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MULTI-PARTICLE DYNAMICAL LOCALIZATION

IN A CONTINUOUS ANDERSON MODEL

WITH AN ALLOY-TYPE POTENTIAL

VICTOR CHULAEVSKY1, ANNE BOUTET DE MONVEL2, AND YURI SUHOV3

Abstract. This paper is a complement to our earlier work [4]. With the help
of the multi-scale analysis, we derive, from estimates obtained in [4], dynamical
localization for a multi-particle Anderson model in a Euclidean space Rd, d ≥ 1,
with a short-range interaction, subject to a random alloy-type potential.

1. Introduction

1.1. The model. In this paper we continue our study of a multi-particle Anderson
model in Rd with interaction and in an external random potential of alloy type. The
Hamiltonian H

(

= H(N)(ω)
)

is a random Schrödinger operator of the form

H = −
1

2
∆+U(x) +V(ω;x) (1.1)

acting in L2(RNd). This means that we consider a system of N interacting quantum
particles in Rd. Here x = (x1, . . . , xN ) ∈ RNd is for the joint position vector, where
each component xj ∈ Rd represents the position of the jth particle, 1 ≤ j ≤ N . Next,
∆ stands for the Laplacian in RNd. The interaction energy operator U(x) acts as
multiplication by a function U(x). Finally, the term V(ω;x) represents the operator
of multiplication by a function

x 7→ V (x1;ω) + · · ·+ V (xN ;ω), (1.2)

where x ∈ Rd 7→ V (x;ω) is a random external field potential assumed to be of the form

V (x;ω) =
∑

s∈Zd

Vs(ω)ϕ(x− s). (1.3)

Here and below Vs, s ∈ Zd, are i.i.d. (independent and identically distributed) real
random variables on some probability space (Ω,B,P) and ϕ : Rd → R is usually referred
to as a “bump” function.

1.2. Basic geometric notations. Throughout this paper, we will fix an integerN ≥ 2
and work in Euclidean spaces of the form Rld ∼= Rd × . . . × Rd (l times) associated
with l-particle sub-systems where 1 ≤ l ≤ N . Correspondingly, the notations x,
y, . . . will be used for vectors from Rld, depending on the context. Given a vector
x ∈ Rld, we will consider “sub-configurations” x′ and x′′ generated by x for a given
partition of an l-particle system into disjoint sub-systems with l′ and l′′ particles, where
l′ + l′′ = l, l′, l′′ ≥ 1; the vectors x′ and x′′ are identified with points from Rl′d and
Rl′′d, respectively, by re-labelling the particles accordingly.

1

http://arxiv.org/abs/1007.3815v1


2 V. CHULAEVSKY, A. BOUTET DE MONVEL, AND Y. SUHOV

All Euclidean spaces will be endowed with the max-norm denoted by | · |. We
will consider ld-dimensional cubes of integer size in Rld centered at lattice points u ∈
Zld ⊂ Rld and with edges parallel to the co-ordinate axes. The cube of edge length 2L
centered at u is denoted by ΛL(u); in the max-norm it represents the ball of radius L
centered at u:

ΛL(u) = {x ∈ Rld : |x− u| < L}. (1.4)

The lattice counterpart for ΛL(u) is denoted by BL(u):

BL(u) = ΛL(u) ∩ Zld; u ∈ Zld.

Finally, we consider “cells” (cubes of radius 1) centered at lattice points u ∈ Zld:

C(u) = Λ1(u) ⊂ Rld.

The union of all cells C(u), u ∈ Zld, covers the entire Euclidean space Rld. For each
i ∈ {1, . . . , l} we introduce the projection Πi : R

ld → Rd defined by

Πi : (x1, . . . , xl) 7−→ xi, 1 ≤ i ≤ l.

1.3. Interaction potential. The interaction within the system of particles is repre-
sented by the term U(x) in the expression (1.1) of the Hamiltonian H. As was said,
it is the operator of multiplication by a function x ∈ Rld 7→ U(x) ∈ R, 1 ≤ l ≤ N . A
usual assumption is that U(x) (considered for x ∈ Rld with 1 ≤ l ≤ N) is a sum of
k-body potentials

U(x) =

l
∑

k=1

∑

1≤i1<...<ik≤l

U (k)(xi1 , . . . , xik ), x = (x1, . . . , xl) ∈ Rld.

