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MULTI-PARTICLE DYNAMICAL LOCALIZATION
IN A CONTINUOUS ANDERSON MODEL
WITH AN ALLOY-TYPE POTENTIAL

VICTOR CHULAEVSKY!, ANNE BOUTET DE MONVEL?, AND YURI SUHOV?3

ABSTRACT. This paper is a complement to our earlier work [4]. With the help
of the multi-scale analysis, we derive, from estimates obtained in [4], dynamical
localization for a multi-particle Anderson model in a Euclidean space R%, d > 1,
with a short-range interaction, subject to a random alloy-type potential.

1. INTRODUCTION

1.1. The model. In this paper we continue our study of a multi-particle Anderson
model in R? with interaction and in an external random potential of alloy type. The
Hamiltonian H (= H®)(w)) is a random Schrédinger operator of the form

H= —%A—FU(X)—FV(W;X) (1.1)

acting in L?(R™?). This means that we consider a system of N interacting quantum
particles in RY. Here x = (z1,...,zy) € RV is for the joint position vector, where
each component z; € RY represents the position of the jth particle, 1 < j < N. Next,
A stands for the Laplacian in RV, The interaction energy operator U(x) acts as
multiplication by a function U(x). Finally, the term V(w;x) represents the operator
of multiplication by a function

x = V(rsw)+ -+ Vieniw), (1.2)

where € R? — V(z;w) is a random external field potential assumed to be of the form

Vizyw) = Z Vs(w) p(x — s). (1.3)

sezd

Here and below V, s € Z4, are i.i.d. (independent and identically distributed) real
random variables on some probability space (2,8, P) and ¢: R? — R is usually referred
to as a “bump” function.

1.2. Basic geometric notations. Throughout this paper, we will fix an integer N > 2
and work in Euclidean spaces of the form R4 = R? x ... x R? (I times) associated
with [-particle sub-systems where 1 < [ < N. Correspondingly, the notations x,
y,... will be used for vectors from R!, depending on the context. Given a vector
x € R, we will consider “sub-configurations” x’ and x” generated by x for a given
partition of an [-particle system into disjoint sub-systems with I’ and I”’ particles, where
U'+1" =1,11" > 1; the vectors x' and x” are identified with points from R’? and
R ? respectively, by re-labelling the particles accordingly.
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All Euclidean spaces will be endowed with the max-norm denoted by | - |. We
will consider Id-dimensional cubes of integer size in R centered at lattice points u €
7! c R and with edges parallel to the co-ordinate axes. The cube of edge length 2L
centered at u is denoted by Ay (u); in the max-norm it represents the ball of radius L
centered at u:

Ap(u) = {xeR": |x —u| < L}. (1.4)
The lattice counterpart for Ay (u) is denoted by Br(u):
Br(u) = A (u)NZ4; uezk
Finally, we consider “cells” (cubes of radius 1) centered at lattice points u € Z':
C(u) = A;(u) C R

The union of all cells C(u), u € Z!, covers the entire Euclidean space R'. For each
i €{1,...,1} we introduce the projection II;: R' — R? defined by

I (z1,...,2) — xy, 1<i<I.
1.3. Interaction potential. The interaction within the system of particles is repre-
sented by the term U(x) in the expression (1) of the Hamiltonian H. As was said,
it is the operator of multiplication by a function x € R s U(x) € R, 1 < < N. A

usual assumption is that U(x) (considered for x € R with 1 <1 < N) is a sum of
k-body potentials

!
U(x)zz Z US (25,0, 20,), x = (z1,...,21) € R,

k=1 1< <... <3<l

In this paper we do not assume isotropy, symmetry or translation invariance of
this interaction. However, we use the conditions of finite range, nonnegativity and
boundedness, as stated below.

