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Many thanks to all readers who pointed at mistakes and dis-
crepancies.

Counting lines down always begins with the top line containing the run-
ning (short) title of the chapter and the section. Counting lines up begins
with the bottom line of the page. A displayed equation is counted as one line
(possibly containing several lines which – when needed – are identified within
this equation). Tables and diagrams are also counted as single lines (with a
similar principle of identification of lines inside them).

1. Page 3, Line 13 down:
is represented in Figure 1.1., bottom.
→
is represented in Figure 1.1., bottom. The states are labelled 1, 2, 3, 4.

2. Page 10, Line 3 Line 2 up:
Again we use three initial conditions, with P 0, P and P 2. For instance,
→
Again we use three initial conditions, with P 0, P and P 2. (As always, 00

is taken as 1.) For instance,

3. Page 11, Line 2 down:
whence A = 1/3, B = 0, C = 2/3 and p

(n)
11 ≡ 1/3. Similarly,

→
whence A = 1/3, B = 0, C = 2/3 and p

(n)
11 ≡ 1/3, n ≥ 1. Similarly,

4. Page 15, Line 9 up, the displayed equation:

pABpBCpCA + pACpCBpBA =
2sAsBsC

(sA + sB)(sB + sC)(sC + sA)
.
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→

p
(3)
AA = pABpBCpCA + pACpCBpBA =

2sAsBsC

(sA + sB)(sB + sC)(sC + sA)
.

5. Page 18, Line 13 up, Definition 1.2.2:
a state cannot escape → the chain cannot escape

6. Page 22, Lines 3-4 down:
renumeration → renumbering

7. Page 26, Line 5 up:
From now on we denote → Recall, we denote

8. Page 27, Line 7 down:
so that if Pi(H

A = ∞) > 0, then kA
i = ∞. In other

→
so that if Pi(H

A = ∞) > 0, then kA
i = ∞. (By convention, ∞ · 0 = 0).

In other

9. Page 22, Line 8:
Next, we have square blocks of varying size positioned on the main diago-

nal. These blocks correspond with closed communicating classes C1, . . ., Cm

(and we will refer to them as C1, . . ., Cm); they form stochastic submatrices.
→
Next, we have square blocks of varying size positioned on the main diago-

nal. These blocks correspond with closed communicating classes C1, . . ., Cm

(and we will refer to them as C1, . . ., Cm); they form stochastic submatrices.

10. Page 23, Line 20 and below, and the whole of Page 24 should read as
follows:

For simplicity, let us now assume that a finite matrix P is irreducible. It
is not hard to guess that, after an appropriate re-enumeration of states, we
will have, inside block C, a ‘periodic’ picture, with a number v of rectangual
‘cells’ that are cyclically permuted by P : cell 1 is taken to cell 2, and so
forth, cell v to cell 1. The horizontal length of the previous cell will be equal
to the vertical height of the subsequent one (in the cyclic order). See Fig.
2.6. The space outside cells is again filled with zeros.
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This picture corresponds with a partition of space I into periodic sub-
classes W1, . . ., Wv such that a one-step transition is only possible from a
state j ∈Wi to a state k ∈Wi+1, i = 1, . . . , v. (The sum i± 1 is understood
as a sum modul;o v, so that Wv+1 = W1 and M0 = Mv.) Recall, according
to our assumption, I is reduced to C, a single (and closed) communicating
class. The number v is called the period of class C. Subclass Wi is identified
with the collection of rows in cell i or with the collection of columns in cell
i − 1. Consequently, if Wi contains ni states, with n1 + . . . + nv being the
total number of states, then cell i is ni × ni+1.

In the majority of our exmples, the period of the closed communicating
class equals one, i.e., the class consists of a single subclass, and the matrix
contains a single cell. Such classes (as well as their transition matrices) are
called aperiodic.

In general, if a transition matrix P corresponding to a closed communi-
cating class C of period v is raised to the power v then matrix P v is divided
into diagonal square blocks each of whch forms an ni × ni stochastic matrix
of period one. Pictorially speaking, the periodic subclasses W1, . . ., Wv play
a rôle of closed communicating classes for matrix P v.

More precisely, each of the aforementioned ni ×ni stochastic submatrices
of P v is irreducible and aperiodic and coincides with the product of rectan-
gular blocks of P taken in the corresponding order. (Consequently, each such
submatrix of P v has the property that if we raise it to a power that is high
enough then every entry of the resulting stochastic matrix will be positive.)

