Lent Term 2001 Richard Weber
Time Series — Examples Sheet

This is the examples sheet for the M. Phil. course in Time Series. A copy can be
found at: http://www.statslab.cam.ac.uk/ rrwl/timeseries/

Throughout, unless otherwise stated, the sequence {e;} is white noise, variance o*.



1. Find the Yule-Walker equations for the AR(2) process
X = %thl + %Xtﬁ + € .

Hence show that it has autocorrelation function

k k
=R RN ke

[ The Yule-Walker equations are
Pk — %Pk—1 — %Pk—Q =0, k>2

On trying pr = AN, we require A2 — %)\ — % = 0. This has roots % and —%, SO

p=AG)"+B (5"

where pp = A+ B = 1. We also require p; = % + %,01. Hence p; = %, and thus we
require %A — %B = % These give A = %, B = 2—51 ]



2. Let X; = Acos(2t+U), where A is an arbitrary constant, €2 and U are independent
random variables, €2 has distribution function F' over [0, 7], and U is uniform over
[0,27]. Find the autocorrelation function and spectral density function of {X;}.
Hence show that, for any positive definite set of covariances {7}, there exists a
process with autocovariances {7} such that every realization is a sine wave.

[Use the following definition: {7;} are positive definite if there exists a nondecreasing
function F' such that v, = [ e*dF(w).]

[

2m
E[X, | Q) =& / Acos(Q +u) du = 5= Asin(Qt + w))2 =0
E[X: X = %/ / Acos(Qt + s) + u) A cos(Q + u) du dF(2)
cos(§2s)dF(2)

%/ A2 ZQS+€—ZQS] dF(Q)

= 1A° / " dF ()

2[cos(Q(2t + 8) + 2u) + cos(Qs)] du dF(Q)

5=

N[

where we define over the range [—n, 7] the nondecreasing function F', by F(—Q) =
F(r) — F(Q) and F(Q) = F(Q) + F(m) — 2F(0), Q € [0, 7. ]



3. Find the spectral density function of the AR(2) process
Xt =01 Xeo1+ 02Xy 0+ 6

What conditions on (¢, ¢2) are required for this process to be an indeterministic
second order stationary? Sketch in the (¢1, ¢2) plane the stationary region.

[ We have
i w2
fX(W) ‘1 . ¢1ezw . ¢2622w‘ — 0'2/7T

Hence

0_2

R [1+ @3 + @3 + 2(—¢1 + P1¢2) cos(w) — 2 cos(2w)]

The Yule-Walker equations have solution of the form p; = A)\’f + B)\IQc where A, Ao
are roots of

fx(w)

gA) = A2 — A — ¢ =0,
The roots are A = [gbl + /% + 4¢2} /2. To be indeterministic second order station-
ary these roots must have modulus less that 1. If ¢? +4¢9 > 0 then the roots are real
and lie in the range [—1, 1] if and only if g(—1) > 0 and g(1) > 0, i.e., ¢; + ¢ < 1,
$1 — ¢ > —1. If ¢F + 4¢y < 0 then the roots are complex and their product must be

less than 1, i.e., ¢ > —1. The union of these two regions, corresponding to possible
(¢1, Po) for real and imaginary roots, is simply the triangular region

O1+ P <1, 1 — o >—1, g >—1.



4. For a stationary process define the covariance generating function

g(z) = Z e, |z < 1.

k=—00

Suppose {X;} satisfies X = C'(B)e, that is, it has the Wold representation
Xi = Z Cr€t—r,
r=0

where {c, } are constants satisfying > " ¢? < oo and C(z) = Y 2, ¢,2". Show that

g(z) = C()C(z Ho?.

Explain how this can be used to derive autocovariances for the ARMA (p, ¢) model.

Hence show that for ARMA(1, 1), p3 = p1p3. How might this fact be useful?

[ We have
o0 o0
Y =EX; Xy =E E Cré€t—r E Cs€ttk—s
r=0 s=0
o0
_ 22
=0 CrCk+r
r=0
Now

C(2)C(z 1) = Z ez Z csz°

r=0 s=0

The coefficients of z¥ and 27" are clearly
CkCo + Ck41C1 + Cry2C3 + - -

from which the result follows.

For the ARMA(p, ¢) model ¢(B)X = 0(B)e or

_om),
* =5

where ¢ and 6 are polynomials of degrees p and ¢ in z. Hence

C(z) = %



and ~; can be found as the coefficient of z* in the power series expansion of

020(2)0(1/2)/9(2)p(1/2). For ARMA(1,1) this is
(14 02)1+0z 1 +pz+ ¢+ YL+ pz P+ %22 +--1)
from which we have

= (9(1+¢2+¢4+~-)

+<¢+¢3+¢5+---><1+92>+e<¢2+¢4+¢6+~->>02

0+ (1 +6%) +¢%0

and similarly

0+ o1+ 6%) +¢2002 20+ (1 +6?) +¢2902
1 — ¢2 1 — ¢2
Hence p3 = p1ps. This might be used as a diagnostic to test the appropriateness of

an ARMA(1,1) model, by reference to the correlogram, where we would expect to
see 13 = 11713, |

Yo = ¢

V3= ¢



5. Consider the ARMA(2,1) process defined as
Xi=Xi 1+ e Xp ot + 0161,
Show that the coefficients of the Wold representation satisfy the difference equation
Ck = Q1Ck-1 + PaCr—2, k=2,

and hence that
cp = Az 4+ Bz "

where 21 and 2o are zeros of ¢(z) = 1 — ¢12 — ¢92%, and A and B are constants.
Explain how in principle one could find A and B.