Assume a partition of a configuration x € Z!? is given, into complementary sub-
configurations x7 = (z;)es and xXgzec = (2))je(1,..13\g, Where @ # T C {1,2,...,1}.
The energy of interaction between x7 and x 7. is defined by

Ulxy |x7¢) i= U(x) = Ulxg) = Ulxge): (1.5)
Next, define
p(xg,Xge) :=min ||z; —x;|: i €T,j€ T (1.6)
We say that this interaction has range rg € (0,00) if, for all I =1,..., N and x € Rl
p(xg,x7:) > 10 = U(xg|%X7¢) =0. (1.7)
Finally, we say that the interaction is non-negative and bounded if

inf U(x)>0 and sup U(x) < 400, 1<I<N. (1.8)
x€Rld xcRld

The boundedness condition can be relaxed to include hard-core interactions where
U(x) = +o0 if |z; — x| < a, for some given a € (0,1¢).
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1.4. Assumptions. Our assumptions on the interaction potential U are borrowed
from [4]:
(E1) U is non-negative, bounded and has a finite range ro > 0.

Similarly, we use assumptions on the i.i.d. random variables V,, s € Z¢, and the
bump function ¢ introduced in [4]:

(E2) There exists a constant v € (0, 00) such that
P{0<Vo<v)=1 (1.9)
and
Ve>0 P{Vy<e}>D0. (1.10)

(E3) Uniform Holder continuityEl There exist constants a, b > 0 such that for all
e € [0,1], the common distribution function F of the random variables V,; satisfies

sgﬁ[F(y—i— €) — F(y)] < ac. (1.11)

(E4) The function ¢: R? — R is bounded, nonnegative and compactly supported:
diam(supp ¢) <11 < 0. (1.12)
(E5) Forall L > 1 and u € Z4,

S ela—s) =1y, (). (1.13)

s€EAL (u)NZ4

Here and below, 14 stands for the indicator function of a set A.

Henceforth, we suppose that d and N are fixed, as well as the interaction U and
the structure of the external potential (i.e., the distribution function F' and the bump
function ¢). All constants emerging in various bounds below are introduced under this
assumption.

1.5. Dynamical localization. The main result of this paper, Theorem [[.I estab-
lishes the so-called “strong dynamical localization” for the operator H(w) defined in
(CI) near the lower edge E° of its spectrum. More precisely, let E® be the lower edge
of the spectrum spec(H?) of the N-particle operator without interaction,

N
H’ = —%A—I—ZV(xj;w). (1.14)
j=1
Actually, it follows from our conditions (LI) and (LI0) that EY = 0. Owing to the
non-negativity of the interaction potential U, the lower edge of the spectrum of H is
bounded from below by E°. Moreover, H has a non-empty spectrum in the interval
[E°, E° +¢], for any € > 0. This follows, e.g., from a result by Klopp and Zenk [§] which
says that the integrated density of states for a multi-particle system with a decaying
interaction is the same as for the system without interaction.
Denote by X the operator of multiplication by the norm of x, i.e.,

Xf(x)=|x|f(x), xeRN (1.15)

The main result of this paper is the following

IThe Hélder continuity can be relaxed to the log-Hélder continuity.
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Theorem 1.1. Consider the operator H from (L)) and assume that conditions (E1)—
(E5) are fulfilled. Then for any Q > 0 there exists a nonrandom number n = n(Q) > 0
such that for any compact subset K C RN the following bound holds:

{sup HXQ —itH@) p (H(w))lK’ 0, (1.16)

teR

| <
L2(RNd)

where P, (H) is the spectral projection of the Hamiltonian H on the interval 1(n) =
[E°, E° +1).

Remark 1.2. The interval I(n) is a sub-interval of the interval of energies [E?, E® + n*]
for which the spectrum of H was proven to be pure point (and the eigenfunctions to
be decaying exponentially); see [4].