A formal definition of a periodic subclass is as follows. We say that state
i ∈ I has period v = v(i) if p

(n)
ii > 0 only when n = vm, and v is the largest

positive integer with this property. That is, v is the greatest common divisor
of the values of n for which p

(n)
ii > 0. In case p

(n)
ii ≡ 0, we set: v(i) = 0.

An important property is that, within a given closed communicating class
C, the period v(i) is the same for all states: it is the period of the class. We
put this fact as Worked Example 1.2.7.
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Worked Example 1.2.7. Given a state j, define the period v(j) of this

state as the greatest common divisor of numbers n such that p
(n)
jj > 0. Prove

that if states i and j are from the same communicating class then v(i) = v(j).
(This justifies the term the ‘period of a communicating class’.)

Solution Let i and j be two distinct communicating states. Then
p

(k)
ij > 0 for some k ≥ 1 and p

(l)
ji > 0 for some l ≥ 1. Assume that p

(n)
jj > 0,

then p
(n+k+l)
ii ≥ p

(k)
ij p

(n)
jj p

(l)
ji > 0. Therefore, v(i) divides n + k + l. Next, v(i)

divides 2n + k + l as p
(2n+k+l)
ii ≥ p

(k)
ij

(
p

(n)
jj

)2
p

(l)
ji > 0. Thus, v(i) divides the

difference (2n+k+l)−(n+k+l) = n. This is true ∀ n with p
(n)
jj > 0. Then v(i)

must divide v(j), as v(j) is the greatest common divisor. A similar argument
leads to the conclusion that v(j) divides v(i). Therefore, v(i) = v(j).
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Now let v = v(C) be the period of class C. Select a state i0 ∈ C and set:

W1 = {j ∈ C : p
(n)
i0j > 0 only if n = vm,

W2 = {j ∈ C : p
(n)
i0j > 0 only if n = vm+ 1,

. . . . . . . . .

Wv = {j ∈ C : p
(n)
i+0j > 0 only if n = vm+ v − 1,

Then, obviously, C = W1 ∪ . . .Wv, and sets Wi are pairwise disjoint. We
claim that W1, . . ., Wv are the periodic subclasses. To this end, suppose

that state k ∈ Wi and that p
(n)
i0k =

∑

j∈C

p
(n−1)
i0j pjk > 0. Then, for some j, both

probabilities p
(n−1)
i0j and pjk are positive. Consequently, n − 1 = vm + i′ for

some i′ = i′(j) ∈ {0, . . . , v − 1}. Such a representation, for a given k, has
to be unique. That is, i′ is uniquely determined for all j’s with the above
property. Since we assumed that p

(n)
i0k > 0, we obtain that n = vm + i − 1.

Accordingly, n − 1 = vm + i − 2, i.e., i′ = i − 2 and j ∈ Wi−1, for any j
as above. Therefore, the inverse is also true: if j ∈ Wi and pjk > 0 then
k ∈Wi+1. This establishes the claim under consideration.

11. Page 45, Line 9 down:
take the sequence i0, . . . , im as above, then p̂ilil+1

> 0. Now check
→
take a sequence of non-repeated states i = i0, i1, ..., im = j with pilil+1

> 0
(cf. Page 18). Then p̂ilil+1

> 0. Now check

12. Page 53, Line 11 up:
Let a, b ≥ N , a, b, N ∈ Z+. Consider a birth-death Markov chain on

n = 0, 1, . . . , N with

λn = (N − n)(a− n), µn = n(b− (N − n)).

→
Let a, b ≥ N , a, b, N ∈ Z+. Consider a birth-death Markov chain on

states n = 0, 1, . . . , N with probabilities pn and qn = 1 − pn of moving to
n + 1 and to n − 1 from n given by pn = λn/(λn + µn), qn = µn/(λn + µn),
where

λn = (N − n)(a− n), µn = n(b− (N − n)).

13. Page 59, Lines 2,3 down:
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(I) Irreducible DTMCs with more than one state have transition prob-
abilities 0 < pij < 1 ∀ states i, j ∈ I (no absorption).

→
(I) Irreducible DTMCs with more than one state have transition prob-

abilities 0 < p
(m)
ij < 1 ∀ states i, j ∈ I where m ≥ 1 may depend on i, j (no

absorption).

