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Abstract. This note addresses the issue of the proof of the entropy power inequality (EPI), an
important tool in the analysis of Gaussian channels of information transmission, proposed by Shannon.
We analyse continuity properties of the mutual entropy of the input and output signals in an additive
memoryless channel and show how this can be used for a correct proof of the entropy-power inequality.

1. Introduction

The impetus for composing this short note was provided by the (even shorter) note [VG] suggesting
an elegant way of deriving the so-called entropy-power inequality (EPI) playing a crucial role in the
analysis of channels with additive noise. The way of reasoning in [VG] is often referred to as a direct
probabilistic method, as opposite to the so-called analytic method; see [R, L, CT]. For the history of
the question, see [CT]; for reader’s convenience, the statement of the EPI is given at the end of this
section. Unfortunately, we were not able to find a rigorous foundation for a key statement, Eqn (5)
from [VG], which was exacerbated by the fact that Lemma 7 from a longer paper [GSV], on which the
proof of Eqn (5) from [VG] was based turned to be incorrect. Also, Lemma 6 from [GSV] is stated for
discrete signals (for which it is holds true) but had been used in [GSV] for continuous signals (where it
is incorrect). Another unsatisfactory aspect of papers [GSV] and [VG] was that a number of important
auxiliary assertions in these papers were stated (and proved) in a manner leaving open the question under
precisely what conditions they remain valid, on the input signal and the additive noise distributions.

Looking at these matters, we realised that a number of lemmas on the limiting behaviour of the mutual
and conditional entropies emerge, where the signal-to-noise ratio tends to zero or +∞. We collect these
lemmas in Section 2. In Section 3 we reproduce a corrected way of reasoning where, by following the
scheme proposed in [VG], one is able to establish the EPI rigorously.

We were inspired by an early paper [D] where a number of important (and elegant) results have been
proven, about limiting behaviour of various entropies.

To introduce the entropy power inequality (EPI), consider two independent random variables (RVs)
X1 andX2 taking values in R

d, with probability density functions (PDFs) fX1
(x) and fX2

(x), respectively,
where x ∈ R

d. Let h(Xi), i = 1, 2 stand for the differential entropies

h(Xi) = −
∫

Rd

fXi
(x) ln fXi

(x)dx := −E ln fXi
(Xi),

and assume that −∞ < h(X1), h(X2) < +∞. The EPI states that

e
2

d
h(X1+X2) ≥ e

2

d
h(X1) + e

2

d
h(X2), (1)
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or, equivalently,
h(X1 +X2) ≥ h(Y1 + Y2), (2)

where Y1 and Y2 are any independent normal RVs with h(Y1) = h(X1) and h(X2) = h(Y2). This inequality
was first proposed by Shannon [SW]; as was mentioned earlier, it is used in the analysis of (memoryless)
Gaussian channels of signal transmission. A rigorous proof of (1), (2) remains a subject of a growing
amount of literature; see, e.g., references cited above. In particular, the question under what conditions
upon PDFs fXi

Eqns (1), (2) hold true remains largely open.
Moreover, we would like to note that the EPI remains true when one or both of RVs X1, X2 have

atoms in their distributions, i.e., admit values with positive probabilities. In this case the corresponding
differential entropies h(X1) and h(X2) are replaced with ‘general’ entropies:

h(Xi) = −∑
x
pXi

(x) ln pXi
(x) −

∫

fXi
(x) ln fXi

(x)dx

= −
∫

gXi
(x) ln gXi

(x)m
(

dx
)

:= −E ln gXi
(Xi).

Here
∑

x
represents summation over a finite or countable set D(= D(XI)) of points x ∈ R

d. Further,

given an RV X, pX(x) stands for the (positive) probability assigned: pX(x) = P(X = x) > 0, with the
total sum η(X) :=

∑

x
pX(x) ≤ 1. Next, fX , as before, denotes the PDF for values forming an absolutely

continuous part of the distribution of X (with

∫

fX(x)dx = 1 − η(X), so when η(X) = 1, the RV X

has a discrete distribution, and h(X) = −∑
x
pX(x) ln pX(x)). Further, m(= mX) is a reference measure

(a linear combination of the counting measure on the discrete part and the Lebesgue measure on the
absolutely continuous part of the distribution of X) and gX the respective Radon-Nikodym derivative:

g(x) = pX(x)1(x ∈ D) + fX(x), with

∫

gX(x)m(dx) = 1.

