CHAPTER 1
Markov Processes and Reversibility

In this chapter the concept of reversibility is introduced and explored, and
some simple stochastic models are described. The rest of the book will be
devoted to generalizations of these simple models.

The first section reviews some aspects of the theory of Markov processes
which will be required in the sequel.

1.1 PRELIMINARIES ON MARKOV PROCESSES

Let X(t) be a stochastic process taking values in a countable state space &
for teJ. Thus (X(t,), X(t,),...,X(t,)) has a known distribution for
t, t ..., €. For a discrete time stochastic process J will be the integers
Z while for a continuous time stochastic process J will be the real line R.
These are the only possibilities we shall consider.

If (X(t,), X(t,),...,X(t,)) has the same distribution as (X(¢, + 1), X(t,+
7,...,X(t,+7)) for all ¢,,¢,,...,1t, 7€T then the stochastic process X(t)
is stationary.

The stochastic process X(t) is a Markov process if for t, <t,<-::-<t, <
t,.1 the joint distribution of (X(t;), X(t,), ..., X(t,), X(t,.,)) is such that

P(X(tn+l) =jn+l IX(tl) =j1s X(t2) =j2’ ceey X(tn) =jn)
= P(X(tn+l) =jn+l I X(tn) =jn)

whenever the conditioning event (X(t,)=ji, X(t;))=j, ..., X(t,)=j,) has
positive probability. Where no confusion can arise we shall use an ab-
breviated notation in which the above equation becomes

P(jr|+l 'jl’ i2, e 9jn)=P(.in+l |1n)

Thus for a Markov process the state of the process at a given time contains
all the information about the past evolution of the process which is of use in
predicting its future behaviour. This is the usual definition of a Markov
process. An alternative equivalent definition is the following. The stochastic
process X(t) is a Markov process if for t,<t,<---<¢,<---<t,, condi-
tional on X(t,)=j, (the present), (X(t,), X(t,), ..., X(t,—,)) (the past) and
(X(t,41), X(1,42), . .., X(t,)) (the future) are independent (Exercise 1.1.2).

A Markov process is time homogeneous if P(X(t+71)=k | X(t)=j) does
not depend upon ¢, and is irreducible if every state in & can be reached from
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2 Markov Processes and Reversibility

every other state. For a time homogeneous discrete time Markov process
p(i, k)=P(X(+1)=k|X(®)=})

is called the transition probability from state j to state k. Note that

L pG)=1 je¥

kes
A discrete time Markov process is periodic if there exists an integer §>1
such that P(X(t+7)=j| X(t)=j)=0 unless 7 is divisible by 8; otherwise the
process is aperiodic. Throughout this work we shall assume that any discrete
time Markov process with which we deal is time homogeneous and irreduc-
ible; we shall often additionally assume it is aperiodic. Consider then a
process satisfying all these assumptions. Such a process may possess an
equilibrium distribution, that is a collection of positive numbers 7(j), je %,
summing to unity that satisfy the equilibrium equations

w(j)= Y akplk,)) je¥ (1.1)
ke¥
If we can find a collection of positive numbers satisfying equations (1.1)
whose sum is finite, then the collection can be normalized to produce an
equilibrium distribution. When an equilibrium distribution exists it is unique
and

lim P(X(1) =k | X(0)=j)=m(k) (1.2)

so that m is the limiting distribution. Also, the proportion of time the
process spends in state k during the period [0, t] converges to (k) as t = o,
that is the process is ergodic. Further, if P(X(0)=j)=w(j), je¥, then
P(X(0)=j)=m(j), je ¥, for all teZ, so that m is the stationary distribution.
If an equilibrium distribution does not exist then

!inﬂloP(X(t)=k)=0 ke¥

and the process cannot be stationary. An equilibrium distribution will not
exist if we can find a collection of positive numbers satisfying equations (1.1)
whose sum is infinite. An equilibrium distribution will always exist when &
is finite. All of the above remains true for periodic processes, except for the
relation (1.2).

It is possible to construct continuous time Markov processes which exhibit
extremely strange behaviour. These will be excluded; throughout this work
we shall assume that any continuous time Markov process with which we
deal is not only time homogeneous and irreducible but also remains in each
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state for a positive length of time and is incapable of passing through an

infinite number of states in a finite time. Define the transition rate from state

j to state k to be

P(X(t+7)=k|X(1)=})
T

a(j, k) = lim itk
It will be convenient to let q(j, j)=0. For continuous time processes the
equilibrium equations are :

M Y qG. k)= T aak,j) jes (1.3)
ke ke

and an equilibrium distribution is a collection of positive numbers (j),

j€¥, summing to unity which satisfy the equilibrium equations. As for

discrete time processes an equilibrium distribution is unique if it exists and is

then both the limiting and the stationary distribution. Further, the process is

ergodic. If one does not exist then

!inaloP(X(t)=k)=O ke&

An equilibrium distribution will not exist if we can find a collection of
positive numbers satisfying equations (1.3) whose sum is infinite. When & is
finite an equilibrium distribution will always exist.

A discrete time Markov process is sometimes called a Markov chain. We
shall use this terminology so that from now on when we refer to a Markov
process it will be a continuous time process. We shall often refer to a
stationary Markov chain or process as being in equilibrium.

A Markov process remains in state j for a length of time which is
exponentially distributed with parameter

a()= Y, q(, k)

key
When it leaves state j it moves to state k with probability

. q(, k)

p(, k) a0) (1.4)
There is thus a natural way to associate a Markov chain X’ (t) with a Markov
process X(r). Let X’(0) be X(0), let X’(1) be the next state the Markov
process X(t) moves to after time ¢t =0, let X’ (2) be the next state after that,
and so on. The Markov chain X”(¢) is called the jump chain of the Markov
process X(t), and its transition probabilities are given by the relation (1.4).
The equilibrium distribution of a jump chain will in general be different
from that of the Markov process generating it (Exercise 1.1.5), essentially
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because the jump chain ignores the length of time the process remains in
each state. The initial distribution at time t=0 of the jump chain of a
stationary Markov process will be the equilibrium distribution of the Mar-
kov process, and thus the jump chain will not in general be stationary.

Exercises 1.1

1.

Let Z(t), teZ, be a sequence of independent identically distributed

random variables with P(Z(t)=0)=P(Z(t)=1)= 1. Define the stochastic

process X(t) with £={0,1,2,..., 6} and I =Z by X(t)=

Z{-1D)+2Z(t)+3Z(t+1).

(a) Determine P(X(0)=1, X(1)=3, X@2)= 2) and P(X(1)=3,
X()=2).

(b) Determine P(X(2)=2|X(0)=1, X(1)=3) and P(X(2)=
2| X(1) =3). Deduce that the process X(t) is not Markov.

. Establish the equivalence of the following statements:

(i) For all t1<t2<' ’ '<tn<tn+l,

P(in+1 |j1: j2’ L ’jn)=P(ju+l ‘In)
(ii) For all t,<t,<:- - <t, <+ <t,,
P(jl, i2’ ceey ip—l’ jp+1’ jp+2) ceey jm l]p)
= P(jI, j29 ey jp——l |jp)P(jp+l’ jp+2’ ve ey jm I]p)

If a Markov process has an equilibrium distribution show that the
convergence to it expressed in the relation (1.2) is uniform over states
ke%.

. Consider the Markov process with state space & ={0,1,2,...} and with

transition rates

a! k=j+1
q(j, k)= { b k=0
0 otherwise

If a> 1 this process is capable of passing through an infinite number of
states in finite time. Find the equilibrium distribution when a=1 and
b > 0. Observe that one does not exist when 0<a =<1 and b=0.

