Corrections to Yuri Suhov and Mark Kelbert

Probability and Statistics by Example. Vol. 2: Markov Chains: A Primer in Random Processes and Their Applications Cambridge University Press, 2008

Many thanks to all readers who pointed at mistakes and discrepancies.

Counting lines down always begins with the top line containing the running (short) title of the chapter and the section. Counting lines up begins with the bottom line of the page. A displayed equation is counted as one line (possibly containing several lines which - when needed - are identified within this equation). Tables and diagrams are also counted as single lines (with a similar principle of identification of lines inside them).

1. Page 3, Line 13 down:
is represented in Figure 1.1., bottom.
\rightarrow
is represented in Figure 1.1., bottom. The states are labelled 1, 2, 3, 4.
2. Page 10, Line 3 Line 2 up:

Again we use three initial conditions, with P^{0}, P and P^{2}. For instance, \rightarrow
Again we use three initial conditions, with P^{0}, P and P^{2}. (As always, 0^{0} is taken as 1.) For instance,
3. Page 11, Line 2 down:
whence $A=1 / 3, B=0, C=2 / 3$ and $p_{11}^{(n)} \equiv 1 / 3$. Similarly,
\rightarrow
whence $A=1 / 3, B=0, C=2 / 3$ and $p_{11}^{(n)} \equiv 1 / 3, n \geq 1$. Similarly,
4. Page 15, Line 9 up, the displayed equation:

$$
p_{A B} p_{B C} p_{C A}+p_{A C} p_{C B} p_{B A}=\frac{2 s_{A} s_{B} s_{C}}{\left(s_{A}+s_{B}\right)\left(s_{B}+s_{C}\right)\left(s_{C}+s_{A}\right)} .
$$

\rightarrow

$$
p_{A A}^{(3)}=p_{A B} p_{B C} p_{C A}+p_{A C} p_{C B} p_{B A}=\frac{2 s_{A} s_{B} s_{C}}{\left(s_{A}+s_{B}\right)\left(s_{B}+s_{C}\right)\left(s_{C}+s_{A}\right)} .
$$

5. Page 18, Line 13 up, Definition 1.2.2:
a state cannot escape \rightarrow the chain cannot escape
6. Page 22, Lines 3-4 down:
renumeration \rightarrow renumbering
7. Page 26, Line 5 up:

From now on we denote \rightarrow Recall, we denote
8. Page 27, Line 7 down:
so that if $\mathbb{P}_{i}\left(H^{A}=\infty\right)>0$, then $k_{i}^{A}=\infty$. In other
\rightarrow
so that if $\mathbb{P}_{i}\left(H^{A}=\infty\right)>0$, then $k_{i}^{A}=\infty$. (By convention, $\infty \cdot 0=0$). In other
9. Page 22, Line 8:

Next, we have square blocks of varying size positioned on the main diagonal. These blocks correspond with closed communicating classes C_{1}, \ldots, C_{m} (and we will refer to them as C_{1}, \ldots, C_{m}); they form stochastic submatrices.
\rightarrow
Next, we have square blocks of varying size positioned on the main diagonal. These blocks correspond with closed communicating classes C_{1}, \ldots, C_{m} (and we will refer to them as C_{1}, \ldots, C_{m}); they form stochastic submatrices.
10. Page 23, Line 20 and below, and the whole of Page 24 should read as follows:

For simplicity, let us now assume that a finite matrix P is irreducible. It is not hard to guess that, after an appropriate re-enumeration of states, we will have, inside block C, a 'periodic' picture, with a number v of rectangual 'cells' that are cyclically permuted by P : cell 1 is taken to cell 2 , and so forth, cell v to cell 1 . The horizontal length of the previous cell will be equal to the vertical height of the subsequent one (in the cyclic order). See Fig. 2.6. The space outside cells is again filled with zeros.

This picture corresponds with a partition of space I into periodic subclasses W_{1}, \ldots, W_{v} such that a one-step transition is only possible from a state $j \in W_{i}$ to a state $k \in W_{i+1}, i=1, \ldots, v$. (The sum $i \pm 1$ is understood as a sum modul;o v, so that $W_{v+1}=W_{1}$ and $M_{0}=M_{v}$.) Recall, according to our assumption, I is reduced to C, a single (and closed) communicating class. The number v is called the period of class C. Subclass W_{i} is identified with the collection of rows in cell i or with the collection of columns in cell $i-1$. Consequently, if W_{i} contains n_{i} states, with $n_{1}+\ldots+n_{v}$ being the total number of states, then cell i is $n_{i} \times n_{i+1}$.

