
Lent Term 2001 Richard Weber

Time Series — Examples Sheet

This is the examples sheet for the M. Phil. course in Time Series. A copy can be

found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/

Throughout, unless otherwise stated, the sequence {ǫt} is white noise, variance σ2.
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1. Find the Yule-Walker equations for the AR(2) process

Xt = 1
3Xt−1 + 2

9Xt−2 + ǫt .

Hence show that it has autocorrelation function

ρk = 16
21

(

2
3

)|k|
+ 5

21

(

−1
3

)|k|
, k ∈ Z .

[ The Yule-Walker equations are

ρk −
1
3ρk−1 −

2
9ρk−2 = 0 , k ≥ 2.

On trying ρk = Aλk, we require λ2 − 1
3λ − 2

9 = 0. This has roots 2
3 and −1

3, so

ρk = A
(

2
3

)|k|
+ B

(

−1
3

)|k|
,

where ρ0 = A + B = 1. We also require ρ1 = 1
3 + 2

9ρ1. Hence ρ1 = 3
7 , and thus we

require 2
3A − 1

3B = 3
7. These give A = 16

21, B = 5
21. ]

2



2. Let Xt = A cos(Ωt+U), where A is an arbitrary constant, Ω and U are independent
random variables, Ω has distribution function F over [0, π], and U is uniform over

[0, 2π]. Find the autocorrelation function and spectral density function of {Xt}.
Hence show that, for any positive definite set of covariances {γk}, there exists a

process with autocovariances {γk} such that every realization is a sine wave.

[Use the following definition: {γk} are positive definite if there exists a nondecreasing

function F such that γk =
∫ π

−π eikωdF (ω).]

[

E[Xt | Ω] = 1
2π

∫ 2π

0

A cos(Ωt + u) du = 1
2π

A sin(Ωt + u)|2π
0 = 0

E[Xt+sXt] = 1
2π

∫ π

0

∫ 2π

0

A cos(Ω(t + s) + u)A cos(Ωt + u) du dF (Ω)

= 1
4π

∫ π

0

∫ 2π

0

A2[cos(Ω(2t + s) + 2u) + cos(Ωs)] du dF (Ω)

= 1
2

∫ π

0

A2 cos(Ωs)dF (Ω)

= 1
4

∫ π

0

A2
[

eiΩs + e−iΩs
]

dF (Ω)

= 1
4A

2

∫ π

−π

eiΩsdF̄ (Ω)

where we define over the range [−π, π] the nondecreasing function F̄ , by F̄ (−Ω) =
F (π) − F (Ω) and F̄ (Ω) = F (Ω) + F (π) − 2F (0), Ω ∈ [0, π]. ]
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3. Find the spectral density function of the AR(2) process

Xt = φ1Xt−1 + φ2Xt−2 + ǫt .

What conditions on (φ1, φ2) are required for this process to be an indeterministic

second order stationary? Sketch in the (φ1, φ2) plane the stationary region.

[ We have

fX(ω)
∣

∣1 − φ1e
iω − φ2e

2iω
∣

∣

2
= σ2/π

Hence

fX(ω) =
σ2

π [1 + φ2
1 + φ2

2 + 2(−φ1 + φ1φ2) cos(ω) − 2φ2 cos(2ω)]

The Yule-Walker equations have solution of the form ρk = Aλk
1 + Bλk

2 where λ1, λ2

are roots of

g(λ) = λ2 − φ1λ − φ2 = 0.

The roots are λ =
[

φ1 ±
√

φ2
1 + 4φ2

]

/2. To be indeterministic second order station-

ary these roots must have modulus less that 1. If φ2
1 +4φ2 > 0 then the roots are real

and lie in the range [−1, 1] if and only if g(−1) > 0 and g(1) > 0, i.e., φ1 + φ2 < 1,
φ1 − φ2 > −1. If φ2

1 + 4φ2 < 0 then the roots are complex and their product must be

less than 1, i.e., φ2 > −1. The union of these two regions, corresponding to possible
(φ1, φ2) for real and imaginary roots, is simply the triangular region

φ1 + φ2 < 1, φ1 − φ2 > −1, φ2 ≥ −1 .

]
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4. For a stationary process define the covariance generating function

g(z) =

∞
∑

k=−∞

γkz
k, |z| < 1 .

Suppose {Xt} satisfies X = C(B)ǫ, that is, it has the Wold representation

Xt =
∞

∑

r=0

crǫt−r ,

where {cr} are constants satisfying
∑∞

0 c2
r < ∞ and C(z) =

∑∞
r=0 crz

r. Show that

g(z) = C(z)C(z−1)σ2 .

Explain how this can be used to derive autocovariances for the ARMA(p, q) model.

Hence show that for ARMA(1, 1), ρ2
2 = ρ1ρ3. How might this fact be useful?

[ We have

γk = EXtXt+k = E

[

∞
∑

r=0

crǫt−r

∞
∑

s=0

csǫt+k−s

]

= σ2
∞

∑

r=0

crck+r

Now

C(z)C(z−1) =
∞

∑

r=0

crz
r

∞
∑

s=0

csz
−s

The coefficients of zk and z−k are clearly

ckc0 + ck+1c1 + ck+2c3 + · · ·

from which the result follows.

