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Abstract— This paper focuses on some simple models of limit
order book dynamics which simulate market trading mecha-
nisms. We start with a discrete time/space Markov process and
then perform a re-scaling procedure leading to a deterministic
dynamical system controlled by non-linear ODEs. This allows
us to introduce approximants for the equilibrium distribut ion
of the process represented by fixed points of deterministic
dynamics.

I. I NTRODUCTION. THE UNDERLYING MARKOV PROCESS

In what follows, LOB stands for the limit order book,
a trading mechanism adopted in many modern financial
markets. For a detailed description of some common LOB
models and their applications, see [1] and references therein.
(Although our models differ in a number of aspects.) One
of challenging problems is to determine factors attractingor
repelling various market participants.

This paper explores a new approach to the analysis of
LOB dynamics where the parameters of the original random
(Markov) process are re-scaled, and a limiting dynamical
system emerges, with a deterministic behavior described
by a system of non-linear (ordinary) differential equations.
A similar approach is commonly used in the literature on
stochastic communication networks; see, e.g., [2] and its
sequels (in particular, [3]). In the current paper we consider
a simplified model where a number of technically involved
issues are absent. We also omit proofs, referring the reader
to forthcoming publications beginning with [4].

The rationale for the models below is as follows. We
consider a single-commodity market where prices may be at
one ofN distinct levels (say,c1 < c2 < . . . < cN , although
the exact meaning of these values is of no importance). The
market is operating in discrete times0, δ, 2δ, . . .. At a given
time tδ, t = 0, 1, . . ., there arebi(t) traders prepared to buy a
unit of the commodity at priceci andsi(t) traders prepared
to sell it at this price, which leads to vectors

b(t) =
(

b1(t), . . . , bN (t)
)

, s(t) =
(

s1(t), . . . , sN (t)
)

∈ Z
N
+ .

HereZ+ = {0, 1, . . .} stands for a non-negative integer half-
lattice andZ

N
+ for the non-negative integerN -dimensional

lattice orthant. The pair(b(t), s(t)) represent a state of a
Markov processU(t) that will be the subject of our analysis.

If bi(t) ≥ si(t) > 0 then each of the sellers gets a trade
with probability pT ∈ (0, 1) and leaves the market, together
with his buyer companion. Therefore, both valuesbi(t) and
si(t) decrease by a random numbern = 0, 1, . . . , si(t) with
the binomial probability. A seller amongsi −n who did not
get the trade either (i) quits the market with probabilitypQ ∈
(0, 1) or (ii) moves to the price levelci−1 with probability
pM ∈ (0, 1) or (iv) remains at the same level with probability
1 − pQ − pM. (One can think that for this seller a random
experiment is performed, with three outcomes.) Similarly,a
buyer amongbi(t) − n who did not get the trade quits the
market with probabilitypQ ∈ (0, 1) or moves to the price
level ci+1 with probability pM ∈ (0, 1) or remains at the
same level with probability1 − pQ − pM. (Assuming that
pQ + pM < 1.)

Symmetrically, ifsi(t) ≥ bi(t) > 0 then each of the buyers
gets a trade with probabilitypT ∈ (0, 1) and leaves the
market, together with his seller companion. The remaining
traders at the price levelci proceed as above.

In addition, at every time pointtδ a random number of
new buyers arrive and position themselves at the price level
c1; it is distributed according to a Poisson law with mean
Λb > 0. Similarly, at every timetδ a Poisson random number
of sellers arrive and take a position at price levelcN ; the
mean value of this variable isΛs > 0.

All described events occur at each level independently.
This generates the aforementioned Markov process

{

U(t)
}

with trajectories
{

(b(t), s(t))
}

, t ∈ Z+.
Theorem 1.∀ values of parametersΛb/s, pQ/M andpT, the

process{U(t)} is irreducible, aperiodic and positive recur-
rent. Therefore, it has a unique set of equilibrium probabilities
π =

(

π
(

b, s
)

: b, s ∈ Z
N

)

, and ∀ initial state U(0)

(deterministic or random), the distribution of the random state
U(t) at timet converges weakly toπ ast → ∞:

lim
t→∞

P

(

U(t) = (b, s)
)

= π
(

b, s
)

.