It is possible for a Markov process to possess an equilibrium distribution
and for its jump chain not to, and vice versa. Show that if a Markov
process has equilibrium distribution 7 (j), je &, then its jump chain has
an equilibrium distribution if and only if

B7'= Y w()a()

je¥
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is finite, in which case the equilibrium distribution of the jump chain is
7' (i) = Bm()q()).

Observe that if q(j) does not depend upon j, so that the points in time at

which jumps take place form a Poisson process, then the jump chain and
the process have the same equilibrium distribution.

1.2 REVERSIBILITY

Some stochastic processes have the property that when the direction of time
is reversed the behaviour of the process remains the same. Speaking
intuitively, if we take a film of such a process and then run the film
backwards the resulting process will be statistically indistinguishable from
the original process. This property is described formally in the following
definition,

Definition

A stochastic process X(¢) is reversible if (X(t), X(t,), ..., X(t,)) has the
same distribution as (X(r—1t,), X(r—1,),..., X(r—t,)) for ali t,, t,, ..., t
red.

In the next section we shall give examples of reversible processes and in
later sections we shall discuss some of the less obvious consequences of the
above definition; but first let us derive some of the basic properties of
reversible processes.

Lemma 1.1. A reversible process is stationary.

Proof. Since X(t) is reversible both (X(t), X(ty),...,X(t,)) and
(X(t,+71), X(ty+71),..., X(t,+7)) have the same distribution as
(X(=t:), X(=15), ..., X(~1,)). Hence X(1) is stationary.

For a stationary Markov chain or process there exist simple necessary
and sufficient conditions for reversibility given in terms of the equilibrium
distribution and the transition probabilities or rates. These conditions are
obtained in Theorems 1.2 and 1.3 and are called the detailed balance
conditions; they should be contrasted with the equilibrium equations, which
are sometimes called the full balance conditions.

Theorem 1.2, A stationary Markov chain is reversible if and only if there
exists a collection of positive numbers w(j), je &, summing to unity that satisfy
the detailed balance conditions

m(DpG, k)=m(K)ptk,))  jkes (1.5)
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When there exists such a collection w(j), j€ &, it is the equilibrium distribution
of the process.

Proof. First suppose that the process is reversible. Since the process is
stationary P(X(t)=j) does not depend upon t. Let 7w (j) = P(X(t) = j); thus
w(j), je ¥, is a collection of positive numbers summing to unity. Since the
process is reversible

P(X()=]j, X(t+1)=k)=P(X()=k, Xit+1)=j)
and so
w(Hp(, k) = w(K)p(k, j)

Conversely, suppose there exists a collection of positive numbers m(j),
j€ %, summing to unity satisfying the detailed balance conditions. Summing
equations (1.5) over k we obtain

w(j) L pGi k)= ) w(kp(k,j)  je¥
ke? ke¥
which reduce to the equilibrium equations (1.1). Hence the collection w(j),
j€ &, is the equilibrium distribution of the process. Consider now a sequence
of states jo, j1s. .- Jm. Then

P(X(8)=jo, X(t+ 1) =1, ..., X(t+m)=ju)
= 7w (jo)p (o, il)P(h, J2) P (=15 jm)
and
P(X(t’) = jm, X(t,+ 1) = jm-—ly feey X(t,+ m) = .’0)
= '"(jm)p(jm’ jm—l)p(jm—l, jm—2) e p(jl’ ]0)
But the detailed balance conditions (1.5) imply that the right-hand sides of
the last two identities are equal. Hence, letting 7=t+ t'+m,
(X(1), X(t+1),...,X(t+m)) has the same distribution as (X(v—1), X(v—
t—1),..., X(r—t—m)), and from this we can deduce that

(X(t), X(t), ..., X(t,)) has the same distribution as (X{(r—t), X(r—
t,),.... X(r—t,)) for all t;, 5, ..., L, TEZL.

The detailed balance conditions (1.5) imply that if p(j, k) is positive then so
is p(k,j). Less obvious, but interesting, consequences for the matrix of
transition probabilities are contained in Exercises 1.2.4 and 1.2.5.

Theorem 1.2 has a direct analogue for continuous time processes.

Theorem 1.3. A stationary Markov process is reversible if and only if there
exists a collection of positive numbers w(j), j € &, summing to unity that satisfy
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the detailed balance conditions
w(Nq(, k)=w(k)q(k,j) jkeS (1.6)

When there exists such a collection w(j), j € &, it is the equilibrium distribution
of the process.

Proof. First suppose the process is reversible, and let w(j) = P(X(t) =J).
Then

PX@®)=j,X@+7)=k)=P(X@)=k, X(t+1)=])
and so
PX(t+7)=k |X(t)=j)=

m(j) (k)

PX(t+7)=j| X(t)=k)
T
Letting 1 — 0 we obtain the relation (1.6).

Conversely, suppose there exists the collection 7 (j), je &, satisfying the
detailed balance conditions. Summing equations (1.6) over k gives the
equilibrium equations (1.3), and hence the collection #(j), je &, is the
equilibrium distribution. Consider now the behaviour of the process X(¢) for
te[-T, T]. The process may start at time ¢t =—T in state j; and remain in
this state for a period h, before jumping to state j,. Suppose it now remains
in state j, for a period h, before jumping to state j;, and so on, until it
arrives in state j,, where it remains until time ¢ = T, a period of h,,, say. Now
the probability density of the random variable h, is

q(ie 0™
and the probability that j, is the next state after j, is
q(jy)

Similarly, we can calculate the density of h, and the probability that j, is the
next state after j,, and so on. The probability that the process remains in
state j, for a period of at least h,, is

e—q(jm)h,,
Thus the probability density of the behaviour described is
w(j)e 19Mq(j,, iz)e—qoz)hZQ(fm ja)em 1M« - q(n—y, jm)e_q(j"‘)h'“ 1.7

This is a density with respect to h,, h,,..., h,. To obtain a probability it
must be integrated over a region of values for h,, h,, ..., h,, satisfying the
constraint h;+h,+- - - +h,, =2T. Now the relation (1.6) implies that

W(h)‘l(h, j2)q(j2a ]3) et q(jm—l, ]m) = W(]m)q(]m’ jm—l) T Q(ja, j2)q(j2, ]l)
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and hence that expression (1.7) is equal to the probability density that the
process starts at time t=—T in state j,, that it remains in this state for a
period h,, before jumping to state j,,_;, and so on, until it arrives in state j,
which it remains in until time ¢t =T, a period of h,. Thus the probabilistic
behaviour of X(t) is precisely the same as that of X(—t) on the interval
[-T, T]. Thus (X(t), X(t),...,X(t,)) has the same distribution as
(X(~ty), X(~tp), ..., X(—t,)), but this has the same distribution as (X(7—
1), X(r—t),..., X(r—1,)) because X(t) is stationary; and so the theorem
is proved.

A collection of positive numbers satisfying the detailed balance conditions
whose sum is finite can of course be normalized to produce an equilibrium
distribution. Lemma 1.1 shows that a Markov process which is not station-
ary is not reversible, even if the detailed balance condition can be satisfied.

The term w(j)q(j, k) is called the probability flux from state j to state k; in
equilibrium the probability that in the interval (¢, ¢+ 8t) the process jumps
from state j to state k is 7w(j)q(j, k) 8t +0(8t). The detailed balance condition
(1.6) requires that the probability flux from state j to k should equal that
from state k to j. The full balance condition (1.3) requires that the
probability flux out of state j should equal that into state j. These relation-
ships can perhaps be more easily visualized if we associate a graph G with
the Markov process as follows: let the set of vertices of the graph be &, the
set of states, and let there be an edge joining vertices j and k if either q(j, k)
or q(k, j) is positive. Thus the Markov process can be regarded as a random
walk on the graph G. Note that the assumed irreducibility of the process
implies that the graph is connected. Define a cut to be a division of ¥ into
complementary sets & and ¥ — 4.