In the majority of our exmples, the period of the closed communicating class equals one, i.e., the class consists of a single subclass, and the matrix contains a single cell. Such classes (as well as their transition matrices) are called aperiodic.

In general, if a transition matrix P corresponding to a closed communicating class C of period v is raised to the power v then matrix P^{v} is divided into diagonal square blocks each of whch forms an $n_{i} \times n_{i}$ stochastic matrix of period one. Pictorially speaking, the periodic subclasses W_{1}, \ldots, W_{v} play a rôle of closed communicating classes for matrix P^{v}.

More precisely, each of the aforementioned $n_{i} \times n_{i}$ stochastic submatrices of P^{v} is irreducible and aperiodic and coincides with the product of rectangular blocks of P taken in the corresponding order. (Consequently, each such submatrix of P^{v} has the property that if we raise it to a power that is high enough then every entry of the resulting stochastic matrix will be positive.)

A formal definition of a periodic subclass is as follows. We say that state $i \in I$ has period $v=v(i)$ if $p_{i i}^{(n)}>0$ only when $n=v m$, and v is the largest positive integer with this property. That is, v is the greatest common divisor of the values of n for which $p_{i i}^{(n)}>0$. In case $p_{i i}^{(n)} \equiv 0$, we set: $v(i)=0$. An important property is that, within a given closed communicating class C, the period $v(i)$ is the same for all states: it is the period of the class. We put this fact as Worked Example 1.2.7.

Figure 2.6

Worked Example 1.2.7. Given a state j, define the $\operatorname{period} v(j)$ of this state as the greatest common divisor of numbers n such that $p_{j j}^{(n)}>0$. Prove that if states i and j are from the same communicating class then $v(i)=v(j)$. (This justifies the term the 'period of a communicating class'.)

Solution Let i and j be two distinct communicating states. Then $p_{i j}^{(k)}>0$ for some $k \geq 1$ and $p_{j i}^{(l)}>0$ for some $l \geq 1$. Assume that $p_{j j}^{(n)}>0$, then $p_{i i}^{(n+k+l)} \geq p_{i j}^{(k)} p_{j j}^{(n)} p_{j i}^{(l)}>0$. Therefore, $v(i)$ divides $n+k+l$. Next, $v(i)$ divides $2 n+k+l$ as $p_{i i}^{(2 n+k+l)} \geq p_{i j}^{(k)}\left(p_{j j}^{(n)}\right)^{2} p_{j i}^{(l)}>0$. Thus, $v(i)$ divides the difference $(2 n+k+l)-(n+k+l)=n$. This is true $\forall n$ with $p_{j j}^{(n)}>0$. Then $v(i)$ must divide $v(j)$, as $v(j)$ is the greatest common divisor. A similar argument leads to the conclusion that $v(j)$ divides $v(i)$. Therefore, $v(i)=v(j)$.

Now let $v=v(C)$ be the period of class C. Select a state $i_{0} \in C$ and set:

$$
\begin{gathered}
W_{1}=\left\{j \in C: p_{i_{0} j}^{(n)}>0 \text { only if } n=v m,\right. \\
W_{2}=\left\{j \in C: p_{i_{0} j}^{(n)}>0 \text { only if } n=v m+1,\right. \\
\ldots \quad \cdots \\
W_{v}=\left\{j \in C: p_{i+0 j}^{(n)}>0 \text { only if } n=v m+v-1,\right.
\end{gathered}
$$