We will refer to gX as a probabiliy mass function (PMF) of RV X (with a slight abuse of traditional
termonology). It is also possible to incorporate an (exotic) case where a RV Xi has a singular continuous
component in its distribution, but we will not bother about this case in the present work. The scheme
of proving the EPI for a discrete (or a mixed) case remains intact but continuity results look slightly
different; see Section 2.

2. Continuity of the mutual entropy

Throughout the paper, all random variables are taking values in R
d (i.e., are d-dimensional real

random vectors). If Y is such an RV then the notation h(Y ), fY (x), pY (x), gY (x) and m(dx) have the
same meaning as in Section 1 (it will be clear from the local context which particular form of the entropy
h(Y ) we refer to).

Similarly, fX,Y (x, y) and, more generally, gX,Y (x, y), x, y ∈ R
d, stand for the joint PDF and joint

PMF of two RVs X, Y (relative to a suitable reference measure m(dx × dy)
(

= mX,Y (dx × dy)
)

on
R
d × R

d). Correspondingly, h(X,Y ) denotes the joint entropy of X and Y and i(X : Y ) their mutual
entropy:

h(X,Y ) = −
∫

gX,Y (x, y) ln gX,Y (x, y)m
(

dx× dy
)

, i(X : Y ) = h(X) + h(Y ) − h(X,Y ).

We will use representations involving conditional entropies:

i(X : Y ) = h(X) − h(X|Y ) = h(Y ) − h(Y |X),
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where
h(X|Y ) = h(X,Y ) − h(Y ), h(Y |X) = h(X,Y ) − h(X).

In this section we deal with various entropy-continuity properties related to so-called additive channels
where a RV X (a signal) is transformed into the sumX+U , with RV U representing ‘noise’ in the channel.
In fact, we will adopt a slightly more general scheme where X is compared with γX + U , γ > 0 being
a parameter, and study limits where γ → +∞ or γ → 0+. We will assume that RVs X and U are
independent (though this assumption may be relaxed), and that the ‘noise’ U has a PDF fU (x) with
∫

fU(x)dx = 1. However, the signal X may have a general distribution including a discrete and an

absolutely continuous part.
We begin with the analysis of behaviour of the mutual entropy I(X : X

√
γ+U) when γ → +∞: this

analysis will be used in Section 3, in the course of proving the EPI. First, we consider the case where X

has a PDF fX(x) with

∫

fX(x)dx = 1.

Lemma 2.1. Let X, U be independent RVs with PDFs fX and fU where

∫

fX(x)dx =

∫

fU (x)dx = 1.

Suppose that

∫

(

fX(x)| ln fX(x)| + fU (x)| ln fU (x)|
)

dx < +∞. Also assume that fX is continuous and

bounded: fX ∈ C0(Rd) and sup [fX(x) : x ∈ R] = b < +∞. Then

h(X) = lim
γ→∞

[

I
(

X : X
√
γ + U

)

+ h
(

U/
√
γ
)]

. (5)

Proof of Lemma 2.1. Set: Y := X
√
γ + U . The problem is, obviously, equivalent to proving that

[

h(X|Y ) − h
(

U/
√
γ
)]

→ 0. Writing h
(

U/
√
γ
)

= − ln
√
γ −

∫

fU(u) ln fU (u)du, we obtain

h(X|Y ) − h(U/
√
γ)

= −
∫

dx1
(

fX(x) > 0
)

fX(x)

∫

fU
(

y − x
√
γ
)

ln
fX(x)fU

(

y − x
√
γ
)

∫

dufX(u)fU
(

y − u
√
γ
)

dy

+ ln
√
γ +

∫

fU(u) ln fU (u)du

=

∫

dx1
(

fX(x) > 0
)

fX(x)

∫

fU(y) ln









√
γ

∫

dufX(u)fU
(

y + (x− u)
√
γ
)

fX(x)









dy

=

∫

dx1
(

fX(x) > 0
)

fX(x)

∫

fU(y) ln









∫

fX

(

x+
y − v√
γ

)

fU(v)dv

fX(x)









dy.