14. Page 60, Line 2 down, Figure 1.13:
Hl → H(l) H1 → H(1) H2 → H(2) H3 → H(3)

Page 60, Lines 4-6 down:
Hl(= H i

l ) → H(l)(= H
(l)
i ) H0 → H(0) H1 → H(1) Hl → H(l)

Hl−1 → H(l−1)

15. Page 66, Line 9 up:
To be in event {N = n}, a sample
→
To be in event {N = n} with n ≥ 1, a sample

16. Page 74, Line 3 down:
is geometric. This means that for some m ≥ 1

p
(m)
ij ≥ ρ ∀ states i, j. (1.83)

→
is geometric: see Theorem 1.9.3. In fact, if a chain is finite, irreducible

and aperiodic, then ∃ m ≥ 1 and ρ ∈ (0, 1) such that

p
(m)
ij ≥ ρ ∀ states i, j. (1.83)

17. Page 77, Line 2 up, Figure 1.15:
H

(i)
Vi(n)−1 → H

(Vi(n)−1)
i T

(i)
1 → T

(1)
i T

(i)
2 → T

(2)
i T

(i)
3 → T

(3)
i

T
(i)
Vi(n)−1 → T

(Vi(n)−1)
i T

(i)
Vi(n) → T

(Vi(n))
i

This implies the change of notations in (1.66) as well.

18. Page 86, Lines 10-15 down:
and

u1 + · · ·+ ui = h0 − hi, hi = 1 − A(γ0 + · · ·+ γi−1).
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The condition
∑
i

γi = ∞ forces A = 0 and hence hi = 1 for all i. Here,

γ2m−1 = 2−m,

so
∑
i

γi = ∞ and the walk is recurrent.

→
and so

u+ · · ·+ ui = h0 − hi, hence hi = 1 − u1(γ1 + . . .+ γi−1),

Here γ2m−1 = 2−m, and γi is constant for blocks of length 2m, so
∑

i γi = +∞.
This forces u1 = 0, hence hi = 1 for all i, and the walk is recurrent.

19. Page 89, after Line 7 down, the following text should be inserted:
We finish this section by discussing a general picture of asymptotic be-

haviour of iterations P n of a finite transition matrix P with several commu-
nicating classes. See Figs 2.4 – 2.6. As was said in Section 1.2, the block
O0 tends to 0. The results of the preceding sections show that if a block Ci

corresponds to an aperiodic closed communicating class, then in the course of
iterations it will converge, as n → ∞, to a block Πi formed by the repeated
row π(i) = (π

(i)
j , j ∈ Ci) representing the unique equilibrium distribution

supported by class the Ci. Next, if a block Oi is positioned over an aperiodic
closed class Ci then it has a limit as n→ ∞. And then, the limiting block is
a sub-stochastic matrix where the sum of the entries along any row is between
0 and 1 but not necessarily 1. (It may be that this sum equals 0, implying
that the whole row vanishes). Furthermore, the limiting block is non-zero
if the original block was non-zero. (More precisely, ∀ state j ∈ I, the sum∑
k∈Ci

p
(n)
jk representing the probability of a transition from j to the closed class

Ci in n steps is non-decreasing with n.) Moreover, if the block Oi was zero
initially, it will remain zero in matrix P n as well.

If, on the other hand, Ci is periodic, of some finite period pi > 1, and with
periodic sub-classes Wi1, ..., Wipi

, then it is convenient to think in terms of
the power P pi. For convenience, assume now that P is irreducible, so there
is a unique communicating class C formed by the whole state space I; this
class is closed and split into periodic subclasses W1, ..., Wp. See Fig. 2.6 ???
kotoruyu ispravit’??. We noted that ordered lists Wi, Wi+1, . . ., Wi−1,
i = 1, . . . , v (with W0 = Wv) will represent a communicating class for the
matrix P p. Each such collection gives rise to an irreducible and aperiodic
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stochastic submatrix in P p which can be considered as a transition matrix
in its own right.

20. Page 89, Line 18 down, the displayed equation:
if the ith object is the first one to be better than anything before,
→
if the ith object is the first one to be better than anything before, i ≥ 2,
21. Page 89, Line 2 up:
In general, → In general, for r ≥ 2,
Page 89, Line 1 up, the displayed equation:
Xr−1st → Xr−1th

22. Page 90, Line 1 up:

Then X1, X2, ..., Xm =






2
3
...
m

m+ 1

(and Xn ≡ m+ 1 for n > m).

→
Then X1, X2, ..., Xm take values 2, 3, . . . , m + 1 (and Xn ≡ m + 1 for

n > m).