Then, obviously, $C=W_{1} \cup \ldots W_{v}$, and sets W_{i} are pairwise disjoint. We claim that W_{1}, \ldots, W_{v} are the periodic subclasses. To this end, suppose that state $k \in W_{i}$ and that $p_{i_{0} k}^{(n)}=\sum_{j \in C} p_{i_{0} j}^{(n-1)} p_{j k}>0$. Then, for some j, both probabilities $p_{i_{0} j}^{(n-1)}$ and $p_{j k}$ are positive. Consequently, $n-1=v m+i^{\prime}$ for some $i^{\prime}=i^{\prime}(j) \in\{0, \ldots, v-1\}$. Such a representation, for a given k, has to be unique. That is, i^{\prime} is uniquely determined for all j 's with the above property. Since we assumed that $p_{i_{0} k}^{(n)}>0$, we obtain that $n=v m+i-1$. Accordingly, $n-1=v m+i-2$, i.e., $i^{\prime}=i-2$ and $j \in W_{i-1}$, for any j as above. Therefore, the inverse is also true: if $j \in W_{i}$ and $p_{j k}>0$ then $k \in W_{i+1}$. This establishes the claim under consideration.
11. Page 45, Line 9 down:
take the sequence i_{0}, \ldots, i_{m} as above, then $\widehat{p}_{i_{i} i_{+1}}>0$. Now check
take a sequence of non-repeated states $i=i_{0}, i_{1}, \ldots, i_{m}=j$ with $p_{i_{i} i_{l+1}}>0$ (cf. Page 18). Then $\widehat{p}_{i l} i_{l+1}>0$. Now check
12. Page 53, Line 11 up:

Let $a, b \geq N, a, b, N \in \mathbb{Z}_{+}$. Consider a birth-death Markov chain on $n=0,1, \ldots, N$ with

$$
\lambda_{n}=(N-n)(a-n), \mu_{n}=n(b-(N-n)) .
$$

\rightarrow
Let $a, b \geq N, a, b, N \in \mathbb{Z}_{+}$. Consider a birth-death Markov chain on states $n=0,1, \ldots, N$ with probabilities p_{n} and $q_{n}=1-p_{n}$ of moving to $n+1$ and to $n-1$ from n given by $p_{n}=\lambda_{n} /\left(\lambda_{n}+\mu_{n}\right), q_{n}=\mu_{n} /\left(\lambda_{n}+\mu_{n}\right)$, where

$$
\lambda_{n}=(N-n)(a-n), \mu_{n}=n(b-(N-n)) .
$$

13. Page 59, Lines 2,3 down:
(I) Irreducible DTMCs with more than one state have transition probabilities $0<p_{i j}<1 \forall$ states $i, j \in I$ (no absorption).
(I) Irreducible DTMCs with more than one state have transition probabilities $0<p_{i j}^{(m)}<1 \forall$ states $i, j \in I$ where $m \geq 1$ may depend on i, j (no absorption).
14. Page 60, Line 2 down, Figure 1.13:

$$
H_{l} \rightarrow H^{(l)} \quad H_{1} \rightarrow H^{(1)} \quad H_{2} \rightarrow H^{(2)} \quad H_{3} \rightarrow H^{(3)}
$$

Page 60, Lines 4-6 down:

$$
\begin{aligned}
& H_{l}\left(=H_{l}^{i}\right) \rightarrow H(l)\left(=H_{i}^{(l)}\right) \quad H_{0} \rightarrow H^{(0)} \quad H_{1} \rightarrow H^{(1)} \quad H_{l} \rightarrow H^{(l)} \\
& H_{l-1} \rightarrow H^{(l-1)}
\end{aligned}
$$

15. Page 66, Line 9 up:

To be in event $\{N=n\}$, a sample
\rightarrow
To be in event $\{N=n\}$ with $n \geq 1$, a sample
16. Page 74, Line 3 down:
is geometric. This means that for some $m \geq 1$

$$
\begin{equation*}
p_{i j}^{(m)} \geq \rho \forall \text { states } i, j . \tag{1.83}
\end{equation*}
$$

\rightarrow
is geometric: see Theorem 1.9.3. In fact, if a chain is finite, irreducible and aperiodic, then $\exists m \geq 1$ and $\rho \in(0,1)$ such that

$$
\begin{equation*}
p_{i j}^{(m)} \geq \rho \forall \text { states } i, j . \tag{1.83}
\end{equation*}
$$