(6)

Due to continuity and boudedness of fX , the ratio under the logarithm converges to 1 as γ → +∞, ∀
x, y ∈ R (Lebesgue’s dominated convergence theorem is helpful here). To finish the proof, we employ
Lebesgue’s dominated convergence theorem once more.

To this end, we write the logarithm as the difference of the logarithms of the numerator and the
denominator. The logarithm of the numerator is assessed from above by b; this yields that

ln

∫

fX

(

x+
y − v√
γ

)

fU(v)dv − ln fX(x) ≤ b+ | ln fX(x)|.
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To assess the logarithm from below, consider first a special (scalar) case where X ∼ U ∼U[0, 1]; here
all integrals will be over R. Take γ > 4. In this case we have that the integral of interest,

I =

∫

dx1
(

fX(x) > 0
)

fX(x)

∫

dyfU(y)

∣

∣

∣

∣

∣

∣

∣

∣

ln









∫

fX

(

x+
y − v√
γ

)

fU(v)dv

fX(x)









∣

∣

∣

∣

∣

∣

∣

∣

,

is equal to
∫ 1

0
dx

∫ 1

0
dy

∣

∣

∣

∣

∣

ln

∫ (y+x
√
γ)∧1

(y+(x−1)
√
γ)∨0

dv

∣

∣

∣

∣

∣

= I(0) + I(1)

where

I(0) =







1/
√
γ

∫

0

dx

1
∫

1−x√γ

dy +

1−1/
√
γ

∫

1/
√
γ

dx

1
∫

0

dy +

1
∫

1−1/
√
γ

dx

(1−x)√γ
∫

0

dy







∣

∣

∣

∣

∣

∣

ln

1
∫

0

dv

∣

∣

∣

∣

∣

∣

= 0,

and I(1) = I−(1) + I+(1), with

I−(1) =

1/
√
γ

∫

0

dx

1−x√γ
∫

0

dy

∣

∣

∣

∣

∣

∣

∣

ln

y+x
√
γ

∫

0

dv

∣

∣

∣

∣

∣

∣

∣

, I+(1) =

1
∫

1−1/
√
γ

dx

1
∫

(1−x)√γ

dy

∣

∣

∣

∣

∣

∣

∣

ln

1
∫

y+(x−1)
√
γ

dv

∣

∣

∣

∣

∣

∣

∣

.

Note that the integrals under the logarithms in I−(1) and I+(1) are between 0 and 1.
Thus,

I−(1) = −
1/

√
γ

∫

0

dx

1−x√γ
∫

0

dy ln
(

y + x
√
γ
)

=

1/
√
γ

∫

0

dx
[

1 − x
√
γ + x

√
γ ln

(

x
√
γ
)

]

=
1

4
√
γ
.

Similarly, I+(1) = 1
/(

4
√
γ
)

and so I = I(1) = 1
/(

2
√
γ
)

. The assertion of Lemma 2.1 then follows.

In the multidimensional case, when X ∼ U ∼U([0, 1]d), a similar argument gives that I =
[

1 +

1
/(

2
√
γ
)

]d
− 1, and the assertion of Lemma 2.1 again follows.