In this paper we do not assume isotropy, symmetry or translation invariance of
this interaction. However, we use the conditions of finite range, nonnegativity and
boundedness, as stated below.

Assume a partition of a configuration x ∈ Zld is given, into complementary sub-
configurations xJ = (xj)j∈J and xJ c = (xj)j∈{1,...,l}\J , where ∅ 6= J ( {1, 2, . . . , l}.
The energy of interaction between xJ and xJ c is defined by

U(xJ |xJ c) := U(x)− U(xJ )− U(xJ c). (1.5)

Next, define

ρ(xJ ,xJ c) := min
[

|xi − xj | : i ∈ J , j ∈ J c
]

. (1.6)

We say that this interaction has range r0 ∈ (0,∞) if, for all l = 1, . . . , N and x ∈ Rld,

ρ(xJ ,xJ c) > r0 =⇒ U(xJ |xJ c) = 0. (1.7)

Finally, we say that the interaction is non-negative and bounded if

inf
x∈Rld

U(x) ≥ 0 and sup
x∈Rld

U(x) < +∞, 1 ≤ l ≤ N. (1.8)

The boundedness condition can be relaxed to include hard-core interactions where
U(x) = +∞ if |xi − xj | ≤ a, for some given a ∈ (0, r0).
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1.4. Assumptions. Our assumptions on the interaction potential U are borrowed
from [4]:

(E1) U is non-negative, bounded and has a finite range r0 ≥ 0.

Similarly, we use assumptions on the i.i.d. random variables Vs, s ∈ Zd, and the
bump function ϕ introduced in [4]:

(E2) There exists a constant v ∈ (0,∞) such that

P {0 ≤ V0 ≤ v} = 1 (1.9)

and

∀ ǫ > 0 P {V0 ≤ ǫ} > 0. (1.10)

(E3) Uniform Hölder continuity:1 There exist constants a, b > 0 such that for all
ǫ ∈ [0, 1], the common distribution function F of the random variables Vs satisfies

sup
y∈R

[

F (y + ǫ)− F (y)
]

≤ aǫb. (1.11)

(E4) The function ϕ : Rd → R is bounded, nonnegative and compactly supported:

diam(suppϕ) ≤ r1 < ∞. (1.12)

(E5) For all L ≥ 1 and u ∈ Zd,
∑

s∈ΛL(u)∩Zd

ϕ(x − s) ≥ 1ΛL(u)(x). (1.13)

Here and below, 1A stands for the indicator function of a set A.
Henceforth, we suppose that d and N are fixed, as well as the interaction U and

the structure of the external potential (i.e., the distribution function F and the bump
function ϕ). All constants emerging in various bounds below are introduced under this
assumption.

1.5. Dynamical localization. The main result of this paper, Theorem 1.1, estab-
lishes the so-called “strong dynamical localization” for the operator H(ω) defined in
(1.1) near the lower edge E0 of its spectrum. More precisely, let E0 be the lower edge
of the spectrum spec(H0) of the N -particle operator without interaction,

H0 = −
1

2
∆+

N
∑

j=1

V (xj ;ω). (1.14)

Actually, it follows from our conditions (1.9) and (1.10) that E0 = 0. Owing to the
non-negativity of the interaction potential U , the lower edge of the spectrum of H is
bounded from below by E0. Moreover, H has a non-empty spectrum in the interval
[E0, E0+ǫ], for any ǫ > 0. This follows, e.g., from a result by Klopp and Zenk [8] which
says that the integrated density of states for a multi-particle system with a decaying
interaction is the same as for the system without interaction.