II. SCALING LIMIT

The explicit form of the equilibrium distributionπ of pro-
cess

{

U(t)
}

(and even probabilities of transitions(b, s) 7→
(b′, s′)) are too cumbersome to work with. This fact makes
it desirable to develop efficient methods of approximation.In



this paper we focus on one such method based on scaling the
parameters of the process (including states and time-steps).

The re-scaling procedure is as follows: we set

pT =
γ

L
, pQ =

αQ

L
, pM =

αM

L
, Λb =

λb

L
, Λs =

λs

L
,

(1)
whereγ > 0, αQ > 0, αM > 0, λb > 0 and λs > 0 are
fixed andL → ∞. In addition, we re-scale the states and the
time: pictorially,

xi ∼
bi

L
, yi ∼

si

L
, τ ∼

tδ

L
.

Formally, denoting the Markov process generated for a given
L by U (L), we consider the continuous-time process

V (L)(τ) =
1

L
U (L)

(

⌈τL/δ⌉
)

, τ ≥ 0,

where⌈a⌉ stands for the integer part ofa > 0.
Set: R+ = (0,∞) (a positive half-line), thenRN

+ is a
positive orthant inN dimensions. Suppose we are given a
pair of vectors(x(0), y(0)) ∈ R

N
+ × R

N
+ where x(0) =

(x1(0), . . . , xN (0)), y(0) = (y1(0), . . . , yN(0)). Consider
the following system of first-order ODEs for functionsxi =
xi(τ) andyi = yi(τ) whereτ > 0 and1 ≤ i ≤ N :

ẋ1 = λb −
(

αQ + αM

)

x1

−γ min
[

x1, y1

]

,

ẋi = αMxi−1 −
(

αQ + αM

)

xi

−γ min
[

xi, yi

]

, 1 < i ≤ N,

ẏi = αMyi+1 −
(

αQ + αM

)

yi

−γ min
[

xi, yi

]

, 1 ≤ i < N,

ẏN = λs −
(

αQ + αM

)

yN

−γ min
[

xN , yN

]

,

(2)

with the initial datexi(0), yi(0), 1 ≤ i ≤ N . The fixed
point

(

x∗, y∗
)

of system (2) hasx∗ = (x∗
1, . . . , x

∗
N ) and

y∗ = (y∗
1 , . . . , y∗

N) wherex∗
i andy∗

i give a solution to

λb =
(

αQ + αM

)

x∗
1

+γ min
[

x∗
1, y

∗
1

]

,

αMx∗
i−1 =

(

αQ + αM

)

x∗
i

+γ min
[

x∗
i , y

∗
i

]

, 1 < i ≤ N,

αMy∗
i+1 =

(

αQ + αM

)

y∗
i

+ γ min
[

x∗
i , y

∗
i

]

, 1 ≤ i < N,

λs =
(

αQ + αM

)

y∗
N

+γ min
[

x∗
N , y∗

N

]

.

(3)

Both systems (2) and (3) are non-linear. However, the non-
linearity ‘disappears’ at a local level which greatly simplifies
the analysis of these systems.

In Theorems 2 and 3 below, we use the distance generated
by the Euclidean norm inRN × R

N .
Theorem 2.∀ initial date(x(0), y(0)) ∈ R

N
+ × R

N
+ there

exists a unique solution
{

(x(τ), y(τ)), τ > 0
}

to system

(2). For this solution,(x(τ), y(τ)) ∈ R
N
+ × R

N
+ ∀ τ > 0. As

τ → ∞, the solution approaches a fixed point, which yields a
unique solution to system(3):

dist
[

(

x(τ), y(τ)
)

,
(

x∗, y∗
)

]

→ 0. (4)

Theorem 3. Suppose that the re-scaled initial states con-
verge in probability:∀ ǫ > 0,

lim
L→∞

P

(

dist

[

1

L
U(0), (x(0), y(0))

]

≥ ǫ

)

= 0.