2. RESULTS OF THE MULTI-PARTICLE MSA

The MSA works with the finite-volume approximations Hp, (y) of H, relative to
the cubes Az (u). More precisely, Ha, () is an operator in L?(Ar(u)), given by the
same expression as in (1) (for x € Ar(u)), with Dirichlet’s boundary conditions on
OAL(u); see [4]. Specifically, the Green operator G 4, (u)(E) is of particular interest:

Ga,w)(B) = (Ha,wm —BE), (2.1)
defined for FE € R\ spec (HAL(H)).
Let [ - ] denote the integer part. For a cube A (u) we denote
AL (0) = Az (), A7 (w) = Ap(u) \ Ap—a(u). (2.2)
Next, given two points v,w € B (u) such that C(v),C(w) C AL(u), set
GHEMW(E) = 1cv) Gy ) (B) Lew) - (2.3)

Following a long-standing tradition, we use a parameter « € (1,2) in the definition of
a sequence of scales Ly (cf. Eqn (Z3)); For our purposes, it suffices to set o = 3/2;
this will be always assumed below.

Definition 2.1. A cube Ay (u) is called (E,m)-non-singular ((E,m)-NS, in short) if
for any v € B[Ll/a](u) and y € A" (u) N ZN? the norm of the operator Ge)g,(“)(E)
satisfies

<e ™, (2.4)
L2(AL(w))

Otherwise, it is called (E,m)-singular ((E, m)-S).

| e

We will work with a sequence of “scales” Ly, (positive integers) defined recursively
by

Ly = [Lg ;] +1, where a= (2.5)

3
2
The sequence Lj is determined by an initial scale Ly > 2. Most of arguments in
Sect. Blrequire Ly to be large enough, to fulfill some specific numerical inequalities. In
addition, we also assume that Lo > 1y (defined in (II2)) in order to simplify some
cumbersome technicalities.

We will use a well-known property of generalized eigenfunctions of the operator H
which can be found, e.g., in [9, Lemma 3.3.2]:
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Lemma 2.2. For every bounded set Iy C R there exists a constant C(©) = C©) (1)
such that, for any cube Az (u) with L > 7, any point w € By (u) with C(w) C AP (u)
and every generalized eigenfunction W of H with eigenvalue E € Iy, the norm of the
vector Lo(w) ¥ satisfies

1w Pl < CO [ 1agu ) Gy (B) Lo |- | Lage ) 2. (2.6)

(From now on we omit the subscript indicating the L2-space where a given norm is
considered, as this will be clear in the context of the argument.)
The following geometric notion is used in the forthcoming analysis.

Definition 2.3. (see []). Let J be a non-empty subset of {1,..., N}.
We say that the cube Ap(y) is J-separable from the cube Ap(x) if

< U HArsr, (Y)> ﬂ( U AL, (Y) UHAL+r1(X)> =g (2.7)

JjeT iZ¢J
where TIAL i, (x) = UM T Ay, (x).

A pair of cubes A (x), AL(y) is separable if, for some J C {1,..., N}, either Ay (y)
is J-separable from Ap(x), or Ar(x) is J-separable from Ay (y).

We will use the following easy assertion (see [4]):

Lemma 2.4. For any L > 1 and x € RN?, there erists a collection of N-particle
cubes AQN(LHI)(X(Z)), I=1,...,K(x,N), with K(x,N) < NV such that if a vector

y € ZNd satisﬁesﬁ
K(x,N)

y ¢ U A2N(L+r1)(x(l))a (2.8)

=1
then two cubes Ar(x) and Ar(y) with dist (AL (x), Ar(y)) > 2N(L+r1) are separable.
In particular, assuming L > 11, a pair of cubes Ar(x), AL(y) is separable if

ly| > |x| 4+ (4N +2)L. (2.9)
Since N > 2, one can replace the condition (2.9]) by
ly| > |x| +5NL. (2.10)

In particular, two cubes of the form A, (0), AL (y) with |y| > 5N L are always separable.
The main outcome of [4] is summarized in the following Theorem

Theorem 2.5 (see [d]). For any large enough p > 0 there exist m*(p) > 0, n*(p) > 0,
and L§(p) > 0 such that

