The equilibrium distribution obtained for the family size process should
be consistent with that found for the population size in Section 1.3,
Establish this directly by showing that if

M=Zf”1

i=1

where n,, n,,... are independent random variables, n; Poisson with

mean
i)
Aj \u
then M has the negative binomial distribution (1.14).

7. In the family size process show that the total number of individuals M
and the total number of families

satisfy the relations
v A
E(N)=Xlog(1 +2 E(M))

and

cov(M, N)=
®—A
8. Consider the family size process. Show that if an individual is the only
member of his family then he is an immigrant who has not yet given birth
with probability w/(u +A).
9. In the family size process show that the points in time at which a family
becomes extinct form a Poisson process. Show that this remains true even
when the model is amended to allow the birth of twins.
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