[ The recurrence is produced by substituting X; = Z;ﬁo cr€_p into the defining
equation, and similarly for X; ; and X; o, multiplying by ¢_5, £ > 2, and taking
expected value.

The general solution to such a second order linear recurrence relation is of the form
given and we find A and B by noting that

Xi =1 (1 Xp—o+ 02 Xi35+ €1 + O1€4-2) + P2 X0 + € + 01611

so that ¢g =1 and ¢; = 01+ ¢;. Hence A+ B =1 and Azl_1 —I—Bz;1 = 01+ ¢1. These
can be solved for A and B. |



6. Suppose
Yi =X + &, Xy =aXi 1+,

where {¢;} and {n;} are independent white noise sequences with common variance
o2. Show that the spectral density function of {Y;} is

{2—2acosw+oz2}

52
frlw)=— 1 —2acosw + a2

v

For what values of p, d, ¢ is the autocovariance function of {Y;} identical to that of
an ARIMA((p, d, q) process?

[

1

() = Fr(e) + o) = oo h(@) + 1)

_o? 1 T 0 [2—2acosw+

1 | 1—2acosw+ a? 71 |1 —-2acosw+a? ]’
We recognise this as the spectral density of an ARMA(1, 1) model. E.g., Z;—aZ; | =
& — 01, choosing 6 and O'g such that

(1 =20 cosw + 0%)07 = (07 /m)(2 — 20 cosw + a”)

I.e., choosing @ such that (1 +60%)/0 = (2+ a?)/a. ]



7. Suppose Xi,..., X are values of a time series. Prove that

where 43 is the usual estimator of the kth order autocovariance,

o= D0 (K= D)Xk — X)),

t=k+1

Hint: Consider 0 = 3./ (X; — X).
Hence deduce that not all ordinates of the correlogram can have the same sign.

Suppose f(-) is the spectral density and I(-) the periodogram. Suppose f is contin-
uous and f(0) # 0. Does EI(27/T) — f(0) as T'— o0?

[ The results follow directly from

1 [« 2
t=1
Note that formally,
T-1
I0)=4%+2) A% =0.
k=1

so it might appear that EI(2x/T) — I1(0) # f(0) as T' — oo. However, this would
be mistaken. It is a theorem that as T — oo, I(w;) ~ f(w;)x3/2. So for large T,
EI(27/T) ~ f(0). ]



8. Suppose I(-) is the periodogram of €y, ..., ep, where these are i.i.d. N(0,1) and
T =2m+ 1. Let wj, wy be two distinct Fourier frequencies, Show that /(w;) and
I(wy) are independent random variables. What are their distributions?

If it is suspected that {e} departs from white noise because of the presence of a
single harmonic component at some unknown frequency w a natural test statistic is
the maximum periodogram ordinate

T = max I(w;).
Jj=1,...m

Show that under the hypothesis that {¢;} is white noise

P(T>t)=1-{l—exp(-nt/o®)}" .

[ The independence of I(w;) and I(wy) was proved in lectures. Their distributions
are (02/2m)x3, which is equivalent to the exponential distribution with mean o2 /7.
Hence the probability that the maximum is less than ¢ is the probability that all are,
le.,

P(T <t)={1—exp(-nt/o?)}" .

10



9. Complete this sketch of the fast Fourier transform. From data X, ..., Xp, with
T =2 — 1, we want to compute the 2’~1 ordinates of the periodogram

T
Z X, J2M
t=0

This requires order 7" multiplications for each j and so order T2 multiplications in

2

oM-1

1 )
[(wj):w—T , J=1,...,

all. However,

Z X, ezt27rj/2M Z Xteit27rj/2M + Z X, ezt27rj/2M

t=0,1,...2M—1 t=0,2,...2M 2 1,3,...,2M 1

M M
_ E : X2t612t27rj/2 + 2 ’ X2t+1€ i(2t+1)2m5 /2

t=0,1,...2M~-1—1 t=0,1,....2M-1-1

o i jgM—1 0. joM o /gM—1
_ E : X2t62t27rj/2 _|_6227Tj/2 2 ’ X2t+1€zt27rj/2 .

t=0,1,...2M~-1—1 t=0,1,....2M-1-1

Note that the value of either sum on the right hand side at j = k is the complex
conjugate of its value at j = (27! — k); so these sums need only be computed for
j=1,...,272 Thus we have two sums, each of which is similar to the sum on
the left hand side, but for a problem half as large. Suppose the computational effort
required to work out each right hand side sum (for all 2/~2 values of j) is ©(M —1).
The sum on the left hand side is obtained (for all 2! values of j) by combining
the right hand sums, with further computational effort of order 2¥~!. Explain

O(M) =a2" 1+ 20(M —1).