The next case to analyse is (still scalar) where X ∼U[a, b] and = U ∼U[A,B]. Take γ > 4(B −
A)2
/

(b− a)2 and adopt the same scheme as before:

I =

∫ b

a

dx

b− a

∫ B

A

dy

B −A

∣

∣

∣

∣

∣

ln

∫ B∧[y+(x−a)√γ]

A∨[y+(x−b)√γ]

dv

B −A

∣

∣

∣

∣

∣

= I(0) + I(1),

where

I(0) =

( a+(B−A)/
√
γ

∫

a

dx

b− a

B
∫

B−(x−a)√γ

dy

B −A
+

b−(B−A)/
√
γ

∫

a+(B−A)/
√
γ

dx

b− a

B
∫

A

dy

B −A

+

b
∫

b−(B−A)/
√
γ

dx

b− a

A+(b−x)√γ
∫

A

dy

B −A

)

∣

∣

∣

∣

∣

∣

ln

B
∫

A

dv

B −A

∣

∣

∣

∣

∣

∣

= 0,

and I(1) = I−(1) + I+(1), with

I−(1) =

a+(B−A)/
√
γ

∫

a

dx

b− a

B−(x−a)√γ
∫

A

dy

B −A

∣

∣

∣

∣

∣

∣

∣

ln

y+(x−a)√γ
∫

A

dv

B −A

∣

∣

∣

∣

∣

∣

∣

,
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and

I+(1) =

b
∫

b−(B−A)/
√
γ

dx

b− a

B
∫

A+(b−x)√γ

dy

B −A

∣

∣

∣

∣

∣

∣

∣

ln

B
∫

y+(x−b)√γ

dv

B −A

∣

∣

∣

∣

∣

∣

∣

.

The analysis of integrals I±(1) proceeds along the same lines as before. Viz., setting Γ =
(b− a)2

(B −A)2
γ,

with
√

Γ > 2, we have that

I−(1) = −
a+(B−A)/

√
γ

∫

a

dx

b− a

B−(x−a)√γ
∫

A

dy

B −A
ln

y + (x− a)
√
γ −A

B −A

= −
1/

√
Γ

∫

0

dx

1−x
√

Γ
∫

0

dy ln
(

y + x
√

Γ
)

which equals 1
/(

4
√
γ
)

by the above argument. Similarly, I+(1) = 1
/(

4
√
γ
)

. Thus, in the case under
consideration,

I = I(1) =
B −A

2(b− a)
√
γ
.

This goes to 0 as γ → +∞ which again proves the assertion of Lemma 2.1.

In the multi-dimensional case, with X ∼U

(

×
1≤j≤d

[aj , bj ]

)

and U ∼U

(

×
1≤j≤d

[Aj , Bj ]

)

, we obtain, in

a similar fashion, that

I =
∏

1≤j≤d

[

1 +
Bj −Aj

2(bj − aj)
√
γ

]

− 1,

and Lemma 2.1 again follows.
The above argument remains pretty much intact in a more general case where PDF fX admits

finitely many values and PDF fU has a compact support. More preciseley, consider first a scalar case
where fX(x) =

∑

i
αi1(ai < x < bi) and intervals (ai, bi) ⊂ R are pairwise disjoint with

∑

i
αi(bi−ai) = 1,

while fU (x) = 0 for x ∈ R \ (A,B). Take γ > 4(B −A)2
/[

min (bi − ai)
2
]

. Then

I =

∫

dx1
(

fX(x) > 0
)

fX(x)

∫

dyfU(y)

∣

∣

∣

∣

ln

[∫

fX

(

x+
y − v√
γ

)

fU(v)dv

/

fX(x)

]∣

∣

∣

∣

=
∑

i
αi

bi
∫

ai

dx

B
∫

A

dyfU (y)

∣

∣

∣

∣

∣

∣

∣

ln







∑

k

αk

B∧(y+(x−ak)
√
γ)

∫

A∨(y+(x−bk)
√
γ)

fU (v)dv

/

αi







∣

∣

∣

∣

∣

∣

∣

= I(0) + I(1).