23. Page 91, Lines 2-3 down:
Further,P1

(
X2 = j|X1 = i

)
=
P1

(
X2 = j,X1 = i

)P1

(
X1 = i

)

=
1P(

i the best, 1 the 2nd best among {1, . . . , i}
)

×P(
j the best, i the 2nd best among{1, . . . , j};

1 the 2nd best among{1, . . . , i}
)

=
1/j(j − 1) · 1/(i− 1)

1/i(i− 1)
=

i

j(j − 1)
, 1 ≤ i < j ≤ m,
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and P1

(
X2 = m+ 1|X1 = i) =

P1

(
X2 = m+ 1, X1 = i

)P1

(
X1 = i

)

=
P(

1 the 2nd best among {1, . . . , i}; i the absolute best
)P(

i the best, 1 2nd best among {1, . . . , i}
)

=
1/m · 1/(i− 1)

1/i(i− 1)
=

i

m
, 1 < i ≤ m.

→
Further, for 1 ≤ i < j ≤ m,P1

(
X2 = j|X1 = i

)
=
P1

(
X2 = j,X1 = i

)P1

(
X1 = i

)

=
1P(

i the best, 1 the 2nd best among {1, . . . , i}
)

×P(
j the best, i the 2nd best among{1, . . . , j};

1 the 2nd best among{1, . . . , i}
)

=
1/j(j − 1) · 1/(i− 1)

1/i(i− 1)
=

i

j(j − 1)
,

and for 1 < i ≤ m,P1

(
X2 = m+ 1|X1 = i) =

P1

(
X2 = m+ 1, X1 = i

)P1

(
X1 = i

)

=
P(

1 the 2nd best among {1, . . . , i}; i the absolute best
)P(

i the best, 1 2nd best among {1, . . . , i}
)

=
1/m · 1/(i− 1)

1/i(i− 1)
=

i

m
.

24. Page 103, Line 13 down:
For p = 0, this is trivial, as → For p = 0, equality ψp = ψℓ−p is trivial, as

25. Page 107, Lines 19-20 down:
black and white. → black or white.

26. Page 108, Line 17 down:
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suspensed → suspended

27. Page 112, Line 6 up:
has a periodic sub-class, S1, ..., Sk−1, of period k. Then, under the matrix

P k, ∀ j = 1, . . . , k − 1, states
→
has periodic sub-classes, S1, ..., Sk, of period k. Then, under the matrix

P k, ∀ j = 1, . . . , k, states

28. Page 119, Line 2 down:
See Diaconis, P., Stroock, D. → We give a formal proof of this inequality

in the next section, following the paper Daiconis, P. Stroock, D.

29. Page 120, Line 6 down:
From (1.156) we obtain → From (1.157) we obtain
Page 120, Line 7 down:
but an incorrect constant. → although the constant is not as good as the

value 8 obtained earlier.

30. Page 121, Line 11 down:
In Example 1.12.2, → The proof of Cheeger’s inequality is also given in

Section 1.14. In Example 1.12.2,

31. Page 126, Line 3 up:
atleast → at least

32. Page 128, Line 8 down:
agrees → agree

33. Page 168, Solution, Line 5 up (the first line of the solution):
subsequent → successive

34. Page 169, Lines 1-2 up:
(ii) the long-run proportion of heads which occur within runs of k or more

consecutive heads
→
(ii) define a block of order k as a part of a sequence of heads and tails

between subsequent appearences of series of at least k consecutive heads,
with the agreement that a block finishes with such a series followed by a tail,
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after which a new block of order k starts. The series of at least k consecutive
heads within a block is called a burst. Find the ratio

(the mean length of the burst)/(the means length of the block).

(For k = 1, it gives p.)

35. Page 170, Lines 9-10 down:
Now, (ii) consider subsequent independent ‘blocks’ of trials formed by

k or more consecutive heads followed by a tail. Within a single block, the
expected

→
Now, (ii) within a burst of trials formed by k or more consecutive heads,

the expected

36. Page 193, Line 8 up, the displayed equation:





−2 1 1 0
1 −2 1 0
0 1 −2 1
1 0 1 −2





→

Q =





−2 1 1 0
1 −2 1 0
0 1 −2 1
1 0 1 −2





37. Page 193, Lines 2,3 up:
(2.5) with k = 0, 1, 2, 3. → (2.5) with n = 0, 1, 2, 3.

38. Page 193, Line 1 up, the displayed equation, matrix entry (4, 3):
−6 + 6e−3t → 6 − 6e−3t

39. Page 203, Line 10 up
At the same time
→
Note that the Q−matrix has the form Q = A − I where A has mainly

zeros, but 1s in places (1,2), (2,3) and (3,1). Hence, etQ = e−tIetQ. Next,
observe that Q3 = I and Qk have zero entries along the main diagonal unless
k is divisible by 3. This implies that
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40. Page 225, Line 5 up:
concepts → concept