(i) if Lo > L§(p) then for all k > 0 and for any pair of separable cubes Ap, (x),
A, (y) withx,y € ZN4,

P{3IE € [E°, E°+n*]: AL, (x) and AL, (y) are (E,m)-S} < L., (2.11)

(ii) with probability one, the spectrum of H in the interval I = [EY, EY + n*(p)] is
pure point, and the eigenfunctions ®,, of H with eigenvalues E,, € I satisfy

B, 1o | < Ch(w)e™™ @IVl w e zZNd O (w) < . 2.12
(w)

2The constant r is defined in T12).
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3. DERIVATION OF DYNAMICAL LOCALIZATION FROM MSA ESTIMATES

In this section we prove a statement that is slightly more general than Theorem [L1]
Namely, given Q > 0, the interval I = I(n) = [E°, E° + ] with n = n(Q), and a
compact subset K C RY, there exists a constant C(Q,K) € (0,00) such that for any
bounded measurable function £: R — C with supp & C I(n),

E[IX?¢(H(w)) 1x |I] < C(Q.K) [I€]lo0 < 0. (3.1)

Moreover, @ > 0 can be made arbitrarily large, by choosing n = n(Q) > 0 sufficiently
small. Theorem [Tl follows from (B applied to the functions £(s) = e 1;(,(s),
parametrised by t € R.

Throughout the section, we assume that the parameter p from [2.11]) satisfies

2p > 3Nda + aQ. (3.2)
More precisely, given ¢ > 0 and p satisfying (3-2), we work with
n=n(Q) € (0,7"(p)) and m =m*(p) >0, (3.3)

where n*(p) and m*(p) are specified in Theorem Further, for p satisfying (32) we
introduce the event £ = 4 (p) C Q of probability P(©,) = 1, defined by

Q1 = {w € Q: the spectrum of H(w) in [E°, E + n*(p)] is pure point}. (3.4)

3.1. Probability of “bad samples”. Given j > 1, consider the event

Sj = {w: there exists £ € I and y,z € Bsyz,,,(0) such that
A, (y),Ar,(z) are separable and (m, E)-S}.

Further, for £ > 1 we denote
o =S (3.5)

Jizk
Lemma 3.1. There ezists a constant ¢; € (0,00) such that for all k > 1,
P {Q}zad} < clle(prQNda)'

Proof. The number of separable pairs Ar (x), Ar,(y) with x,y € Bsnr,,,(0) is
bounded by (10N Lj;1 +1)* < C(N)L?,,. We can apply the bound (ZII) and write

P{8;} < C(N)LA{L; P < L;2r+2Nde

Therefore,

- Liy+i
Q’Zad <L 2p+2Nda Z (_z
— k

—2p+2Nda
L )
i>0 k

For 2p > 2Nda and Ly > 2 the claim follows from the inequality

Lk+1‘ |: i q
> . O
L, — k



MULTI-PARTICLE DYNAMICAL LOCALIZATION IN A CONTINUOUS ANDERSON MODEL 7

3.2. Centers of localization. Denote by ®,, = &,,(w) the normalized eigenfunctions
of Hw), w € O, with corresponding eigenvalues E,, = E, (w) € I. For each n we
define a center of localization for &,, as a point X € Z? such that

Mo ®nll = max [[1ow) Pl (3.6)
Since ||D,,|| = 1, for any given n such centers exist and their number is finite. We will
assume that, for any eigenfunction @,,, the centers of localization X,, o, a = 1,...,C(n),

are enumerated in such a way that |X,, 1] = ming |[%,,.q|-

Lemma 3.2. There exists ko large enough such that, for all u € ZN¢, w € Q, and
k> ko, if Xn,q € B, (u) then the box Ap, (u) is (m, E,)-S.