Denote by X the operator of multiplication by the norm of x, i.e.,

Xf(x) = |x| f(x), x ∈ RNd. (1.15)

The main result of this paper is the following

1The Hölder continuity can be relaxed to the log-Hölder continuity.
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Theorem 1.1. Consider the operator H from (1.1) and assume that conditions (E1)–
(E5) are fulfilled. Then for any Q > 0 there exists a nonrandom number η = η(Q) > 0
such that for any compact subset K ⊂ RNd the following bound holds:

E

[

sup
t∈R

∥

∥

∥
XQ e−itH(ω)PI(η)(H(ω))1K

∥

∥

∥

L2(RNd)

]

< ∞, (1.16)

where PI(η)(H) is the spectral projection of the Hamiltonian H on the interval I(η) =

[E0, E0 + η].

Remark 1.2. The interval I(η) is a sub-interval of the interval of energies [E0, E0+ η∗]
for which the spectrum of H was proven to be pure point (and the eigenfunctions to
be decaying exponentially); see [4].

2. Results of the multi-particle MSA

The MSA works with the finite-volume approximations HΛL(u) of H, relative to

the cubes ΛL(u). More precisely, HΛL(u) is an operator in L2(ΛL(u)), given by the
same expression as in (1.1) (for x ∈ ΛL(u)), with Dirichlet’s boundary conditions on
∂ΛL(u); see [4]. Specifically, the Green operator GΛL(u)(E) is of particular interest:

GΛL(u)(E) = (HΛL(u) − E)−1, (2.1)

defined for E ∈ R \ spec
(

HΛL(u)

)

.
Let [ · ] denote the integer part. For a cube ΛL(u) we denote

Λ
int
L (u) = Λ[L/3](u), Λ

out
L (u) = ΛL(u) \ΛL−2(u). (2.2)

Next, given two points v,w ∈ BL(u) such that C(v),C(w) ⊂ ΛL(u), set

GΛL(u)
v,w (E) := 1C(v) GΛL(u)(E)1C(w) . (2.3)

Following a long-standing tradition, we use a parameter α ∈ (1, 2) in the definition of
a sequence of scales Lk (cf. Eqn (2.5)); For our purposes, it suffices to set α = 3/2;
this will be always assumed below.

Definition 2.1. A cube ΛL(u) is called (E,m)-non-singular ((E,m)-NS, in short) if

for any v ∈ B[L1/α](u) and y ∈ Λ
out
L (u) ∩ ZNd the norm of the operator G

ΛL(u)
v,y (E)

satisfies
∥

∥

∥
GΛL(u)

v,y (E)
∥

∥

∥

L2(ΛL(u))
≤ e−mL. (2.4)

Otherwise, it is called (E,m)-singular ((E,m)-S).

We will work with a sequence of “scales” Lk (positive integers) defined recursively
by

Lk :=
[

Lα
k−1

]

+ 1, where α =
3

2
. (2.5)

The sequence Lk is determined by an initial scale L0 ≥ 2. Most of arguments in
Sect. 3 require L0 to be large enough, to fulfill some specific numerical inequalities. In
addition, we also assume that L0 ≥ r1 (defined in (1.12)) in order to simplify some
cumbersome technicalities.

We will use a well-known property of generalized eigenfunctions of the operator H
which can be found, e.g., in [9, Lemma 3.3.2]:
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Lemma 2.2. For every bounded set I0 ⊂ R there exists a constant C(0) = C(0)(I0)

such that, for any cube ΛL(u) with L > 7, any point w ∈ BL(u) with C(w) ⊆ Λint
L (u)

and every generalized eigenfunction Ψ of H with eigenvalue E ∈ I0, the norm of the

vector 1C(w) Ψ satisfies

‖ 1C(w) Ψ‖ ≤ C(0) ‖ 1Λout
L (u) GΛL(u)(E) 1C(w) ‖ · ‖ 1Λout

L (u) Ψ‖. (2.6)

(From now on we omit the subscript indicating the L2-space where a given norm is
considered, as this will be clear in the context of the argument.)

The following geometric notion is used in the forthcoming analysis.

Definition 2.3. (see [4]). Let J be a non-empty subset of {1, . . . , N}.
We say that the cube ΛL(y) is J -separable from the cube ΛL(x) if

(

⋃

j∈J

ΠjΛL+r1(y)

)

⋂

(

⋃

i6∈J

ΠiΛL+r1(y)
⋃

ΠΛL+r1(x)

)

= ∅ (2.7)

where ΠΛL+r1(x) = ∪N
j=1ΠjΛL+r1(x).