Lemma 1.4, For a stationary Markov process the probability flux each
way across a cut balances. That is for any o < &,

Y Y aiaGR=Y Y =@ak,j) (1.8)

jed keS—oA jed ke~

Proof. Summing the full balance condition (1.3) over je o gives

Y Y waG k=Y X wkalk,

jed ke? jed ke?
The result follows by subtracting the identity

Y Y w(aG k)= Y Y w(k)q(k,j)

jesA ked jest ked

Note that if o ={j} then equations (1.8) reduce to the equilibrium
equations (1.3).
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Lemma 1.5. If the graph G associated with a stationary Markov process is
a tree, then the process is reversible.

Proof. If j and k are not linked by an edge of the graph G the detailed
balance condition (1.6) is satisfied trivially. If j and k are linked by an edge
then removal of this edge cuts the graph G into two unconnected compo-
nents, since G is a tree. Thus Lemma 1.4 shows that the detailed balance
condition is satisfied.

Lemma 1.5 gives a sufficient condition for a process to be reversible but,
as we shall see later, it is by no means necessary.

It can be shown that the number of transitions from state j to k per unit
time calculated over the period (0, ¢) converges to w(j)q(j, k) as t — o, This
fact provides an alternative proof of Lemmas 1.4 and 1.5 since the number
of transitions each way across a cut in the period (0, t) cannot differ by more
than one.

Lemmas 1.4 and 1.5 have obvious counterparts for Markov chains.

Exercises 1.2

1. Consider the stationary Markov process X (1) with ¥={1,2}, q(1,2) =1,
q(2,1)=3. Show that X(¢) is reversible. Observe that a film of the
process, run either forwards or backwards, will show the process alternat-
ing between states with the periods in states 1 and 2 having means 1 and
2 respectively. There is a minor difficulty here which should be pointed
out. Suppose the process jumps from state 1 to 2 at time to. Is X(t)=1
or 2? The usual convention is that if X(t) jumps at time t, then X(t,) is
taken to be the new state, so that the process is right continuous. The
difficulty is that if the film run forwards is right continuous then the film
run backwards will be left continuous. The difficulty is avoided if we
adopt the convention that X(t,) is equally likely to be the old or the new
state. Such fine differences would of course be hard to detect (the finite
dimensional distributions do not manage it), and will not concern us from
now on. When, later, we speak of the instant in time just preceding
(respectively, following) a transition we shall be implicitly appealing to the
left (respectively, right) continuous version of the process,

2. Show that the stochastic process X(t) defined in Exercise 1.1.1 is not
reversible.

3. Suppose that the points s eR, i=...,-1,0,1,2,..., form a Poisson
process and define

+o00

X(= Y a(s-¢)

i=—
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Show that X(t) is reversible if

a(s)={1 -1<s=0

0 otherwise
and is not reversible if
2 -1<s=0
a(s)=<1 —2<s=-1
0 otherwise

4. Show that a stationary Markov chain is reversible if and only if the matrix
of transition probabilities can be written as the product of a symmetric
and a diagonal matrix.

5. Show that the matrix of transition probabilities of a reversible Markov
chain can be written in the form D 'AD where D is diagonal and A
symmetric. Deduce that it has real eigenvalues (the converse is false as
the next exercise shows).

6. Consider a stationary Markov chain with the following matrix of transi-
tion probabilities:

[==)

1

0

0
Show that the process is not reversible even though the matrix has real
eigenvalues.

7. Suppose a Markov process and its jump chain both possess equilibrium
distributions. Observe that the equilibrium probability that the jump
chain is in state j, found in Exercise 1.1.5, is proportional to the
probability flux out of, or, equivalently, the probability flux into, state j
in the Markov process. Show that the transition rates of the Markov
process satisfy the detailed balance conditions if and only if the transition
probabilities of the jump chain do.

8. If X,(t) and X,(t) are independent reversible Markov processes show
that (X,(t), X,(1)) is a reversible Markov process.

9. If X(1) is a reversible stochastic process show that so is Y(t) = f[X(#)] for
any function f.

- a O
=

1.3 BIRTH AND DEATH PROCESSES v

The simplest examples of reversible processes are provided by Markov
processes for which the state space & is {0,1,2,..., K}, with K possibly
infinite, and q(j, k) =0 unless |j—k|=1. These are called birth and death
processes, since the only possible transitions from state j are to j—1 (a
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death) or j+1 (a birth). A stationary birth and death process is reversible,
by Lemma 1.5. The detailed balance condition states that the equilibrium
distribution of a stationary birth and death process satisfies

7(NqG, j—D=m({-1)q(—1,))
and hence is given by

r=1,r
()= m(0) l'I atr-1,0 (1.9)
r,r—1)
where m(0) must be chosen so that #(j), j=0, 1,2, ..., sum to unity. If 7(0)

cannot be so chosen then the process does not possess an equilibrium
distribution and cannot be stationary. We will now discuss some simple
examples of birth and death processes.

The simple queue. Suppose that the stream of customers arriving at a
queue (the arrival process) forms a Poisson process of rate v. Suppose
further that there is a single server and that customers’ service times are
independent of each other and of the arrival process and are exponentially
distributed with mean p~*. Such a queue is called simple or M/M/1, the M’s
indicating the memoryless (exponential) character of the interarrival and
service times and the final digit indicating the number of servers. Let n(t) be
the number of customers in the queue at time ¢, including the customer
being served. Then it follows from our description of the queue that n(t) is a
birth and death process with transition rates

qG,i-D=p j=1,2,...
qG,j+D=v  j=0,1,...

If the arrival rate v is less than the service rate u the process has an
equilibrium distribution which is, from equation (1.9),

()= (1—1) (1)' (1.10)
W/ A\ )
Thus in equilibrium the number in the queue has a geometric distribution
with mean v/(p —v).

This result can be used to obtain another distribution of interest, the
distribution of the waiting time of a customer. We shall define waiting time
to include service time, so that it is the period between a customer’s arrival
at and departure from the queue. Consider now a typical customer arriving
at the queue and let W be his waiting time. Assume for the moment that the
probability he finds j customers already present in the queue is 7 (j), With
the queue discipline first come first served,

i=0

P(W=w)= Y m()P Z s, <w) (1.11)
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where S, S,,... are independent exponentially distributed random vari-
ables with mean p~!. After some reduction (Exercise 1.3.1) this shows that
W is exponentially distributed with mean (p -v)L

Is it valid to assume that when a typical customer arrives at the queue he
finds it in equilibrium? This assumption can be made when the arrival
process is Poisson, although we must be careful about the interpretation of a
typical customer. If we observe a customer arriving at time ¢, and we know
nothing other than this about arrival times or about the state of the queue,
then we shall call this customer typical. When the arrival process is Poisson
the interval between t, and the preceding arrival has an exponential dis-
tribution, and indeed the arrival process up until time ¢, has the same
probabilistic description as it would have if {, were just a fixed instant in
time. Hence the customer arriving at time ¢, finds the queue in equilibrium.
(The concept of a typical customer is investigated further in Exercise 1.3.7.)