Proof. Assume otherwise. Then from (2.6 it follows that
I 1ex, ) ®all < C'e™ ™| Lagatu) @l

Since the number of cells in A7"*(u) is bounded by Ly?, we conclude that

[ 1c(,.) Ball < Ce ™ LYY max | 1oy @l
yEBY" (u)
If ko is large enough so that C'e=™ExLNd < 1 for k > ko, the above inequality contra-
dicts the definition of %,, , as center of localization. O

3.3. Annular regions. From now on we work with the integer kg from Lemma
Given k > ko, set:

Q20od — 0, \ Qbad, (3.7)
Assume that w € Q%‘)Od. Let Xy, Xn,p be two centers of localization for the same
eigenfunction @,,. It follows from the definition of the event Q%‘md that the cubes
A, (Rnq) and Ap,(Xnp) with ¢ > k£ — 1 cannot be separable, since they must be
(m, E)-S. Further, by Lemma [2.4] if Ly > r; then any cube of the form Ar, (y) with
ly| > |%n,1| + 5NLy, is separable from Aj, (%X,,1); this also applies, of course, to any
localization center y = X, , with @ > 1, provided that such centers exist for a given n.
Since w € Q%O(’d, for any eigenfunction @,, there is no center of localization %X,, , either
outside the cube Ajg, ,|+5n5L,(0) or inside Az, (0) (since X, 1| = ming [X,q]). In
other words, within the event Q%(’Od, all centers of localization %X, , with a fixed value
of n are located in the annulus

Al 14+58L, (0) \ Az, 1((0)

of width 5N Ly, and of inner radius |%X,,1]. This explains why, for our purposes, an
eigenfunction @,, can be effectively “labeled” by a single localization center.

In other words, although in this paper we cannot rule out the possibility of exis-
tence of multiple centers of localization at arbitrarily large distances (depending on @,
through |%,, 1), such centers do not contribute to a “radial” quantum transport — away
from the origin 0 — which might have lead to dynamical delocalization.

Lemma 3.3. Given k > ko, there exists jo > k large enough such that if j > jo,
w € Q%OOd and X,1 € Br,;(0) then

(1= 1 0) 2] <

1
1
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Proof. By Lemma 2.4 (see also (ZI0)),
Vi>j+1, Yw e ZN\ Bsyz,(0), the cubes Az, (w) and Az, (0) are separable.

In addition, we take j > k, as suggested in the lemma.
Next, we divide the complement RN9\ A5y, ,(0) into annular regions

Ml(o) = A5NL¢+1 (0) \A5NL'L (0)7 127+ 2, (38)

and write

H (1 ; 1ALJ‘+2(°)) On

2
=3 Mm@l < Y. > llew @l

i>j+2 i>j+2 weM,;(0)
Furthermore, %X,,1 € Br,;(0) C B, ,(0), so that by Lemma B2 the cube Ar,(0)

must be (m, E,,)-S. Therefore, by the definition of the event Q£°°, the cube Ay, (w) is
(m, E,)-NS. Applying Lemma[2.2] to the cube A, (w) and to the cell C(w), we obtain

[ 1o(w) Pull® < e™2mh

Since the volume ’MZ(O)’ of the annular region M;(0) grows polynomially in L;, the
assertion of Lemma follows. O

3.4. Bounds on concentration of localization centers.
Lemma 3.4. There exists a constant co € (0,00) such that for w € Qzad, 7>k,
card {n : %1 € Br,.,,(0)} < ¢ L?frvld. (3.9)

Proof. The left-hand-side of ([3.9)) is nondecreasing in j, so we can restrict ourselves to
the case j > jo. First, observe that, with Ar,,, = Ar,,,(0)

3 (1 A, Pria, slin,slin) <tr(la,,, Pr). (3.10)

n: }A(n,1EBL].+1 (0)

Each term in the above sum is not less than 1/2. Indeed,
(]-AL].+2 PI ]‘ALj+2 Q’rh Qn)

]‘AL]‘+2 Plénaén) - (lALj+2 PI(l - ]-ALJ.+2)¢H;¢H)