A pair of cubes ΛL(x), ΛL(y) is separable if, for some J ⊆ {1, . . . , N}, either ΛL(y)
is J -separable from ΛL(x), or ΛL(x) is J -separable from ΛL(y).

We will use the following easy assertion (see [4]):

Lemma 2.4. For any L > 1 and x ∈ RNd, there exists a collection of N -particle

cubes Λ2N(L+r1)(x
(l)), l = 1, . . . ,K(x, N), with K(x, N) ≤ NN , such that if a vector

y ∈ ZNd satisfies 2

y /∈

K(x,N)
⋃

ℓ=1

Λ2N(L+r1)(x
(l)), (2.8)

then two cubes ΛL(x) and ΛL(y) with dist (ΛL(x),ΛL(y)) > 2N(L+r1) are separable.

In particular, assuming L ≥ r1, a pair of cubes ΛL(x), ΛL(y) is separable if

|y| > |x|+ (4N + 2)L. (2.9)

Since N ≥ 2, one can replace the condition (2.9) by

|y| > |x|+ 5NL. (2.10)

In particular, two cubes of the formΛL(0), ΛL(y) with |y| > 5NL are always separable.
The main outcome of [4] is summarized in the following Theorem 2.5:

Theorem 2.5 (see [4]). For any large enough p > 0 there exist m∗(p) > 0, η∗(p) > 0,
and L∗

0(p) > 0 such that

(i) if L0 ≥ L∗
0(p) then for all k ≥ 0 and for any pair of separable cubes ΛLk

(x),
ΛLk

(y) with x,y ∈ ZNd,

P
{

∃E ∈ [E0, E0 + η∗] : ΛLk
(x) and ΛLk

(y) are (E,m)-S
}

≤ L−2p
k , (2.11)

(ii) with probability one, the spectrum of H in the interval I = [E0, E0 + η∗(p)] is
pure point, and the eigenfunctions Φn of H with eigenvalues En ∈ I satisfy

‖Φn 1C(w) ‖ ≤ Cn(ω)e
−m∗(p)|w|, w ∈ ZNd, Cn(ω) < ∞. (2.12)

2The constant r1 is defined in (1.12).
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3. Derivation of dynamical localization from MSA estimates

In this section we prove a statement that is slightly more general than Theorem 1.1.
Namely, given Q > 0, the interval I = I(η) = [E0, E0 + η] with η = η(Q), and a
compact subset K ⊂ Rd, there exists a constant C(Q,K) ∈ (0,∞) such that for any
bounded measurable function ξ : R → C with supp ξ ⊂ I(η),

E
[

‖XQ ξ(H(ω))1K ‖
]

< C(Q,K) ‖ξ‖∞ < ∞. (3.1)

Moreover, Q > 0 can be made arbitrarily large, by choosing η = η(Q) > 0 sufficiently
small. Theorem 1.1 follows from (3.1) applied to the functions ξ(s) = e−its 1I(η)(s),
parametrised by t ∈ R.

Throughout the section, we assume that the parameter p from (2.11) satisfies

2p > 3Ndα+ αQ. (3.2)

More precisely, given Q > 0 and p satisfying (3.2), we work with

η = η(Q) ∈ (0, η∗(p)) and m = m∗(p) > 0, (3.3)

where η∗(p) and m∗(p) are specified in Theorem 2.5. Further, for p satisfying (3.2) we
introduce the event Ω1 = Ω1(p) ⊆ Ω of probability P(Ω1) = 1, defined by

Ω1 =
{

ω ∈ Ω : the spectrum of H(ω) in [E0, E0 + η∗(p)] is pure point
}

. (3.4)

3.1. Probability of “bad samples”. Given j ≥ 1, consider the event

Sj = {ω : there exists E ∈ I and y, z ∈ B5NLj+1
(0) such that

ΛLj(y),ΛLj (z) are separable and (m,E)-S}.