Here I(0) = I−(0) + I0(0) + I+(0) and I(1) = I−(1) + I+(1) where

I−(0) =
∑

i

αi

ai+(B−A)/
√
γ

∫

ai

dx

B
∫

B−(x−ai)
√
γ

dyfU(y) ln





αi
αi

B
∫

A

dvfU(v) + 0



 = 0,

I0(0) =
∑

i

αi

bi−(B−A)/
√
γ

∫

ai+(B−A)/
√
γ

dx

B
∫

A

dyfU(y) ln





αi
αi

B
∫

A

dvfU(v) + 0



 = 0,

I+(0) =
∑

i

αi

bi
∫

bi−(B−A)/
√
γ

dx

A+(bi−x)
√
γ

∫

A

dyfU(y) ln





αi
αi

B
∫

A

dvfU(v) + 0



 = 0,
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and

I+(1) =
∑

i

αi

ai+(B−A)/
√
γ

∫

ai

dx

B−(x−ai)
√
γ

∫

A

dyfU (y) ln







y+(x−ai)
√
γ

∫

A

dvfU(v) + . . .






,

I+(1) =
∑

i

αi

bi
∫

bi−(B−A)/
√
γ

dx

B
∫

A+(bi−x)
√
γ

dyfU(y) ln







B
∫

y+(x−bi)
√
γ

dvfU(v) + . . .






.

�

Remark. An assertion of the type of Lemma 2.1 is crucial for deriving the EPI by a direct proba-
bilistic method, and the fact that it was not provided in [VG] made the proof of the EPI given in [VG]
incomplete (the same is true of other papers on this subject).

In the discrete case where signal X takes finitely or countably many values, one has the following

Lemma 2.2. Let X and U be independent RVs. Assume that X admits discrete values x1, x2, . . . with
probabilities pX(x1), pX(x2), . . ., and has h(X) = −∑

xi

pX(xi) ln pX(x) < +∞. Next, assume that U

has a bounded PDF fU(x) with

∫

fU (x)dx = 1 and sup [fU (x) : x ∈ R
d] = a < +∞, and

lim
α→±∞

fU (x+ αx0) = 0, ∀ x, x0 ∈ R
d with x0 6= 0.

Finally, suppose that

∫

fU(x)
∣

∣ ln fU (x)
∣

∣dx < +∞. Then

h(X) = lim
γ→∞

I(X :
√
γX + U). (3)

Proof of Lemma 2.2. Setting as before, Y =
√
γX + U , we again reduce our task to proving that

h(X|Y ) → 0.
Now write

h(X|Y ) = −∑
i≥1

pX(xi)

∫

fU (y − xi
√
γ) ln

pX(xi)fU(y − xi
√
γ)

∑

j≥1
pX(xj)fU(y − xj

√
γ)

dy

=
∑

i≥1
pX(xi)

∫

fU(y) ln



1 +
∑

j:j 6=i
pX(xj)pX(xi)

−1fU
(

y + (xj − xi)
√
γ
)

fU (y)−1



 dy.

(4)

The expression under the logarithm clearly converges to 1 as γ → +∞, ∀ i ≥ 1 and y ∈ R
d. Thus, the

whole integrand

fU(y) ln



1 +
∑

j:j 6=i
pX(xj)pX(xi)

−1fU
(

y + (xj − xi)
√
γ
)

fU (y)−1



→ 0, ∀ i ≥ 1, y ∈ R
d.

To guarantee the convergence of the integral we set qi =
∑

j:j 6=i
pX(xj)pX(xi)

−1 = pX(i)−1 − 1 and
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ψ(y) = ln fU (y) and use the bound

ln

[

1 +
∑

j:j 6=i
pX(xj)pX(xi)

−1fU(y − xj
√
γ)fU (y)−1

]

≤ ln
(

1 + aqie
−ψ(y)

)

≤ 1
(

aqie
−ψ(y) > 1

)

ln
(

2aqie
−ψ(y)

)

+ 1
(

aqie
−ψ(y) ≤ 1

)

ln 2

≤ 2 ln 2 + ln a+ ln (qi + 1) + |ψ(y)|.