There is an alternative approach to this result which is of greater general-
ity and will be of use later. The probability that in the interval (to, to+ 8t) a
single customer arrives and finds j customers already present in the queue is

m()q, j+1) 8t +o(8t)

The probability that in the interval (fo, {, +8¢) a single customer arrives is

oo

Y w(ag, j+1) 8t+0(80)
j=0
Thus given that a single customer arrives in the interval (t, to+8t) the
conditional probability that he finds j customers already present in the
queue is
w(j)q(j, j +1) 8t +0(81)

Yi-o w(i)q(i, j+1) 8t +o(81)
As 8t — 0 this conditional probability tends to the ratio

w(qG, j+1)
Yo m(DaG,j+1)

The numerator is the probability flux that a customer arrives to find j
customers already present in the queue, and the denominator is the proba-
bility flux that a customer arrives. Thus this ratio is also the limit as t — « of
the proportion of arrivals in the period (0, t) who find j customers already
present in the queue. Since q(j, j+1) = v the ratio is simply w(j).

The above approach is of use whenever a stochastic process is observed at
just those points in time marked by some special event. Exercises 1.1.5,
1.3.6, and 1.3.9 provide further examples.

For a simple queue the mean number in the queue E(n), the mean
waiting time of a customer E(W), and the mean time between successive
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arrivals v~! are related by the identity
E(n)=vE(W). (1.12)

This, Little’s result, holds for much more general systems—the arrival
process need not be Poisson, service times need not be independent, and
indeed the system may bear little resemblance to a queue at all. It has the
nature of an accounting identity; we can count time spent in a system either
by adding it up over the customers who pass through the system or by
integrating the number in the system over time. We shall not prove Little’s
result, although we shall occasionally use it. For our purposes it will be
enough to record that equation (1.12) holds whenever there is a stationary
Markov process X(t) such that the number in the system at time ¢, n(t), is a
function of X(t). The expectation E(W) can be regarded as the mean time
spent in the system by a typical customer or as the limit as m — « of the
average time spent in the system by the first m customers to enter the
system after time t. Similarly, v can be regarded as the reciprocal of the
mean interarrival period preceding the arrival of a typical customer or as the
limit as t — o of the number of customers to arrive per unit time calculated
over the period (0, ¢). In equilibrium the probability flux that a customer
arrives is ». When the arrival process is not Poisson we shall call v the mean
arrival rate.

A telephone exchange. Suppose that calls are initiated at points in time
which form a Poisson process of rate v, but that the exchange has only K
lines so that a call initiated when K calls are already in progress is lost.
Further suppose that calls which are connected last for lengths of time which
are independent and exponentially distributed with mean w™'. Then the
number of calls in progress at time t is a birth and.death process with
transition rates

q(jaj_1)=j“' j=1’2’---’K

q(G, j+D=v i=0,1,...,K-1
The equilibrium distribution over the state space ¥={0,1,..., K} is

v\i

(i) =m(0) ]l, (;)

Thus in equilibrium the number of calls in progress has a truncated Poisson
distribution.
The probability that a typical call will be lost is
(UKD u)
(K)o
K= S Wineiay

This, Erlang’s formula, also gives the limiting proportion of calls lost.

(1.13)
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The simple birth, death, and immigration process. Suppose that individu-
als immigrate at rate v, give birth to additional individuals at rate A, and die
at rate u so that

qG,j—1)=ju i=1,2,...
q(],]+1)=V+]A j=0,1,...

These transition rates correspond to the assumptions that the lifetimes of
individuals are independent of each other and of the immigration process
and that during an individual’s lifetime the points in time at which it gives
birth form a Poisson process independent of other lifetimes and of the
immigration process. It is often tedious to specify precisely the assumptions
underlying a model; where the assumptions are clear from the context or
from the structure of a Markov process we shall often fail to list them. It
follows from equation (1.9) that when A <u the equilibrium distribution for
the number of individuals alive is

w(j) = (1—3)“ (IV“"l)(-&)' (1.14)
I

where

(x)=x(x—1)---(x—r+l)
r r(r—1)---1

This distribution is an example of the negative binomial distribution; its
mean is »/( —A) and its variance is vu/(n —A)%. When A = v it reduces to
the geometric distribution (1.10).

Exercises 1.3

1. Relation (1.11) shows that W is the sum of j+ 1 independent exponen-
tially distributed random variables, where j itself is a random variable
with a geometric distribution. By considering the Markov process with
three states and transition rates q(1,2)=q(2,1)=v, q(1,3)=q(2,3)=
u — v, show that W is exponentially distributed with mean (u — v)

2. Suppose the simple queue described above is amended by the require-
ment that any customer who arrives when there are K customers already
present must leave immediately without service. Show that in equilibrium
the probability that this amended queue contains n customers is just the
conditional probability that the simple queue contains n customers given
that it contains not more than K customers.

3. Show that for an M/M/s queue the number in the queue is a birth and
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death process whose equilibrium distribution is determined by
i1
w(i)=w(0)(1).— i=1,2,...,s
p/ !
v\i—*
(i) =(s)( =) j=s+1,542,...
Sp

provided v <su. The ratio p = v/sp is called the traffic intensity. Show
that if a typical customer arrives to find all the servers busy then, with the
queue discipline first come first served, his queueing time (the period of
time until his service commences) is exponentially distributed with mean
(sp—v)™ L.

. Suppose the number of customers in an M/M/1 queue is observed at
those instants in time at which a customer is about to arrive. Show that
the resulting discrete time process is a Markov chain with transition
probabilities

v w j—k+1
j, k)= ( ) O<k=<j+1
p(j, k) v ta i
Verify that the equilibrium distribution is given by the expression (1.10).

. The Poisson assumption in the telephone exchange model may be ade-
quate if the source population of subscribers is very large. If the source
population is of finite size M(>K), it may be more reasonable to let

q(,j+1)=A(M~]) i=0,1,...,K-1

Show that the equilibrium distribution will then be given by

qr(i)=w(0)(’;4)(§)' i=0,1,....K

. Consider the finite source telephone exchange model of the previous
exercise. Suppose the number of busy lines is observed at those instants
in time at which a call is about to be initiated. Write down the transition
probabilities of the resulting Markov chain. By considering the probabil-
ity flux w(j)q(j, j+ 1) that a call is initiated while j lines are busy show
that the equilibrium distribution of the Markov chain is given by

- i

'rr'(j)=1r'(0)(M, 1)(i) j=0,1,2,...,K
) w

Comparing this distribution with the one obtained in the preceding

exercise we see that the number of busy lines found by a subscriber when

he attempts to make a call has the same distribution as the number of

busy lines at a fixed instant in time in a system with one less subscriber.
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7. Suppose that a typical customer arrives at an M/M/1 queue at time ¢,.
Show that the mth customer to arrive after time t, finds the queue in
equilibrium, for m=1,2,.... In contrast, the first customer to arrive
after a fixed instant in time does not find the queue in equilibrium, since
the interarrival period preceding his arrival is the sum of two exponential
random variables. This customer is not typical: the way in which he has
been chosen provides us with information about the time of previous
arrivals. Show that the probability this customer finds j customers in the
queue is

(1-p)1+p) j=0
(1-p)p™* i=12,...

where p=7v/u. )

8. A stack is a form of queue in which the server devotes his entire
attention to the customer who last arrived at the queue. Thus when a
customer arrives his service is started immediately, but is interrupted if
another customer arrives before its completion. Suppose that customers
are of I types, that the stream of customers of type i arriving at the
queue forms a Poisson process of rate v, and that the service times of
these customers are exponentially distributed with parameter ;. Con-
struct a Markov process to represent the queue and show that the graph
associated with the process is a tree. Show that if

the equilibrium probability that there are n customers in the queue with
the rth customer being of type t(r) is

(1-p) [T 22
r=1 “‘t(r)
Deduce that in equilibrium the number of customers in the queue has the .
same distribution as for the simple queue with »/u = p.