Further, for k ≥ 1 we denote

Ωbad
k =

⋃

j≥k

Sj . (3.5)

Lemma 3.1. There exists a constant c1 ∈ (0,∞) such that for all k ≥ 1,

P
{

Ωbad
k

}

≤ c1L
−(2p−2Ndα)
k .

Proof. The number of separable pairs ΛLj(x), ΛLj (y) with x,y ∈ B5NLj+1
(0) is

bounded by (10NLj+1 + 1)2 < C(N)L2
j+1. We can apply the bound (2.11) and write

P {Sj} ≤ C(N)L2Nd
j+1L

−2p
j ≤ L−2p+2Ndα

j .

Therefore,

Ωbad
k ≤ L−2p+2Ndα

k

∑

i≥0

(

Lk+i

Lk

)−2p+2Ndα

.

For 2p > 2Ndα and L0 ≥ 2 the claim follows from the inequality

Lk+i

Lk
≥
[

Lαi−1
k

]

. �
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3.2. Centers of localization. Denote by Φn = Φn(ω) the normalized eigenfunctions
of H(ω), ω ∈ Ω1, with corresponding eigenvalues En = En(ω) ∈ I. For each n we
define a center of localization for Φn as a point x̂ ∈ Zd such that

‖ 1C(x̂) Φn‖ = max
y∈ZNd

‖ 1C(y) Φn‖. (3.6)

Since ‖Φn‖ = 1, for any given n such centers exist and their number is finite. We will

assume that, for any eigenfunction Φn, the centers of localization x̂n,a, a = 1, . . . , Ĉ(n),
are enumerated in such a way that |x̂n,1| = mina |x̂n,a|.

Lemma 3.2. There exists k0 large enough such that, for all u ∈ ZNd, ω ∈ Ω1 and

k ≥ k0, if x̂n,a ∈ BLk
(u) then the box ΛLk

(u) is (m,En)-S.

Proof. Assume otherwise. Then from (2.6) it follows that

‖ 1C(x̂n,a) Φn‖ ≤ C′e−mLk‖ 1Λout
Lk

(u) Φn‖.

Since the number of cells in Λ
out
Lk

(u) is bounded by LNd
k , we conclude that

‖ 1C(x̂n,a) Φn‖ ≤ C′e−mLkLNd
k · max

y∈Bout
Lk

(u)
‖ 1C(y) Φn‖.

If k0 is large enough so that C′e−mLkLNd
k < 1 for k ≥ k0, the above inequality contra-

dicts the definition of x̂n,a as center of localization. �

3.3. Annular regions. From now on we work with the integer k0 from Lemma 3.2.
Given k > k0, set:

Ωgood
k = Ω1 \ Ω

bad
k . (3.7)

Assume that ω ∈ Ωgood
k . Let x̂n,a, x̂n,b be two centers of localization for the same

eigenfunction Φn. It follows from the definition of the event Ωgood
k that the cubes

ΛLi(x̂n,a) and ΛLi(x̂n,b) with i ≥ k − 1 cannot be separable, since they must be
(m,E)-S. Further, by Lemma 2.4, if L0 ≥ r1 then any cube of the form ΛLk

(y) with
|y| > |x̂n,1| + 5NLk is separable from ΛLk

(x̂n,1); this also applies, of course, to any
localization center y = x̂n,a with a > 1, provided that such centers exist for a given n.

Since ω ∈ Ωgood
k , for any eigenfunction Φn there is no center of localization x̂n,a either

outside the cube Λ|x̂n,1|+5NLk
(0) or inside Λ|x̂n,1|(0) (since |x̂n,1| = mina |x̂n,a|). In

other words, within the event Ωgood
k , all centers of localization x̂n,a with a fixed value

of n are located in the annulus

Λ|x̂n,1|+5NLk
(0) \Λ|x̂n,1|(0)

of width 5NLk and of inner radius |x̂n,1|. This explains why, for our purposes, an
eigenfunction Φn can be effectively “labeled” by a single localization center.

In other words, although in this paper we cannot rule out the possibility of exis-
tence of multiple centers of localization at arbitrarily large distances (depending on Φn

through |x̂n,1|), such centers do not contribute to a “radial” quantum transport – away
from the origin 0 – which might have lead to dynamical delocalization.