38. Page 230, Line 3 up:
(ii) Owing to
→
(ii) (Cf. the solution to Worked Example 2.2.6.) Owing to

39. Page 236, Line 12 up:
feartures → features

40. Page 237, Line 2 down:
of record values forms an inhomogeneous
→
of record values generates the points of an inhomogeneous

41. Page 278, Line 8 down:
being the number of immature → being the mean number of immature

42. Page 279, Line 1 up:
neigbour → neighbour.

43. Page 280, Line 9 down:
horisontal → horizontal

44. Page 288, Line 16 down, displayed equation (2.142), the first row:
i+ k → ik

45. Page 289, Line 1 up:
Karlin 1968. → Karlin, 1966.

46. Page 320, Lines 15-16 down:
find the probability that both end up busy at a later time t.
→
find a) the probability that both end up free at a later time t, b) the

probability that both end up busy at time t.

47. Page 321, between Lines 17 and 18 up, insert:
and similarly,

12



48. Page 329, Line 1 up, displayed equation (2.178).
i−1∑
i=0

µizi− (Mi−1 +θ+λi)zi +λizi+1 →
i−1∑
j=0

µjzj − (Mj−1 +θ+λj)zj +λjzj+1

49. Page 334, Line 6 up:
How they do it. → ‘How they do it.’

50. Page 338, Line 1 up:
2∑

i=0

→
∑

i=0,1

51. Page 339, Line 1 down:
distributed with parameter 1 → distributed with parameter λ

52. Page 339, Line 3 down:

α =
2

1 +
√

5
→ α =

2ρ

1 +
√

1 + 4ρ
, with ρ =

λ

µ
< 2.

53. Page 339, Line 4 up, the displayed equation:
2∑

i=0

→
∑

i=0,1

54. Page 378, Line 2 down:
(3.16). → (3.14).

55. Page 401, Line 8 up:
a Liouville distributions → of Liouville distributions

56. Page 404, Line 7 down:
Now, integrating in the variable → Now, integrating out the variable

57. Page 408, Line 8 down:
Dirichlet distribution Dir (a, . . . , a), prove that
→

Dirichlet distribution Dir (a), when a =




a
...
a



, prove that

58. Page 418, 14 up:

13



between statistics and the information theory. → between statistics and
information theory.

59. Page 419, Line 5 down, displayed equation (3.162):∑
x∈S f(x; θ) →

∑
x∈S f(x; θ)−1

∫S f(x; θ) →
∫S f(x; θ)−1

60. Page 419, Line 10 up, displayed equation (3.163):∑
x∈S f(x; θ) →

∑
x∈S f(x; θ)−1

∫S f(x; θ) →
∫S f(x; θ)−1

61. Page 420, Line 5 down:
briefly the divergence. → briefly the divergence. In the case of two-point

distributions, on S = {0, 1}, given by pairs of complementary probabilities
p0, 1−p0 and p1, 1−p1, the divergence D(p1, 1−p1||p0, 1−p0) = p1 ln(p1/p0)+
(1 − p1) ln[(1 − p1)/(1 − p0)].

62. Page 421, Line 3 down:
using ln(1 + ǫ) = ǫ+ o(ǫ): → using ln(1 + ǫ) = ǫ− (ǫ2/2) + o(ǫ2):

63. Page 438, Line 2 up:
minimiser → maximiser

64. Page 446, Line 8 up:
An remarkable → A remarkable

65. Page 447, Line 4 up, displayed equation (3.243):
qi∑

l=1

pij = 1, →
qi∑

l=1

pil = 1,

66. Page 456, Line 1 down:
constitue → constitute

67. Page 461, Line 10 down
many British universities had a post such as ‘computor’ attached to math-

ematics professors
→
some British universities (for instance, Swansea) had a post such as ‘com-

putor’ attached to mathematics professors

68. Page 476, Line 15 down:
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as usually → as usual

The authors thank John Haigh for pointing at mistakes and suggestions
for improvements.
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