9. Consider the points in time at which new individuals appear, either
through immigration or birth, in the simple birth, death, and immigration
process. Show that the mean time between such appearances is (u—
A)/vp by using Little’s result (1.12). Equivalently show that the mean
appearance rate is vu/( —A) by calculating the probability flux that a
new individual appears. Show that when a new individual appears the
number of individuals he finds already alive has a negative binomial
distribution with mean (v +A)/(u —A). Conditional on the new individual
having been born show that the number of individuals he finds already
alive, excluding his parent, has the same negative binomial distribution.
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1.4 THE EHRENFEST MODEL

One particular example of a birth and death process is worth special study;
it was introduced early in the century to help explain the apparent paradox
between reversibility and the phenomenon of increasing entropy. The model
can be described as follows. There are K particles distributed between two
containers (Fig. 1.1). Particles behave independently and change container
at rate A. Thus X(t), the number of particles in container 1 at time ¢, is a
Markov process with transition rates

q(,j—-1D=jr i=1,2,...,K
q(G,j+D)=(K-Hr» j=0,1,...,K-1

The equilibrium distribution can be deduced from equation (1.9) and is
K
w()=2%(")
]
The process in equilibrium is reversible and thus, assuming K is even,

P(X()=K, X(t+1)=3K)=P(X(t)=3iK, X(t+1)=K) (1.15)

The equilibrium distribution shows that states which allocate particles fairly
evenly between the two containers are much more likely than states which
allocate most of the particles to one container. Hence the conditional
probability P(X(t+7)=3K|X()=K) is much greater than P(X(t+7)=
K | X(1)=3K). If the process starts with all the particles in one container
then it is quite likely that after a period the particles will be shared evenly
between the two containers. On the other hand, if the process starts with the
particles shared evenly between the containers it is extremely unlikely that
after a period the particles will all be in one container. The lack of symmetry
exhibited by the conditional probabilities is quite compatible with reversibil-
ity. It is joint probabilities, such as those appearing in equation (1.15), which
reversibility requires to be symmetric.

The asymmetry of the conditional probabilities, and more generally the
phenomenon of increasing entropy, is a symptom of the approach to
equilibrium of a system not initially in equilibrium. Consider a Markov
process X(¢) with a finite state space. Let

u(t)=P(X(t)=}))

Fig. 1.1 The Ehrenfest model
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and suppose that the initial distribution, 4;(0), je¥, may not be the
equilibrium distribution. Considering the possible events in the time interval
(¢, t + 8t) leads to the equation

w(t+80= T w@alk, o+ u,(t)(l - T 4G,k 8t)+o(8t)

and hence the forward equations

L= T Gatk h-u®aG k) e (1L16

ke&

The solution to these equations must satisfy the initial conditions at time
t=0, and tends to the equilibrium distribution as ¢t — . Now let

_ A
HO=2, “")"(w(i))

where h(x) is a strictly concave function. Thus H(t) is a function of the
distribution over states at time t, y;(t), j € &. If the initial distribution is the
equilibrium distribution, then H(t) takes a constant value. Otherwise H(t)
increases monotonically to this constant value, as the next theorem shows.

Theorem 1.6. If the initial distribution is not the equilibrium distribution,
then the function H(t), t>0, is strictly increasing.

Proof. For fixed >0 let
p(j, k)=P(X(t+7)=k | X(®) =)

Thus
w(t+7)= Zj: w(Dp(, k)
and
w(k)= ; w(p, k)
Let
a(k, j) =w—(2%((j)’—k) (1.17)
Thus a(k, j)>0, ¥, a(k, j)=1. Also
w(t+7) _ 5 w (DpG, k)
wky T wk)
=3 ak, 4 (1.18)

i w(j)
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Now since h(x) is strictly concave

h(z a(k, j)x,.) > a(k, Hh(x) (1.19)

i i
unless x;, je€ &, are all equal. Using successively relations (1.18), (1.19), and
(1.17) we have that unless wit)=n(j), je &,

(uk(t+ 'r))

H(t+7)=) mw(k)h e

k

_ N0
-gren(Ean )

, uj(t)
> ‘Z Z w0k, J)h(;—(j—))

_ N L)
=3, L owG, on(22)

= H(t)

The theorem has a counterpart for Markov chains which is established in
the same way.

An important special case of the theorem arises with the concave function
h(x)=—x log x. Then

o ()
H(r) ; u;(t) log pare;
This quantity is called the statistical entropy, or the entropy of the distribu-
tion u;(t), j€ &, with respect to the distribution w(j), je &.

The monotonic increase of the function H(t) is a consequence of the
convergence of the distribution u(t), je &, to the equilibrium distribution
w(j), je¥. It will occur whether or not the Markov process X(t) has
transition rates which satisfy the detailed balance conditions (1.6), provided
only that the process is not in equilibrium. On the other hand, reversibility is
essentially a property which a process in equilibrium may or may not
possess, and in either case the function H(t) is constant just because the
process is in equilibrium. To take the example of the Ehrenfest model, there
is no conflict between reversibility and the phenomenon of increasing
entropy—reversibility is a property of the model in equilibrium and increas-
ing entropy is a property of the approach to equilibrium.

If the transition rates of the Markov process X(t) do satisfy the detailed
balance conditions then there is an interesting alternative interpretation of
the approach to equilibrium and of the function H(t). In this case the
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forward equations (1.16) can be rewritten

d _ 1 uk(t)_uj(t) R
au‘(t)—kgyr(i,k)(w(k) w(f)) je¥ (1.20)

where the (possibly infinite) quantity r(j, k) is given by
rG, k)Y =[w()qG, )T =[w(k)q(k, )T = r(k, j)

Consider now an electrical network with nodes & in which nodes j and k are
connected by a wire of resistance r(j, k) and node j is connected to earth by
a capacitor of capacitance m(j). If u;(t) is the charge present at node j at
time ¢t then (1), je &, will satisfy equations (1.20); these are just Kir-
chhoff’s equations and express the fact that the rate of increase of charge at
node j is equal to the rate at which charge is flowing into node j. Thus the
way in which probability spreads itself over the states of the Markov process
is analogous to the way in which charge spreads itself over the nodes of the
electrical network. Further, if we let h(x)=—4x2 then

_1 ¢ u(@?
“HO=3 2706

which is just the potential energy stored in the capacitors of the electrical
network. As H(t) increases, energy is dissipated as heat in the wires of the
electrical network.

In this work we shall mainly be concerned with processes in equilibrium,
exceptions being Section 4.5 and Chapter 5. In Chapter 5 the electrical
analogue discussed here will be considered further.

Exercises 1.4

1. Show that the jump chain X’(t) of the Ehrenfest model has the same
equilibrium distribution as X(t). Show that if j is close to K, then in
equilibrium

PX'(-1)=j-1,X'(0)=}, X’ (1)=j-1)
is much larger than any of

PX'(-1)=j+1,X"(0)=j, X’ (1) =j-1),

PX'(-1)=j-1,X(0)=j, X’ (1)=j+1),

PX’1D)=j+1,X70)=j, X' 1) =j+1).

Deduce that if at a fixed time we observe j particles in container 1
then it is highly probable that the previous state was, and the next state
will be, j~1.

2. If in the Ehrenfest model particles move from container 1 to container 2

C
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at rate . show that the equilibrium distribution is

n= (1+2) (5 (2

3. Let X(t) be a stationary stochastic process and let & be a subset of the
state space &. Show that

P(X(1), X(2),...,X(n)e 4 | X(0)e A)
=P(X(0), X(1),...,X(n—-1)esd | X(n)eA)
Establish Kac’s formula:

P(X(0)ed, X(1),X(2),...,X(n)¢ )

=P(X(0),X(1),...,.X(n—-1)éoA, X(n)eA)
Deduce that

P(X(1),X(2),...,X(n)¢ A | X(0)e o)
=P(X(0), X(1),..., X(n—-1)¢ A | X(n)e oA)

Observe that these relations hold whether the process is reversible or not.
4. Suppose the transition rates of a Markov process with a finite space

satisfy the detailed balance conditions. If the process starts in state k at

time t =0 show that

(k)
u(28)= ) —=[u; ()
“ iezy w()
Deduce from Theorem 1.6 that the function w (1), t=0, decreases
monotonically from unity to (k).