Hence deduce that I(-) can be computed (by the FFT) in time T log, T

[ The derivation of the recurrence for ©(M) should be obvious. We have O(1) = 1,
and hence O(M) = aM2 = O(T log, T). |
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10. Suppose we have the ARMA(1, 1) process
Xi=0Xi 1+ 6+ 061,

with |[¢p] < 1, [0] < 1, ¢ + 0 # 0, observed up to time 7', and we want to calculate
k-step ahead forecasts X7, k > 1.

Derive a recursive formula to calculate )A(Tvk for k=1 and k = 2.

[

XT,l = X1 + éry1 + Oér = X7 + 0( X1 — XTfl,l)
Xro = ¢Xr1 + éryo + 0ér1 = ¢ X1

12



11. Consider the stationary scalar-valued process {X;} generated by the moving
average, X; = ¢, — 0e;_1.

Determine the linear least-square predictor of X;, in terms of X;_1, X;_o, ... .

[ We can directly apply our results to give

thl,l = —0é 4
= —0[X;1 — Xt—2,1]
= —0X,_1 + 0X,_2,
= —0X, 1 +0]—0X,_+ 60X, 31]
= 00X, 1 —0’X) 0 — 03X, 5 — -

Alternatively, take the linear predictor as Xt,l,l = Z;ﬁl a, X;—, and seek to minimize
E[X; — X;_11]*. We have

E[Xt - Xt—l,l]Q =K |e —O¢_1 — Z ar(et—r - 9€t—r—1)
r=1
= 0'2 [1 + (9+a1)2 + (9a1 — a2)2+ ((9@2 —CL3)2 +]

Note that all terms, but the first, are minimized to 0 by taking a, = —6". |
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12. Consider the ARIMA(0, 2,2) model
(I — B)’X = (I — 0.81B + 0.38B%)e
where {¢;} is white noise with variance 1.

(a) With data up to time 7', calculate the k-step ahead optimal forecast of XT,k: for
all £ > 1. By giving a general formula relating X7, & > 3, to X¢r; and Xgpo,
determine the curve on which all these forecasts lie.

[ The model is
X =2X, 1 — X4 o+6 —081le_1+0.38¢_9.

Hence

Xpy = 2Xp — Xg_1 4 épq — 0.81ép + 0.3867_,

= 2X7 — X7_1 — 0.81[ X7 — Xp_11] + 0.38[X7_1 — X7 o1]

and similarly

XT,2 = QXT,l — X7+ 0.38[ X — XT—l,l]

Xrg=2Xrp 1 — Xrgpo, k>3,
This implies that the forecasts lie on a straight line. |

(b) Suppose now that 7' = 95. Calculate numerically the forecasts X957k, k=1,2,3
and their mean squared prediction errors when the last five observations are Xg; =
15.1, Xgo = 15.8, Xg3 = 15.9, X9y = 15.2, Xg5 = 15.9.

[You will need estimates for €9y and eg5. Start by assuming €9 = €99 = 0, then
calculate €93 = €93 = X93 — Xo2.1, and so on, until €94 and ey are obtained.|

[ Using the above formulae we obtain

t Xy X Xi2 Xi3 €t
91 15.1 0.000 0.000
92 15.8 16.500 17.200 17.900  0.000
93 15.9 16.486 16.844 17.202 —0.600
94 15.2 15.314 14.939 14.564 —1.286
95 15.9 15.636 15.596 15.555  0.586

Now
o) o)
XT+kz = § Cr€T+k—r and XT,k = § Cr€T+k—r -
r=0 r=k

14



Thus

where 02 = 1. Now
Xr=e€epr—+ (2 — 0.81)€Tf1 + (-2(081) -1+ 0.38)€Tf2 + -

Hence the mean square errors of X95,1, X95,2, X95,3 are respectively 1, 1.416, 5.018. ]

15



13. Consider the state space model,

Xt =S¢ + vy,
St = Si—1 + wy,

where X; and S; are both scalars, X; is observed, S; is unobserved, and {v;}, {w,} are
Gaussian white noise sequences with variances V' and W respectively. Write down
the Kalman filtering equations for .S; and F;.

Show that P, = P (independently of ¢) if and only if P> + PW = WV, and show

~

that in this case the Kalman filter for S; is equivalent to exponential smoothing.

[ This is the same as Section 8.4 of the notes. F; =1, G, =1, V; =V, W, = W.
Ri= Pyt W. Soif (Sy1 | X1, .0, Xo 1) ~ N (S0, Py ) then ()] X5, X)) ~
N (S’t, Pt), where

Sy =51+ Ry(V + R) (X, — gt—l)

Ry VR, V(P11 + W)

P =R, — — — .
MV AR COVAR, VAP AW

P, is constant if P, = P, where P is the positive root of P> + WP — WV = 0.

In this case S; behaves like S; = (1 —a) 3%, @ X;_,, where a = V/(V + W + P).
This is simple exponential smoothing. |
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