Lemma 3.3. Given k > k0, there exists j0 ≥ k large enough such that if j ≥ j0,

ω ∈ Ωgood
k and x̂n,1 ∈ BLj(0) then

∥

∥

∥

(

1− 1ΛLj+2
(0)

)

Φn

∥

∥

∥
≤

1

4
.
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Proof. By Lemma 2.4 (see also (2.10)),

∀ i ≥ j + 1, ∀w ∈ ZNd \B5NLi(0), the cubes ΛLi(w) and ΛLi(0) are separable.

In addition, we take j ≥ k, as suggested in the lemma.
Next, we divide the complement RNd \Λ5NLj+2

(0) into annular regions

Mi(0) := Λ5NLi+1
(0) \Λ5NLi(0), i ≥ j + 2, (3.8)

and write
∥

∥

∥

(

1− 1ΛLj+2
(0)

)

Φn

∥

∥

∥

2

=
∑

i≥j+2

‖ 1Mi(0) Φn‖
2 ≤

∑

i≥j+2

∑

w∈Mi(0)

‖ 1C(w) Φn‖
2.

Furthermore, x̂n,1 ∈ BLj(0) ⊂ BLi−1
(0), so that by Lemma 3.2, the cube ΛLi(0)

must be (m,En)-S. Therefore, by the definition of the event Ωgood
k , the cube ΛLi(w) is

(m,En)-NS. Applying Lemma 2.2 to the cube ΛLi(w) and to the cell C(w), we obtain

‖ 1C(w) Φn‖
2 ≤ e−2mLi .

Since the volume
∣

∣Mi(0)
∣

∣ of the annular region Mi(0) grows polynomially in Li, the
assertion of Lemma 3.3 follows. �

3.4. Bounds on concentration of localization centers.

Lemma 3.4. There exists a constant c2 ∈ (0,∞) such that for ω ∈ Ωbad
k , j ≥ k,

card
{

n : x̂n,1 ∈ BLj+1
(0)
}

≤ c2 L
αNd
j+1 . (3.9)

Proof. The left-hand-side of (3.9) is nondecreasing in j, so we can restrict ourselves to
the case j ≥ j0. First, observe that, with ΛLj+2

= ΛLj+2
(0)

∑

n: x̂n,1∈BLj+1
(0)

(

1ΛLj+2
PI 1ΛLj+2

Φn,Φn

)

≤ tr
(

1ΛLj+2
PI

)

. (3.10)

Each term in the above sum is not less than 1/2. Indeed,
(

1ΛLj+2
PI 1ΛLj+2

Φn,Φn

)

=
(

1ΛLj+2
PIΦn,Φn

)

−
(

1ΛLj+2
PI

(

1− 1ΛLj+2

)

Φn,Φn

)

≥
(

1ΛLj+2
Φn,Φn

)

−
1

4
(using Lemma 3.3) (3.11)

= (Φn,Φn)−
(

(

1− 1ΛLj+2

)

Φn,Φn

)

−
1

4

≥
1

2
. (3.12)

Substituting the lower bounds from (3.11) – (3.12) under the trace in Eqn (3.10), we
get the desired upper bound on the LHS of Eqn (3.9). �

3.5. Bounds for “good” samples of potential.

Lemma 3.5. There exists an integer k1 = k1(L0) such that ∀ k ≥ k1, ω ∈ Ωgood
k+1 and

x from the annular region Mk+1 defined in (3.8),
∥

∥

∥
1ΛLk

(x) PI ξ(H) 1ΛLk
(0)

∥

∥

∥
≤ e−mLk/2‖ξ‖∞. (3.13)
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Proof. It suffices to prove (3.13) in the particular case where ‖ξ‖∞ ≤ 1, which we
assume below. First, we bound the LHS of (3.13) as follows:

‖ 1ΛLk
(x) PI ξ(H) 1ΛLk

(0) ‖ ≤
∑

En∈I

|ξ(En)| ‖ 1ΛLk
(x)Φn‖ ‖ 1ΛLk

(0) Φn‖

≤
∑

En∈I

‖ 1ΛLk
(x) Φn‖ ‖ 1ΛLk

(0)Φn‖ (3.14)

since ‖η‖∞ ≤ 1. Now divide the sum according to where x̂n,1 are located and write
∑