17. Page 77, Line 2 up, Figure 1.15:

$$
\begin{aligned}
& H_{V_{i}(n)-1}^{(i)} \rightarrow H_{i}^{\left(V_{i}(n)-1\right)} \quad T_{1}^{(i)} \rightarrow T_{i}^{(1)} \quad T_{2}^{(i)} \rightarrow T_{i}^{(2)} \quad T_{3}^{(i)} \rightarrow T_{i}^{(3)} \\
& T_{V_{i}(n)-1}^{(i)} \rightarrow T_{i}^{\left(V_{i}(n)-1\right)} \quad T_{V_{i}(n)}^{(i)} \rightarrow T_{i}^{\left(V_{i}(n)\right)}
\end{aligned}
$$

This implies the change of notations in (1.66) as well.
18. Page 86, Lines 10-15 down:
and

$$
u_{1}+\cdots+u_{i}=h_{0}-h_{i}, h_{i}=1-A\left(\gamma_{0}+\cdots+\gamma_{i-1}\right)
$$

The condition $\sum_{i} \gamma_{i}=\infty$ forces $A=0$ and hence $h_{i}=1$ for all i. Here,

$$
\gamma_{2^{m}-1}=2^{-m}
$$

so $\underset{\rightarrow}{\sum_{i} \gamma_{i}}=\infty$ and the walk is recurrent.
and so

$$
u+\cdots+u_{i}=h_{0}-h_{i}, \text { hence } h_{i}=1-u_{1}\left(\gamma_{1}+\ldots+\gamma_{i-1}\right),
$$

Here $\gamma_{2^{m}-1}=2^{-m}$, and γ_{i} is constant for blocks of length 2^{m}, so $\sum_{i} \gamma_{i}=+\infty$. This forces $u_{1}=0$, hence $h_{i}=1$ for all i, and the walk is recurrent.
19. Page 89, after Line 7 down, the following text should be inserted:

We finish this section by discussing a general picture of asymptotic behaviour of iterations P^{n} of a finite transition matrix P with several communicating classes. See Figs $2.4-2.6$. As was said in Section 1.2, the block O_{0} tends to 0 . The results of the preceding sections show that if a block C_{i} corresponds to an aperiodic closed communicating class, then in the course of iterations it will converge, as $n \rightarrow \infty$, to a block Π_{i} formed by the repeated row $\pi^{(i)}=\left(\pi_{j}^{(i)}, j \in C_{i}\right)$ representing the unique equilibrium distribution supported by class the C_{i}. Next, if a block O_{i} is positioned over an aperiodic closed class C_{i} then it has a limit as $n \rightarrow \infty$. And then, the limiting block is a sub-stochastic matrix where the sum of the entries along any row is between 0 and 1 but not necessarily 1 . (It may be that this sum equals 0 , implying that the whole row vanishes). Furthermore, the limiting block is non-zero if the original block was non-zero. (More precisely, \forall state $j \in I$, the sum $\sum_{k \in C_{i}} p_{j k}^{(n)}$ representing the probability of a transition from j to the closed class C_{i} in n steps is non-decreasing with n.) Moreover, if the block O_{i} was zero initially, it will remain zero in matrix P^{n} as well.

If, on the other hand, C_{i} is periodic, of some finite period $p_{i}>1$, and with periodic sub-classes $W_{i 1}, \ldots, W_{i p_{i}}$, then it is convenient to think in terms of the power $P^{p_{i}}$. For convenience, assume now that P is irreducible, so there is a unique communicating class C formed by the whole state space I; this class is closed and split into periodic subclasses W_{1}, \ldots, W_{p}. See Fig. 2.6 ??? kotoruyu ispravit'??. We noted that ordered lists $W_{i}, W_{i+1}, \ldots, W_{i-1}$, $i=1, \ldots, v$ (with $W_{0}=W_{v}$) will represent a communicating class for the matrix P^{p}. Each such collection gives rise to an irreducible and aperiodic
stochastic submatrix in P^{p} which can be considered as a transition matrix in its own right.
20. Page 89, Line 18 down, the displayed equation:
if the i th object is the first one to be better than anything before,
\rightarrow
if the i th object is the first one to be better than anything before, $i \geq 2$,
21. Page 89, Line 2 up:

In general, \rightarrow In general, for $r \geq 2$,
Page 89, Line 1 up, the displayed equation:
X_{r-1} st $\rightarrow X_{r-1}$ th
22. Page 90, Line 1 up:

Then $X_{1}, X_{2}, \ldots, X_{m}=\left\{\begin{array}{c}2 \\ 3 \\ \vdots \\ m \\ m+1\end{array} \quad\left(\right.\right.$ and $X_{n} \equiv m+1$ for $\left.n>m\right)$.
Then $X_{1}, X_{2}, \ldots, X_{m}$ take values $2,3, \ldots, m+1\left(\right.$ and $X_{n} \equiv m+1$ for $n>m)$.
23. Page 91, Lines 2-3 down:

Further,

$$
\begin{aligned}
& \mathbb{P}_{1}\left(X_{2}=j \mid X_{1}=i\right)=\frac{\mathbb{P}_{1}\left(X_{2}=j, X_{1}=i\right)}{\mathbb{P}_{1}\left(X_{1}=i\right)} \\
&= \frac{1}{\mathbb{P}(i \text { the best, } 1 \text { the } 2 \text { nd best among }\{1, \ldots, i\})} \\
& \quad \times \mathbb{P}(j \text { the best, } i \text { the } 2 \text { nd best among }\{1, \ldots, j\} ; \\
&1 \text { the } 2 \text { nd best among }\{1, \ldots, i\}) \\
&= \frac{1 / j(j-1) \cdot 1 /(i-1)}{1 / i(i-1)}=\frac{i}{j(j-1)}, \quad 1 \leq i<j \leq m,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}_{1}\left(X_{2}=m+1 \mid X_{1}=i\right)=\frac{\mathbb{P}_{1}\left(X_{2}=m+1, X_{1}=i\right)}{\mathbb{P}_{1}\left(X_{1}=i\right)} \\
& =\frac{\mathbb{P}(1 \text { the } 2 \text { nd best among }\{1, \ldots, i\} ; i \text { the absolute best })}{\mathbb{P}(i \text { the best, } 12 \text { nd best among }\{1, \ldots, i\})} \\
& =\frac{1 / m \cdot 1 /(i-1)}{1 / i(i-1)}=\frac{i}{m}, \quad 1<i \leq m .
\end{aligned}
$$

Further, for $1 \leq i<j \leq m$,

$$
\begin{aligned}
\mathbb{P}_{1}\left(X_{2}=\right. & \left.j \mid X_{1}=i\right)=\frac{\mathbb{P}_{1}\left(X_{2}=j, X_{1}=i\right)}{\mathbb{P}_{1}\left(X_{1}=i\right)} \\
= & \left.\frac{1}{\mathbb{P}(i} \text { the best, } 1 \text { the } 2 \text { nd best among }\{1, \ldots, i\}\right) \\
& \times \mathbb{P}(j \text { the best, } i \text { the } 2 \text { nd best among }\{1, \ldots, j\} ; \\
= & \frac{1 / j(j-1) \cdot 1 /(i-1)}{1 / i(i-1)}=\frac{i}{j(j-1)},
\end{aligned}
$$

and for $1<i \leq m$,

$$
\begin{aligned}
& \mathbb{P}_{1}\left(X_{2}=m+1 \mid X_{1}=i\right)=\frac{\mathbb{P}_{1}\left(X_{2}=m+1, X_{1}=i\right)}{\mathbb{P}_{1}\left(X_{1}=i\right)} \\
& =\frac{\mathbb{P}(1 \text { the } 2 \text { nd best among }\{1, \ldots, i\} ; i \text { the absolute best })}{\mathbb{P}(i \text { the best, } 12 \text { nd best among }\{1, \ldots, i\})} \\
& =\frac{1 / m \cdot 1 /(i-1)}{1 / i(i-1)}=\frac{i}{m} .
\end{aligned}
$$

24. Page 103, Line 13 down:

For $p=0$, this is trivial, as \rightarrow For $p=0$, equality $\overline{\psi_{p}}=\psi_{\ell-p}$ is trivial, as
25. Page 107, Lines 19-20 down:
black and white. \rightarrow black or white.
26. Page 108, Line 17 down:
suspensed \rightarrow suspended
27. Page 112, Line 6 up:
has a periodic sub-class, $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k-1}$, of period k. Then, under the matrix $P^{k}, \forall j=1, \ldots, k-1$, states
has periodic sub-classes, $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$, of period k. Then, under the matrix $P^{k}, \forall j=1, \ldots, k$, states
28. Page 119, Line 2 down:

See Diaconis, P., Stroock, D. \rightarrow We give a formal proof of this inequality in the next section, following the paper Daiconis, P. Stroock, D.
29. Page 120, Line 6 down:

From (1.156) we obtain \rightarrow From (1.157) we obtain
Page 120, Line 7 down:
but an incorrect constant. \rightarrow although the constant is not as good as the value 8 obtained earlier.
30. Page 121, Line 11 down:

In Example 1.12.2, \rightarrow The proof of Cheeger's inequality is also given in Section 1.14. In Example 1.12.2,
31. Page 126, Line 3 up:
atleast \rightarrow at least
32. Page 128, Line 8 down:
agrees \rightarrow agree
33. Page 168, Solution, Line 5 up (the first line of the solution):
subsequent \rightarrow successive
34. Page 169, Lines 1-2 up:
(ii) the long-run proportion of heads which occur within runs of k or more consecutive heads
\rightarrow
(ii) define a block of order k as a part of a sequence of heads and tails between subsequent appearences of series of at least k consecutive heads, with the agreement that a block finishes with such a series followed by a tail,
after which a new block of order k starts. The series of at least k consecutive heads within a block is called a burst. Find the ratio
(the mean length of the burst)/(the means length of the block).
(For $k=1$, it gives p.)

35. Page 170, Lines 9-10 down:

Now, (ii) consider subsequent independent 'blocks' of trials formed by k or more consecutive heads followed by a tail. Within a single block, the expected
\rightarrow
Now, (ii) within a burst of trials formed by k or more consecutive heads, the expected
36. Page 193, Line 8 up, the displayed equation:

$$
\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
1 & 0 & 1 & -2
\end{array}\right)
$$

\rightarrow

$$
Q=\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
1 & 0 & 1 & -2
\end{array}\right)
$$

37. Page 193, Lines 2,3 up:
(2.5) with $k=0,1,2,3 . \rightarrow(2.5)$ with $n=0,1,2,3$.
38. Page 193, Line 1 up, the displayed equation, matrix entry (4, 3):
$-6+6 e^{-3 t} \rightarrow 6-6 e^{-3 t}$
39. Page 203, Line 10 up

At the same time
\rightarrow
Note that the Q-matrix has the form $Q=A-\mathrm{I}$ where A has mainly zeros, but 1 s in places $(1,2),(2,3)$ and $(3,1)$. Hence, $e^{t Q}=e^{-t I} e^{t Q}$. Next, observe that $Q^{3}=\mathrm{I}$ and Q^{k} have zero entries along the main diagonal unless k is divisible by 3 . This implies that
40. Page 225, Line 5 up:
concepts \rightarrow concept
38. Page 230, Line 3 up:
(ii) Owing to
(ii) (Cf. the solution to Worked Example 2.2.6.) Owing to
39. Page 236, Line 12 up:
feartures \rightarrow features
40. Page 237, Line 2 down:
of record values forms an inhomogeneous
\rightarrow
of record values generates the points of an inhomogeneous
41. Page 278, Line 8 down:
being the number of immature \rightarrow being the mean number of immature
42. Page 279, Line 1 up:
neigbour \rightarrow neighbour.
43. Page 280, Line 9 down:
horisontal \rightarrow horizontal
44. Page 288, Line 16 down, displayed equation (2.142), the first row:
$i+k \rightarrow i_{k}$
45. Page 289, Line 1 up:

Karlin 1968. \rightarrow Karlin, 1966.
46. Page 320, Lines 15-16 down:
find the probability that both end up busy at a later time t.
\rightarrow
find a) the probability that both end up free at a later time $t, \mathrm{~b}$) the probability that both end up busy at time t.
47. Page 321, between Lines 17 and 18 up, insert:
and similarly,
48. Page 329, Line 1 up, displayed equation (2.178).