We then again apply Lebesgue’s dominated convergence theorem and deduce that lim
γ→+∞

h(X|Y ) = 0. �

In the general case, the arguments developed lead to the following continuity property:

Lemma 2.3. Let RVs X and U be independent. Assume a general case where X may have discrete and

absolutely continuous parts on its distribution while U has a PDF fU with

∫

fU(x)dx = 1. Suppose the

PDF fX , with

∫

fX(x)dx := 1− η(X) ≤ 1, is continuous and bounded. Next, suppose that the PDF fU

is bounded and
lim

α→±∞
fU (u+ u0α) = 0, ∀ u, u0 ∈ R

d, with u0 6= 0.

Finally, assume that

∫

gX(u)
∣

∣ ln gX(u)
∣

∣mX(du) +

∫

fU (u)
∣

∣ ln fU (u)
∣

∣du < +∞. Then

h(X) = lim
γ→∞

[

I(X : X
√
γ + U) + [1 − η(X)]h

(

U
/√

γ
)

]

.

The proof of the EPI in Section 3 requires an analysis of the behaviour of I(X : X
√
γ+N) also when

γ → 0. Here we are able to cover a general case for RV X in a single assertion:

Lemma 2.4. Let X, U be independent RVs. Assume that U has a bounded and continuous PDF

fU ∈ C0(Rd), with

∫

fU (x)dx = 1 and sup [fU(x) x ∈ R
d] = a < +∞ whereas the distribution of X may

have discrete and continuous parts. Next, assume, as in Lemma 2.3, that
∫

gX(u)
∣

∣ ln gX(u)
∣

∣mX(du) +

∫

fU (u)
∣

∣ ln fU (u)
∣

∣du < +∞.

Then
lim
γ→0

I
(

X : X
√
γ + U

)

= 0. (7)

Proof of Lemma 2.4. Setting again Y = X
√
γ+U , we now reduce the the task to proving that h(X|Y ) →

h(X). Here we write

h(X|Y ) = −
∫

gX(x)

∫

fU
(

y − x
√
γ
)

ln
gX(x)fU

(

y − x
√
γ
)

∫

gX(u)fU
(

y − u
√
γ
)

mX(du)

dymX(dx)

=

∫

gX(x)

∫

fU(y) ln









∫

gX(u)fU
(

y + (x− u)
√
γ
)

mX(du)

gX(x)fU (y)









dymX(dx).

(8)
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Due to continuity of fU , the ratio under the logarithm converges to (gX (x))−1 as γ → 0, ∀ x, y ∈ R.
Hence, the integral in (10) converges to h(X) as γ → 0. Again, the proof is completed with the help of
the Lebesgue dominated convergence theorem. �

Remark. Lemma 2.4 is another example of a missing step in proposed direct probabilistic proofs of
the EPI.
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3. The entropy-power inequality

In this section we show how to deduce the EPI from the lemmas established in Section 2. We begin
with a convenient representation of the mutual entropy I(X : X

√
γ+U) in the case where U is a d-variate

normal RV.
Let φΣ (or, briefly, φ) stand for the standard d-variate normal PDF with mean vector 0 and a d× d

covariance matrix Σ:

φΣ(x) =
1

(2π)d/2det Σ1/2
exp

[

−1

2

〈

x,Σ−1x
〉

]

, x ∈ R
d.

Here and below,
〈

· , ·
〉

stands for the Euclidean scalar product in R
d, and we assume that Σ is strictly

positive definite. The fact that an RV N is multivariate normal is written shortly as N ∼N(0,Σ).

Lemma 3.1. Let X and N be two independent RV, where N ∼ N(0,Σ) while the distribution of X may

have a discrete and a continuous part. Suppose that

∫

gX(x)||x||2mX(dx) < +∞. Given γ > 0, write

the mutual entropy between X and X
√
γ +N :

I(X : X
√
γ +N) = −

∫

gX(x)φ(u− x
√
γ) ln

[

gX(x)φ(u − x
√
γ)
]

dumX(dx)

+

∫

gX(x) ln gX(x)mX(dx)

+

∫

f√γX+N (u) ln f√γX+N (u)du

where

f√γX+N (u) =

∫

gX(x)φ(u− x
√
γ)mX(dx).