Then,∀ T > 0, the process
{

V (L)(τ), τ ∈ [0, T ]
}

converges

in probability to the solution
{

(x(τ), y(τ)), 0 ≤ τ ≤ T
}

.
That is,∀ ǫ > 0,

lim
L→∞

P

(

sup
0≤τ≤T

{

dist
[

V (L)(τ), (x(τ), y(τ))
]}

≥ ǫ

)

= 0.

(5)
In particular, ifx(0) = x∗ andy(0) = y∗ then

lim
L→∞

P

(

sup
0≤τ≤T

{

dist
[

V (L)(τ),
(

x∗, y∗
)

]}

≥ ǫ

)

= 0.

(6)
Moreover, if process

{

U(t), t ∈ Z+

}

is in equilibrium then
Eqn (6) holds true.

III. F IXED POINTS IN THE SCALING LIMIT. CONCLUDING

REMARKS

The approximation developed in Theorem 3 calls for an
analysis of solutions to (3). As follows from the middle
equations in (3),

Lemma 4. The fixed-point entries satisfy

x∗
1 > . . . > x∗

N and y∗
1 < . . . < y∗

N .

Consequently, the parameter spaceR
5
+ formed byγ, αQ/M,

andλb/s is partitioned into open domains where one of the
following generic patterns persists:

(i) x∗
N > y∗

N , (ii) x∗
1 < y∗

1 , and (iii) x∗
i > y∗

i for i =
1, . . . , ℓ andx∗

i < y∗
i for i = ℓ + 1, . . . , N where1 < ℓ < N .

In each of these domains system(3) is linear.
Lemma 4 allows us to develop simple algorithms for

calculating the fixed point
(

x∗, y∗
)

and analyze the character
of convergence in (4).

A particular algorithm for calculating
(

x∗, y∗
)

is based
on the following recursion. Setx(0)

i = 0 and let y(0)
i be

the solution to the third and the forth equations (3) with
y
(0)
N = λs/(αQ + αM). Next, let

(

x(k), y(k)
)

, k = 1, 2, . . .
be the solution to the system

λb =
(

αQ + αM

)

x
(k)
1

+γ min
[

x
(k)
1 , y

(k−1)
1

]

,

αMx
(k)
i−1 =

(

αQ + αM

)

x
(k)
i

+γ min
[

x
(k)
i , y

(k−1)
i

]

, 1 < i ≤ N,

αMy
(k)
i+1 =

(

αQ + αM

)

y
(k)
i

+ γ min
[

x
(k)
i , y

(k)
i

]

, 1 ≤ i < N,

λs =
(

αQ + αM

)

y
(k)
N

+γ min
[

x
(k)
N , y

(k)
N

]

.



Lemma 5. The inequalitiesx(k)
i > x

(k−1)
i , y

(k)
i <

y
(k−1)
i hold true∀ i, k ≥ 1 and, valuesx(k)

i are uniformly
bounded. Therefore,∃ lim

k→∞
x

(k)
i , and lim

k→∞
y
(k)
i and these

limits satisfy the system(3).

We conclude with the following remarks.
1. The current set-up admits straightforward generalisa-

tions to the case where parametersγ andαQ/M depend oni,
0 < i < N and on the trader type (b/s). A more complicated
case emerges if parametersλb/s become state-dependent.

2. There are several forms of convergence for which the
assertion in Theorem 3 holds true. The dynamical system
(2) itself gives rise to a limiting process with interesting
properties.

3. Another valid approximation for processU(t) is a
diffusion approximation working on a different scale from
that in (1).

These topics are subject to forthcoming research. See [4]
and subsequent publications.
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