$$
\sum_{i=0}^{i-1} \mu_{i} z_{i}-\left(M_{i-1}+\theta+\lambda_{i}\right) z_{i}+\lambda_{i} z_{i+1} \rightarrow \sum_{j=0}^{i-1} \mu_{j} z_{j}-\left(M_{j-1}+\theta+\lambda_{j}\right) z_{j}+\lambda_{j} z_{j+1}
$$

49. Page 334, Line 6 up:

How they do it. \rightarrow 'How they do it.'
50. Page 338, Line 1 up:
$\sum_{i=0}^{2} \rightarrow \sum_{i=0,1}$
51. Page 339, Line 1 down:
distributed with parameter $1 \rightarrow$ distributed with parameter λ
52. Page 339, Line 3 down:
$\alpha=\frac{2}{1+\sqrt{5}} \rightarrow \alpha=\frac{2 \rho}{1+\sqrt{1+4 \rho}}$, with $\rho=\frac{\lambda}{\mu}<2$.
53. Page 339, Line 4 up, the displayed equation:
$\sum_{i=0}^{2} \rightarrow \sum_{i=0,1}$
54. Page 378, Line 2 down:
(3.16). \rightarrow (3.14).
55. Page 401, Line 8 up:
a Liouville distributions \rightarrow of Liouville distributions
56. Page 404, Line 7 down:

Now, integrating in the variable \rightarrow Now, integrating out the variable
57. Page 408, Line 8 down:

Dirichlet distribution $\operatorname{Dir}(a, \ldots, a)$, prove that
\rightarrow Dirichlet distribution Dir (a), when $\mathbf{a}=\left(\begin{array}{c}a \\ \vdots \\ a\end{array}\right)$, prove that
58. Page 418, 14 up:
between statistics and the information theory. \rightarrow between statistics and information theory.
59. Page 419, Line 5 down, displayed equation (3.162):

$$
\sum_{x \in \mathbb{S}} f(x ; \theta) \rightarrow \sum_{x \in \mathbb{S}} f(x ; \theta)^{-1} \quad \int_{\mathbb{S}} f(x ; \theta) \rightarrow \int_{\mathbb{S}} f(x ; \theta)^{-1}
$$

60. Page 419, Line 10 up, displayed equation (3.163): $\sum_{\mathbf{x} \in \mathbb{S}} f(\mathbf{x} ; \theta) \rightarrow \sum_{\mathbf{x} \in \mathbb{S}} f(\mathbf{x} ; \theta)^{-1} \quad \int_{\mathbb{S}} f(\mathbf{x} ; \theta) \rightarrow \int_{\mathbb{S}} f(\mathbf{x} ; \theta)^{-1}$
61. Page 420, Line 5 down:
briefly the divergence. \rightarrow briefly the divergence. In the case of two-point distributions, on $\mathbb{S}=\{0,1\}$, given by pairs of complementary probabilities $p_{0}, 1-p_{0}$ and $p_{1}, 1-p_{1}$, the divergence $D\left(p_{1}, 1-p_{1} \| p_{0}, 1-p_{0}\right)=p_{1} \ln \left(p_{1} / p_{0}\right)+$ $\left(1-p_{1}\right) \ln \left[\left(1-p_{1}\right) /\left(1-p_{0}\right)\right]$.
62. Page 421, Line 3 down:
using $\ln (1+\epsilon)=\epsilon+o(\epsilon): \rightarrow$ using $\ln (1+\epsilon)=\epsilon-\left(\epsilon^{2} / 2\right)+o\left(\epsilon^{2}\right)$:
63. Page 438, Line 2 up:
minimiser \rightarrow maximiser
64. Page 446, Line 8 up:

An remarkable \rightarrow A remarkable
65. Page 447, Line 4 up, displayed equation (3.243):
$\sum_{l=1}^{q_{i}} p_{i j}=1, \rightarrow \sum_{l=1}^{q_{i}} p_{i l}=1$,
66. Page 456, Line 1 down:
constitue \rightarrow constitute
67. Page 461, Line 10 down
many British universities had a post such as 'computor' attached to mathematics professors
\qquad
some British universities (for instance, Swansea) had a post such as 'computor' attached to mathematics professors
68. Page 476, Line 15 down:
as usually \rightarrow as usual

The authors thank John Haigh for pointing at mistakes and suggestions for improvements.