Then
d

dγ

[

I(X : X
√
γ +N) + h

(

N/
√
γ
)

]

=
1

2
M(X; γ) − 1

2γ
(10)

where
M(X; γ) = E

[

∥

∥X − E(X|X +
√
γN)

∥

∥

2
]

Where is dependence on Σ in the RHS of (10)??

An analog of Lemma 3.1 has been established in [VG] and [GSV] in a scalar case(??) and under a

(tacit) assumption that RV X has a PDF fX , with

∫

fX(x)dx = 1. See [VG], Lemma ??. We present

here an elementary proof under the assumptions stated above.

Proof of Lemma 3.1. Differentiate expression for I(X : X
√
γ + N) given in (3), and observe that the

derivative of the joint entropy h(X,X
√
γ+N) vanishes, as h(X,X

√
γ+N) does not change with γ > 0:

h(X,X
√
γ +N)

= −
∫

gX(x)φ(u− x
√
γ)
[

ln gX(x) + ln φ(u− x
√
γ)
]

mX(dx)du

= h(X) + h(N).
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The derivative of the marginal entropy h(X
√
γ +N) requires some calculations:

d

dγ
h(
√
γX +N) = − d

dγ

∫

f√γX+N (u) ln f√γX+N (u)du

=

∫

1

2
√
γ

∫

gX(y)φ(u−√
γy)

〈

(u−√
γy),Σ−1y

〉

mX(dy)

× ln

∫

gX(z)φ(u −√
γz)mX(dz)du

+

∫

1

2
√
γ

∫

gX(y)φ(u −√
γy)mX(dy)

×

∫

gX(w)φ(u −√
γw)

〈

(u−√
γw),Σ−1w

〉

mX(dw)
∫

gX(z)φ(u −√
γz)mX(dz)

du.

(11)

The second summand vanishes, as (i) the integrals
∫

gX(y)φ(u−√
γy)mX(dy) and

∫

gX(z)φ(u−√
γz)mX(dz)

cancel each other and (ii) the remaining integration can be taken first in du??, which yields 0 for ∀ w.
The first integral we integrate by parts. This leads to the representation

d

dγ
I(X :

√
γX +N) =

=
1

2
√
γ

∫ ∫

gX(y)φ(u −√
γy)

×

∫

gX(x)φ(u−√
γx)

〈

(u−√
γx),Σ−1y

〉

mX(dx)
∫

gX(z)φ(u −√
γz)mX(dz)

mX(dy)du

=
1

2
√
γ

∫ ∫

gX(y)φ(u −√
γy)

×

∫

gX(x)φ(u−√
γx)
[

〈

(u−√
γy,Σ−1y

〉

+
√
γ
〈

(y − x),Σ−1y
〉

]

mX(dx)
∫

gX(z)φ(u −√
γz)mX(dz)

mX(dy)du.

The integral arising from the summand
〈

(u−√
γy,Σ−1y

〉

vanishes, because the mean vector in PDF φ
is zero. The remaining contributions, from

〈

y,Σ−1y
〉

−
〈

x,Σ−1y
〉

, is equal to

1

2
E

[

‖X − E(X|√γX +N)‖2
]

.

On the other hand, the first term in RHS of (11) equals

∫

∥

∥

∥

∥

∥

∥

∥

∥

x−

∫

gX(y)φ(u−√
γy)Σ??ymX(dy)

∫

gX(z)φ(u −√
γz)mX(dz)

∥

∥

∥

∥

∥

∥

∥

∥

2

gX(x)φ(u−√
γx)mX(dx)du

= E

[

‖X − E(X|√γX +N)‖2
]

≡M(X; γ). �

We are now going to derive the EPI (1), (2). We follow the line of argument proposed in [VG] and

based on Lemma 3.1. First, suppose that X is a RV with a PDF fX where

∫

fX(x)dx = 1. Then we
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assume that fX(x) satisfies the assumptions stated in Lemma 4 and Lemma 2 and use these lemmas with
U = N ∼N(0,Σ). Consequently, ∀ ǫ > 0,

h(X) = lim
γ→+∞

[

I
(

X : X
√
γ +N

)

+ h
(

N
/√

γ
)

]

=

+∞
∫

ǫ

d

dγ

[

I
(

X : X
√
γ +N

)

+ h
(

N/
√
γ
)]

dγ + I
(

X : X
√
ǫ+N

)

+ h
(

N
/√

ǫ
)

=
1

2

∫ +∞

ǫ

[

M(X; γ) − 1

γ
1(γ > 1)

]

dγ + h(N) + I
(

X : X
√
ǫ+N

)

.