1.5 KOLMOGOROV’S CRITERIA

The detailed balance conditions (1.6) enable us to decide whether a station-
ary Markov process is reversible from its equilibrium distribution and its
transition rates. Since the equilibrium distribution is determined by the
transition rates it is natural to ask whether we can establish the reversibility
of a process directly from the transition rates alone. Kolmogorov’s criteria
allow us to do just that.

We begin by establishing the criteria for a Markov chain.

Theorem 1.7. A stationary Markov chain is reversible if and only if its
transition probabilities satisfy

p(jl’ j2)p(j2’ ]3) e p(jn—l’ jn)p(jm ]1)
= P15 J)PUis 1) * * - PU3s 1P U, 1) (1.21)

for any finite sequence of states ji,j,,...,J. €.
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Proof. If the process is reversible then the detailed balance conditions
hold; hence

w(j)r(s, j2) = 7w (j2)p iz j1)
7 (j2)p(jas ja)= w(j2)p(as i2)

W(ju—l)p(jn—l, ]n) = w(ln)p(’m jn—l)
’ﬂ'(ln)P(jm ]l) = ""'(11)[’(]1, ]n)

Multiplying these conditions together and cancelling the positive equilib-
rium probabilities gives equation (1.21).

Conversely, suppose the transition probabilities satisfy equation (1.21).
Let j, be an arbitrarily chosen reference state. Since the process is irreduci-
ble, for any state j€ & there exists a sequence Of states j, jo, ju-1,- - -» j1» Jo
leading from j to jo such that p(j, j)PUns ju-1) = * * PU1, Jo) > 0. Let

o _ pGo, 1P, d2) " * P, §)
N=B—— —r
Uy )P Uns Ja1) * * * PUs Jo)
where B is a positive constant. Observe that (j) does not depend upon the
particular sequence of states chosen to lead from j to jo, since if j,

jt faets+ - +» its Jo is another sequence of states leading from j to j, with
PG, 8Pty fiu-1) * * * PU4, Jo) >0, relation (1.21) ensures that

P(fo, jl)p(jb .’2) tt p(jm ]) = P(jo: j’l)p(]’la ]&) tet p(j;m j)
p(], jn)p(jm jn——l) e p(il; ]0) P(l, ]:n)p(j:m j:n—l) o p(]’b ]0)
Note that irreducibility and relation (1.21) imply that = (j) is positive. We
must now show that w(j), je &, satisfy the detailed balance conditions. If

p(j, k) =p(k, j)=0 these are satisfied automatically, so suppose p(k, j)>0.
Then we can write

w(k)=B

P(fo, jl)p(jl, ]2) tct p(jm ])P(I, k)
p(k, ])P(], jn)p(jm jn—l) e p(jl’ jo)

Hence
w(k)p(k, j)=m(DpG, k)

Thus w(j), je ¥, satisfy the detailed balance conditions and so they also
satisfy the equilibrium equations. Since the process is stationary they cannot
sum to infinity; hence B can be chosen so they sum to unity. Thus from
Theorem 1.2 the process is reversible and w(j), je ¥, is the equilibrium
distribution.

Kolmogorov’s criteria (1.21) provide a useful insight into the nature of a
reversible Markov chain. They show that given a starting point j; €% any
path in the state space which ultimately returns to j1 must have the same
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probability whether this path is traced in one direction or the other. Thus a
reversible Markov chain shows no net circulation in the state space.

The proof of Theorem 1.7 has a direct analogue for a Markov process
which establishes the next result.

Theorem 1.8. A stationary Markov process is reversible if and only if its
transition rates satisfy

q(jl; fz)Q(jz, ]3) tr q(jn-ls jn)q(jm ]1)
= q(jl’ jn)q(jm jn—l) e q(j:h j2)q(j2’ ]l) (122)

for any finite sequence of states j,, Ja. oo  j €S

In practice relation (1.22) does not usually have to be established for all
closed paths jy, j,, ..., j., j; since it is often possible to choose certain simple
paths so that the truth of (1.22) for a general path follows from its truth for
these simple paths. For instance if relation (1.22) can be established for
sequences of distinct states then it follows for all sequences. Another
example is contained in Exercise 1.5.2, and a further example follows.

A two-server queue. Suppose that the stream of customers arriving at a
queue forms a Poisson process of rate v and that there are two servers who
possibly differ in efficiency. Specifically, suppose that a customer’s service
time at server i is exponentially distributed with mean p;', for i=1,2,
where to ensure that equilibrium is possible w,+u,>v. If a customer
arrives to find both servers free he is equally likely to be allocated to either
server. The queue can be represented by a Markov process whose transition
rates and associated graph G are illustrated in Fig. 1.2. State n, for
n=0,2,3,..., corresponds to there being n customers in the queue, while
state 1A or 1B corresponds to there being a single customer in the queue,
allocated to server 1 or 2 respectively. To ensure that the process is
reversible in equilibrium we need only check the relation

q(0,1A)q(1A, 2)q(2, 1B)q(1B, 0) = q(0, 1B)q(1B, 2)q(2, 1A)q(1A4, 0)
(1.23)

since Kolmogorov’s criterion (1.22) for any other finite sequence of states

1A

T
o X#'// X x“i"“z "__x Pt v
b\\ /2 3 4
Yy %,

%I X

Fig. 1.2 Representation of a two-server queue
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will follow from this or will hold trivially. Relation (1.23) holds, since it
reduces to

FVXVX U Xy =30 X ¥ X s X

The equilibrium distribution is given by

m(1A)= w(O)ﬁ—

#(1B) = 7(0) ——

2p,
Vz v n—-2
(n) = m(0) ( ) n=2,3,. ..
2pqpy \q + py

Observe that if a customer arriving to find both servers free is allocated to
server 1 with probability p#3 then the process is not reversible since
relation (1.23) will fail to hold.

Exercises 1.5

1.

There is an alternative proof of Theorem 1.7 which is instructive. By
summing the equation

pGs iDpls i2) - - - pUa KPR, ) = p(, K)DCK, ) * * * PUas iR, )

over all ji,jp,...,j,€%, and then letting n-—», deduce that, for
aperiodic chains in the first instance, the equilibrium distribution w(j),
j € &, satisfies

w(k)p(k, j)=w({p(, k)

. Consider a stationary Markov process with a state j, such that q(j, jo)> 0

for all j€ &. Show that a necessary and sufficient condition for reversibil-
ity is that
4G, 141> 1292 Jo) = (o, J2)a o, J1)a s, fo)

for all j;, j,e &.

. Construct a stationary Markov process which is not reversible yet which

satisfies relation (1.22) when n =3.

. Consider a stationary Markov process whose associated graph G can be

imbedded in the plane without any of its edges crossing. Show that the
process is reversible if relation (1.22) holds for every minimal closed
path, where a closed path is called minimal if there is a point in the plane
such that the closed path is associated with the subgraph of G encircling
the point.

. Consider the two-server queue described in this section. Show that if

i1 = py = then the number in the queue is a birth and death process
and 7w(0)=Qu +v)/Qu —v).
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6. Generalize the queue described in this section to the case of s servers.
Assume that if a customer arrives to find more than one server free he is
equally likely to be allocated to any of them.