1

> (1AL1+2 P, @n) 1 (using Lemma [B.3)) (3.11)

1

= (B,,P,) — ((1 - 1AL]-+2)¢"=¢”) -1

1

> . 3.12
Substituting the lower bounds from BII)) — (B12) under the trace in Eqn BI0), we
get the desired upper bound on the LHS of Eqn (3.9). |

3.5. Bounds for “good” samples of potential.

Lemma 3.5. There exists an integer k1 = k1(Lo) such thatV k > ki, w € Q%Tld and
x from the annular region Myy1 defined in (B.8)),

|Lar, 00 Pre®) 1a,, @] <6l (3.13)
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Proof. Tt suffices to prove (BI3) in the particular case where ||€]loc < 1, which we
assume below. First, we bound the LHS of (BI3) as follows:

11a,, 0 PréCE) 1a, o)l < D0 16ED)] 14, (0 Bl 14,, 0) Pl
En,el
<Y 114, 00 ®all 14, 0) Pl (3.14)
En,el

since ||n|lcc < 1. Now divide the sum according to where %, 1 are located and write

> 14y, 0 ®all 14, (0) Pull = > [1a,, 0 @nllll1a,, 0) Prll

Encl Enel
Xn1€AsN Ly, 4 (0)

+ > > 14, 0%l 14, 0) @l

j=k+1 EncI
*n,1€M;(0)

with M;(0) defined in (B.8). Since x € My4+1(0), we have By, (x) N By, (0) = .
Then, by Lemma 24 the two cubes By, (x) and By, (0) are separable. In turn, this
implies that one of these cubes is (m, F,,)-NS. Therefore, by Lemma [3.4]

> 114, 00 Pnll [ 14, (0) Bull < 2 O Ll e e,

E,el
ﬁn,leALk+1 (0)

Furthermore, for k > k¢ large enough,
1 —m
> 114z, 60 PullllLa,, ) Pull < 5e Iz, (3.15)

. Enel
xn,leALk+1 (0)

For any j > k + 2 and %X, 1 € M;(0), by Lemma 3.2} the cube B, (X, 1) must be
(m, Ey,)-S, so that Bz, (0) has to be (m, E,,)-NS:

114, (0) Pull < 14, (0) Pull < Ce™ ™55,
Applying again Lemma 3.4 we see that, if k¥ > kq, then
o0 o0
Yoo > a0 ®allllla, @@l <C Y el
j=k+1  E,el j=k+2
in,lEMj(C’)

1
< _ —mLk/Q'
= 26

Combining this estimate with (3.14) and BI5]), the assertion of LemmaB3lfollows. [
3.6. Bounds for “bad” samples of potential.

Lemma 3.6. Let k1 be as in Lemmal[F 3 and assume that k > k1 and x € M41(0).
We have:

E |:H1ALk(x) P]é(H) lALk(O)H:| S ||€||Oo (CL;2P+2NdOt +e—mLk/2) .
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Proof. We again assume [|£[|oc < 1. For w € QP4 we can use Sect. B.I] while for

w € Q%md we can use Sect. More precisely, the above expectation is bounded by
]P){Q‘Zad} + e—mLk/2P{Q%ood} < CL];2p+2Nda 1 emmLi/2, 0

3.7. Conclusion. For a compact subset K € RV? we find an integer k > k; such that

K C Ay, (0). Then, with the annular regions M;(0),

E[IIX? PréHW)) 1k ] <L+ Y E[IIX 1ng,0) PrE(H) 1k ]

J>k+1

<22+ Y 1% 3 E[H 1a,, (w) PrE(H) 14, (o) ||}
j>k+1 weM,;(0)

SLg'i‘ Z L?QLé-Vda (L;2P+2Nd0t+e—ij/2) < 00,
J>k+1

since 2p > 3Nda + aQ by assumption (3.2)), and L; ~ {Lg‘]} grow fast enough.

This completes the proof of dynamical localization. O
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