En∈I

‖ 1ΛLk
(x) Φn‖ ‖ 1ΛLk

(0) Φn‖ =
∑

En∈I
x̂n,1∈Λ5NLk+1

(0)

‖ 1ΛLk
(x) Φn‖ ‖ 1ΛLk

(0)Φn‖

+
∞
∑

j=k+1

∑

En∈I
x̂n,1∈Mj(0)

‖ 1ΛLk
(x) Φn‖ ‖ 1ΛLk

(0)Φn‖,

with Mi(0) defined in (3.8). Since x ∈ Mk+1(0), we have BLk
(x) ∩ BLk

(0) = ∅.
Then, by Lemma 2.4, the two cubes BLk

(x) and BLk
(0) are separable. In turn, this

implies that one of these cubes is (m,En)-NS. Therefore, by Lemma 3.4,
∑

En∈I
x̂n,1∈ΛLk+1

(0)

‖ 1ΛLk
(x)Φn‖ ‖ 1ΛLk

(0) Φn‖ ≤ c2 C
′ LαNd

k+1 e−mLk .

Furthermore, for k > k0 large enough,

∑

En∈I
x̂n,1∈ΛLk+1

(0)

‖ 1ΛLk
(x)Φn‖ ‖ 1ΛLk

(0) Φn‖ ≤
1

2
e−mLk/2. (3.15)

For any j ≥ k + 2 and x̂n,1 ∈ Mj(0), by Lemma 3.2, the cube BLj (x̂n,1) must be
(m,En)-S, so that BLj (0) has to be (m,En)-NS:

‖ 1ΛLk
(0) Φn‖ ≤ ‖ 1ΛLj

(0) Φn‖ ≤ C′e−mLj .

Applying again Lemma 3.4, we see that, if k ≥ k1, then

∞
∑

j=k+1

∑

En∈I
x̂n,1∈Mj(0)

‖ 1ΛLk
(x) Φn‖ ‖ 1ΛLk

(0)Φn‖ ≤ C

∞
∑

j=k+2

e−mLjLαNd
j

≤
1

2
e−mLk/2.

Combining this estimate with (3.14) and (3.15), the assertion of Lemma 3.5 follows. �

3.6. Bounds for “bad” samples of potential.

Lemma 3.6. Let k1 be as in Lemma 3.5 and assume that k ≥ k1 and x ∈ Mk+1(0).
We have:

E
[∥

∥

∥
1ΛLk

(x) PI ξ(H) 1ΛLk
(0)

∥

∥

∥

]

≤ ‖ξ‖∞

(

CL−2p+2Ndα
k + e−mLk/2

)

.
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Proof. We again assume ‖ξ‖∞ ≤ 1. For ω ∈ Ωbad
k we can use Sect. 3.1 while for

ω ∈ Ωgood
k we can use Sect. 3.5. More precisely, the above expectation is bounded by

P
{

Ωbad
k

}

+ e−mLk/2 P
{

Ωgood
k

}

≤ CL−2p+2Ndα
k + e−mLk/2. �

3.7. Conclusion. For a compact subset K ⊂ RNd we find an integer k ≥ k1 such that
K ⊂ ΛLk

(0). Then, with the annular regions Mj(0),

E
[

‖XQ PI ξ(H(ω)) 1K ‖
]

≤ LQ
k +

∑

j≥k+1

E
[

‖XQ 1Mj(0) PI ξ(H) 1K ‖
]

≤ LQ
k +

∑

j≥k+1

LQ
j+1

(

∑

w∈Mj(0)

E
[

‖ 1ΛLk
(w) PI ξ(H) 1ΛLk

(0) ‖
]

)

≤ LQ
k +

∑

j≥k+1

LαQ
j LNdα

j

(

L−2p+2Ndα
j + e−mLj/2

)

< ∞,

since 2p > 3Ndα+ αQ by assumption (3.2), and Lj ∼
[

Lαj

0

]

grow fast enough.

This completes the proof of dynamical localization. �
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