7. Observe that Lemma 1.5 could be regarded as a corollary of Theorem
1.8. Consider now the following amendment of the two-server queue
described in this section. Suppose that if a customer arrives to find both
servers free he is allocated to the server who has been free for the
shortest time. Show that the resulting queue can be represented by a
Markov process whose associated graph G is a tree. Generalize the
queue to the case of s servers. Show that the probability servers
i1, i3 ...,i, are busy and the rest free is the same as in the queue
considered in the preceding exercise.

1.6 TRUNCATING REVERSIBLE PROCESSES

Various amendments can be made to the transition rates of a reversible
. Markov process without destroying the property of reversibility. For exam-
ple if a reversible Markov process is altered by changing q(j;, j,) to cq(ji, j,)
and q(j,, j;) to ¢q(j, j,), where ¢ >0, then the resulting Markov process is
reversible and has the same equilibrium distribution. This follows from
Theorem 1.3, since the detailed balance conditions (1.6) will still be
satisfied. A slightly different alteration is the subject of the next lemma.

Lemma 1.9. If the transition rates of a reversible Markov process with state
space & and equilibrium distribution w(j), je &, are altered by changing
q(j, k) to cq(j, k) for je A, ke P — oA, where ¢ >0, then the resulting Markov
process is reversible in equilibrium and has equilibrium distribution

Bw(j) jed
Ben(j) je¥—-oA
where B is a normalizing constant.

Proof. The suggested equilibrium distribution satisfies the detailed bal-
ance conditions and so the result follows from Theorem 1.3. The normaliz-
ing constant is given by

B'=) w()+c Y w(j)

ied jieF—ot

If ¢ =0 the resulting process has a smaller state space. Say that a Markov
process is truncated to the set of < & if q(j, k) is changed to zero for jesd,
k € ¥ — o, and if the resulting process is irreducible within the state space A.
Like Lemma 1.9 the next result follows directly from the detailed balance
conditions.
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%
>

X

ny
Fig. 1.3 The state space for two queues
with a joint waiting room of size 4

Corollary 1.10. If a reversible Markov process with state space & and
equilibrium distribution w(j), je <, is truncated to the set < & then the
resulting Markov process is reversible in equilibrium and has equilibrium
distribution
m(j)- ,
Yiea m(k) jed

It is interesting to note that the equilibrium distribution of the truncated
process is just the conditional probability that the original process is in state
j given that it is somewhere in &. An example has already been given in
Exercise 1.3.2; another follows.

Two queues with a joint waiting room. Consider two independent M/M/1
queues. Let »; be the arrival rate and p! the mean service time at queue i,
for i=1,2. If n; is the number of customers in queue i then the Markov
process (n,, n,) is reversible (Exercise 1.2.8) with equilibrium distribution

rnmr=(=2)) (-)62)

Suppose now that the two queues are forced to share a joint waiting room of
size R, so that a customer who arrives to find R customers already waiting
for service, not including those being served, leaves without being served.
This corresponds to truncating the Markov process (n,, ny) to o, the set of
states in which not more than R customers are waiting (Fig. 1.3). The
equilibrium distribution for the truncated process will thus be

(ny, ny) = (0, 0)(&)"' (ii) (ny, np)e

2
Exercises 1.6

1. Suppose that the two queues considered in this section have three waiting
rooms associated with them: a waiting room of size R, for customers at
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queue 1, a waiting room of size R, for customers at queue 2, and an
overflow waiting room of size R, which can hold customers waiting for
either queue. Identify the state space and write down the form of the
equilibrium distribution.

2. Suppose that a Markov process with equilibrium distribution w(j), jeZ,
is truncated to the set o = &%. Show that the equilibrium distribution of
the truncated process is the conditional probability distribution

m(j)
Zked (k)
if and only if the distribution w(j), je &, satisfies

jed

() X aG k=Y a(kgl) jed (1.24)
kest kest

These equations are of a form intermediate between the detailed balance

conditions (1.6) and the full balance conditions (1.3), and we shall call

them the partial balance conditions for the set sf. Observe that the

distribution 7 (j), je &, satisfies the partial balance conditions (1.24) if

and only if

() Y aG k)= Y w(kqkj) jed
kesf—-oA ke —-s
These equations should be compared with equation (1.8).

3. Suppose that a Markov process with equilibrium distribution w{(j), je &,
is altered by changing the transition rate a(j, k) to cq(j, k) for j, ke o,
where ¢#0 or 1. Show that the resulting Markov process has the same
equilibrium distribution if and only if the partial balance conditions
(1.24) are satisfied.

4. Suppose that a Markov process with equilibrium distribution w(f), je &,
is altered by changing the transition rate a(j, k) to cq(j, k) for je o,
ke ¥—o, where c#0 or 1. Show that the resulting Markov process has
an equilibrium distribution of the form

Bu(j)  jed
Ben(j)  jeS-oA

if and only if the distribution m(j), je &, satisfies the partial balance
conditions (1.24).

1.7 REVERSED PROCESSES

If X(t) is a reversible Markov process then X (7—1) is also a Markov process
since it is statistically indistinguishable from X(t). In this section we shall
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investigate the form of the reversed process X(r—t) when X (t) is a Markov
process, but one which is not necessarily reversible.

The characterization of a Markov process as a process for which, condi-
tional on the present, the past and the future are independent shows that if
X(t) is a Markov process then so is X(r—1). An alternative proof is given in
the next lemma which shows the complications that can arise if X (t) is not
stationary.

Lemma 1.11. If X(t) is a time homogeneous Markov process which is not
stationary then the reversed process X(r—t) is a Markov process which is not
even time homogeneous.

Proof. Since X(t) is a Markov process we have the following factoriza-
tion for £, <, < <t,:

P(is, jas - - - »§n) = PGy TI PG 1i-0)
r=2

But
P(jr—l)P(jr Ijr—l) = P(jr)P(jr-—l | .ir) (125)
and so

P(jl; j29 L ’jn)=P(jn) l_l P(jr——l |]r)
r=2

This factorization shows that X(r —¢t) is Markov, but let us look more closely
at the definition of P(j,_,|j,) contained in equation (1.25). An alternative
version of equation (1.25) is
P(X(t)=j)P(X(t+h)=k | X(t)=])

=P(X(t+h)=k)P(X({t)=j| X(t+h)=k) (1.26)
Now P(X(t+h)=k | X(t)=j) does not depend upon ¢, but P(X(t)=j) and
P(X(t+ h) = k) will depend upon ¢ for some j, k e & if X(t) is not stationary.
Thus P(X(t) = j | X(t+ h) = k) will depend upon ¢, and so X(r —1) will not be
time homogeneous.

If X(t) is stationary the situation is much simpler.

Theorem 1.12, If X(t) is a stationary Markov process with transition rates
q(, k), j, ke, and equilibrium distribution w(j), j€ ¥, then the reversed
process X(t—1t) is a stationary Markov process with transition rates
w(k)a(k, j)
(j)

and the same equilibrium distribution.

q'(, k)= hkeS
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Proof. From equation (1.26) we obtain

POX(0)=| X(t+h)= k) =9 p(X(t+ h)=k | X(6) = ])

(k)
Now divide both sides by h and let h tend to zero. Thus
vy o el k)

The fact that the reversed process is stationary follows as an immediate
consequence of the definition of stationarity. That X(¢t) and X(r—¢) have
the same equilibrium distribution follows since they have the same station-
ary distribution, but it is worth checking that the equilibrium equations

() Y 4'G k)= Z w(k)q'(k, j)

kes

are satisfied.
The next example illustrates the theorem.