(12)

Here we use the identity

1
∫

ǫ

(1/γ)dγ = ln ǫ. By Lemma 3 the last term in (12) tends to 0 as ǫ→ 0. Hence,

for an RV X with PDF fX ∈ C0 we obtain

h(X) = h(N) +
1

2

∫ ∞

0

[

M(X; γ) − 1(γ > 1)
1

γ

]

dγ. (13)

In the case where X attains discrete values in R
d, Eqn (13) is replaced by

h(X) = h(N)+) +
1

2

∫ ∞

0
M(X; γ)dγ (14)

and is established under a simple assumption that h(X) < +∞, by virtue of Lemmas 1 and 3–4.
The proof of EPI is based on Eqn (13) and the following result from [L].

Lemma 5. ([L], Theorem 6) Let X be a given class of probability distributions on R
d. The inequality

h(X1 cos θ +X2 sinψ) ≥ h(X1) cos2 θ + h(X2) sin2 θ, (15)

for any θ ∈ [0, 2π] and any pair of independent RVs X1, X2 with distributions from X , holds true iff the
Entropy Power inequality is valid for any pair of RVs X1, X2 with distributions from X .

Theorem 1. Let X1, X2 be RVs with values in R
d and with continuous and bounded PDFs fX1

(x),
fX2

(x), x ∈ R
d. Assume that the differential entropies h(X1) and h(X2) satisfy −∞ < h(X1), h(X2) <

+∞. Then the EPI (see Eqns (1)–(2)) holds true.

Proof According to Lemma 5, it suffices to check bound (14) ∀ θ ∈ (0, 2π) and ∀ pair of RVs X1, X2

with continuous and bounded PDFs fXi
(x), i = 1, 2. Take any such pair and let N be N(0, I) where I

is the d × d unit matrix. Following the argument developed in [GV], we apply formula (13) for the RV
X1 cosφ+X2 sinφ:

h(X1 cosφ+X2 sinφ) = h(N) +
1

2

∫ ∞

0

[

M(X1 cosφ+X2 sinφ; γ) − 1(γ > 1)
1

γ

]

dγ.

To verify Eqn (14) we need to check that

M(X1 cosφ+X2 sinφ; γ) ≥ cosφ2M(X1; γ) + sinφ2M(X2; γ). (16)

To this end, we take two independent RVs N1,N2 ∼N(0, I) and set

Z1 =
√
γX1 +N1, Z2 =

√
γX2 +N2, and Z = Z1 cosφ+ Z2 sinφ.

11



Then inequality (15) holds true because

E

[

‖X − E(X|Z)‖2
]

≥ E

[

‖X − E(X|Z1, Z2)‖2
]

= E

[

‖X1 − E(X1|Z1)‖2
]

cosφ2 + E

[

‖X2 − E(X2|Z2)‖2
]

sinφ2. �

For discrete RVs, the assertion is:

Theorem 2. Let X1, X2 be RVs with discrete values in R
d. Assume that the entropies h(X1), h(X2 <

+∞. Then the EPI holds true.

The proof of Theorem 2 follows the same scheme as that of Theorem 1. Finally, in the same fashion
one obtains the more general

Theorem 3. Let X1, X2 be RVs with values in R
d and general distributions including discrete and

absolutely continuous parts. Assume that the entropies h(X1), h(X2) satisfy −∞ < h(X1), h(X2) < +∞
and that the PDFs fXi

are are bounded and continuous. Then the EPI holds true.
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