A two-server queue. Suppose the stream of customers arriving at a
two-server queue forms a Poisson process of rate v and that a customer’s
service time at server i is exponentially distributed with mean u;*, for
i=1,2, where pu,+ u,>». If a customer arrives to find both servers free he
is allocated to the server who has been free for the longest time. The queue
can be represented by a Markov process whose transition rates and as-
sociated graph G are illustrated in Fig. 1.4(a). State n, for n=2,3, ...,

/\ ""l’““! o B, v Vil
"\/ 3 7
v
1B
/ "2\
v
+ Y) )
OA OBX My xl‘l 2 Bk v
K2 \y v 2
B

Fig. 1.4 A two-server queue: (a) the original process and (b) the
reversed process
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corresponds to there being n customers in the queue. State 1A or 1B
corresponds to there being a single customer in the queue, allocated to
server 1 or 2 respectively. State 0A or 0B corresponds to both servers being
free, with server 1 or 2 respectively having been free for the shorter time.
The process is clearly not reversible since q(0A, 1B) is positive and
q(1B, 0A) is zero. The equilibrium distribution for the process is

'rr(n)='n'(2)(m:u2)"—2 n=23,...

»n(lA)=1r(2)i:—2

w(1B)= w(z)‘—:l

m(0A)=m(0B) = 7(2) ‘—”L—’j%

Theorem 1.12 shows that the transition rates of the reversed process are as
illustrated in Fig. 1.4(b). Observe that they take a particularly simple form.
This is not always the case, as Exercise 1.7.1 demonstrates.

Remember that the period for which X(t) remains in state j is exponen-
tially distributed with parameter

a)= Y, q(, k)
ke

Similarly, define
a()= X 4'G,k)
ke¥

It follows from Theorem 1.12 that q(j)=q'(j). This is not surprising: the
periods spent in state j have the same distribution whatever the direction of
time. Theorem 1.12 has the following converse.

Theorem 1.13. Let X(t) be a stationary Markov process with transition
rates q(j, k), j, k€ &P. If we can find a collection of numbers q'(j, k), , ke S,
such that

a@=q() je¥ (1.27)
and a collection of positive numbers w(j), j € &, summing to unity, such that
w(a(, k)=mk)q'(k,j) jke¥ (1.28)

then q'(j, k), j, k € #, are the transition rates of the reversed process X(t—1t)
and 7w (j), j€ ¥, is the equilibrium distribution of both processes.
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Proof. From equations (1.28) and (1.27) it follows that

2 m(aG, k)=m(k) Y. q'(k, j)

je& je¥

=w(k)q'(k)
= w(k)q(k)

Thus 7(j), j € &, is the equilibrium distribution of X (t). That q'(j, k), j, ke &,
are the transition rates of the reversed process then follows from Theorem
1.12.

We shall find Theorem 1.13 useful in Chapter 3 where we discuss a rather
complicated Markov process for which it would be tedious to check the
equilibrium equations, but for which possible transition rates of the reversed
process are apparent. The similarity of equation (1.28) to the detailed
balance condition should be observed. A generalization of Kolmogorov’s
criteria can also be obtained (Exercise 1.7.4).

Occasionally we may come across a stationary Markov process for which
the reversed process, while not statistically indistinguishable from the origi-
nal process, would be if some of the states were interchanged. To make this
notion precise suppose that to each state j€ ¥ there corresponds a conjugate
state j* € & with (j*)* =], Then the stationary Markov process X(t) is called
dynamically reversible if X(t) is statistically indistinguishable from [X(r—
)]*. As an example consider the stationary Markov process with state space
S={-n,-n+1,...,n—1,n} and transition rates

G, j+D)=r  j=-n,-n+1,...,n-1
q(n,—n)=A

With j*=—j this process is dynamically reversible. Reversing this process
has an analogous effect to reversing the velocity of a particle moving in a
circular orbit—hence the term ‘dynamically reversible’. A further example is
the two-server queue illustrated in Fig. 1.4, which is dynamically reversible
with (0A)*=0B and all other states self-conjugate.

Theorem 1.14. A stationary Markov process with a()=q("), je%, is
dynamically reversible if and only if there exists a collection of positive
numbers w(j), j€ &, summing to unity that satisfy

w(j)=n(j") jes (1.29)
and
w(Dq(, k)= mw(k*)qk*,j*) j ke

When there exists such a collection w(j), j€ ¥, it is the equilibrium distribution
of the process.
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Proof. If the process is dynamically reversible then the relations follow
from the identification m(j) = P(X(t) =j). Conversely, if the process satisfies
the relations let q'(k, j)=q(k™,j*). Thus

m(f)
w(k™)

(({3) 4G, k)

q'(k, )=—77q(, k)

Further,

ai)=% 4G k)

kes

=3 q(*, k")

ke&
=q(j*)
=q(j)

We have thus established that the transition rates q'(j, k), j, k € &, satisfy
equations (1.27) and (1.28) and so, by Theorem 1.13, #(j), je ¥, is the
equilibrium distribution and the reversed process X(r—t) has transition
rates q'(j, k), j, ke . Since q'(j, k) =q(j*, k™) the process X(t) is dynami-
cally reversible.

Exercises 1.7

1.

If X(2) is the stationary Markov process whose transition rates were given
in Exercise 1.1.4, with a<1 and b>0, find the transition rates of the
reversed process X(7—1).

. Construct examples to show that condition (1.27) cannot be dropped

from Theorem 1.13, nor condition (1.29) from Theorem 1.14.

. Establish counterparts of Theorems 1.12, 1.13, and 1.14 for Markov

chains. Observe that no analogue of condition (1.27) is needed: the
implicit condition that transition probabilities sum to unity serves the
same purpose.

Let X(t) be a stationary Markov chain with transition probabilities
p(j, k), j, k€ &. Show that if there exist transition probabilities p'(j, k),
I, k € %, such that

p(jls j2)p(j2’ ]3) e p(jn—l’ jn)p(jm ]1)

=D'(15 §a)P Uns Ju—1) = * - D' (s 12)D" (25 J2)
for any finite sequence of states ji, j,,...,J. €%, then p'(j, k), j, ke &,
are the transition probabilities of the reversed Markov chain X(r—t).

Using the additional condition (1.27) obtain the parallel result for a
Markov process.
C
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. Show that the reversed process illustrated in Fig. 1.4(b) can be regarded
as representing a two-server queue identical to the one represented by
the original process but with states 0A or 0B indicating that the next
arrival will be allocated to server 1 or 2 respectively.

. Generalize the queue considered in this section to the case of s servers.
Show that the probability servers i,, i, .. ., i, are busy and the rest free
is the same as in the queues considered in Exercises 1.5.6 and 1.5.7.

. Suppose that a Markov process X () with transition rates q(j, k), jked,
and equilibrium distribution #(j), je€ &, is truncated to the set <. Let
Y(t) be the stationary truncated process. Let Z(f) be the stationary
process resulting from truncating the reversed process X(—t) to. the set
5. Show that Z(t) and Y(—t) have the same transition rates if and only if
the partial balance conditions (1.24) are satisfied. If Z(t) and Y(—t) have
the same transition rates we shall say that for the process X(t) the
operations of time reversal and truncation to the set & commute.

. Consider a Markov process with transition rates q(j, k), j, ke ¥, and
equilibrium distribution (j), j€ &. Suppose that the probability flux out
of the set of

L X w()aG k)

jed ke~
is finite. Show that the Markov chain formed by observing the process at
those instants in time just before it leaves the set o has the same
equilibrium distribution as the Markov chain formed by observing the
process at those instants in time-just after it enters the set of if and only if
the partial balance conditions (1.24) are satisfied.
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