For the ARMA(p, q) model φ(B)X = θ(B)ǫ or

X =
θ(B)

φ(B)
ǫ

where φ and θ are polynomials of degrees p and q in z. Hence

C(z) =
θ(z)

φ(z)
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and γk can be found as the coefficient of zk in the power series expansion of

σ2θ(z)θ(1/z)/φ(z)φ(1/z). For ARMA(1, 1) this is

σ2(1 + θz)(1 + θz−1)(1 + φz + φ2z2 + · · · )(1 + φz−1 + φ2z−2 + · · · )

from which we have

γ1 =

(

θ(1 + φ2 + φ4 + · · · )

+ (φ + φ3 + φ5 + · · · )(1 + θ2) + θ(φ2 + φ4 + φ6 + · · · )

)

σ2

=
θ + φ(1 + θ2) + φ2θ

1 − φ2
σ2

and similarly

γ2 = φ
θ + φ(1 + θ2) + φ2θ

1 − φ2
σ2 γ3 = φ2θ + φ(1 + θ2) + φ2θ

1 − φ2
σ2

Hence ρ2
2 = ρ1ρ3. This might be used as a diagnostic to test the appropriateness of

an ARMA(1, 1) model, by reference to the correlogram, where we would expect to

see r2
2 = r1r3. ]

6



5. Consider the ARMA(2, 1) process defined as

Xt = φ1Xt−1 + φ2Xt−2 + ǫt + θ1ǫt−1 .

Show that the coefficients of the Wold representation satisfy the difference equation

ck = φ1ck−1 + φ2ck−2, k ≥ 2 ,

and hence that

ck = Az−k
1 + Bz−k

2 ,

where z1 and z2 are zeros of φ(z) = 1 − φ1z − φ2z
2, and A and B are constants.

Explain how in principle one could find A and B.

[ The recurrence is produced by substituting Xt =
∑∞

r=0 crǫt−r into the defining
equation, and similarly for Xt−1 and Xt−2, multiplying by ǫt−k, k ≥ 2, and taking

expected value.

The general solution to such a second order linear recurrence relation is of the form

given and we find A and B by noting that

Xt = φ1 (φ1Xt−2 + φ2Xt−3 + ǫt−1 + θ1ǫt−2) + φ2Xt−2 + ǫt + θ1ǫt−1

so that c0 = 1 and c1 = θ1 +φ1. Hence A+B = 1 and Az−1
1 +Bz−1

2 = θ1 +φ1. These
can be solved for A and B. ]
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6. Suppose
Yt = Xt + ǫt, Xt = αXt−1 + ηt ,

where {ǫt} and {ηt} are independent white noise sequences with common variance
σ2. Show that the spectral density function of {Yt} is

fY (ω) =
σ2

π

{

2 − 2α cos ω + α2

1 − 2α cos ω + α2

}

.

For what values of p, d, q is the autocovariance function of {Yt} identical to that of

an ARIMA(p, d, q) process?

[

fY (ω) = fX(ω) + fǫ(ω) =
1

|1 − αeiω|2
fη(ω) + fǫ(ω)

=
σ2

π

{

1

1 − 2α cosω + α2
+ 1

}

=
σ2

π

{

2 − 2α cos ω + α2

1 − 2α cos ω + α2

}

.

We recognise this as the spectral density of an ARMA(1, 1) model. E.g., Zt−αZt−1 =
ξt − θξt−1, choosing θ and σ2

ξ such that

(1 − 2θ cos ω + θ2)σ2
ξ = (σ2/π)(2 − 2α cos ω + α2)

I.e., choosing θ such that (1 + θ2)/θ = (2 + α2)/α. ]
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7. Suppose X1, . . . , XT are values of a time series. Prove that
{

γ̂0 + 2
T−1
∑

k=1

γ̂k

}

= 0 ,

where γ̂k is the usual estimator of the kth order autocovariance,

γ̂k =
1

T

T
∑

t=k+1

(Xt − X̄)(Xt−k − X̄) .

Hint: Consider 0 =
∑T

t=1(Xt − X̄).

Hence deduce that not all ordinates of the correlogram can have the same sign.

Suppose f(·) is the spectral density and I(·) the periodogram. Suppose f is contin-
uous and f(0) 6= 0. Does EI(2π/T ) → f(0) as T → ∞?

[ The results follow directly from

1

T

[

T
∑

t=1

(Xt − X̄)

]2

= 0 .

Note that formally,

I(0) = γ̂0 + 2
T−1
∑

k=1

γ̂k = 0 .

so it might appear that EI(2π/T ) → I(0) 6= f(0) as T → ∞. However, this would
be mistaken. It is a theorem that as T → ∞, I(ωj) ∼ f(ωj)χ

2
2/2. So for large T ,

EI(2π/T ) ≈ f(0). ]
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8. Suppose I(·) is the periodogram of ǫ1, . . . , ǫT , where these are i.i.d. N(0, 1) and
T = 2m + 1. Let ωj, ωk be two distinct Fourier frequencies, Show that I(ωj) and

I(ωk) are independent random variables. What are their distributions?

If it is suspected that {ǫt} departs from white noise because of the presence of a

single harmonic component at some unknown frequency ω a natural test statistic is
the maximum periodogram ordinate

T = max
j=1,...,m

I(ωj) .

Show that under the hypothesis that {ǫt} is white noise

P (T > t) = 1 −
{

1 − exp
(

−πt/σ2
)}m

.

[ The independence of I(ωj) and I(ωk) was proved in lectures. Their distributions
are (σ2/2π)χ2

2, which is equivalent to the exponential distribution with mean σ2/π.
Hence the probability that the maximum is less than t is the probability that all are,

i.e.,
P (T < t) =

{

1 − exp
(

−πt/σ2
)}m

.

]
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9. Complete this sketch of the fast Fourier transform. From data X0, . . . , XT , with
T = 2M − 1, we want to compute the 2M−1 ordinates of the periodogram

I(ωj) =
1

πT

∣

∣

∣

∣

∣

T
∑

t=0

Xte
it2πj/2M

∣

∣

∣

∣

∣

2

, j = 1, . . . , 2M−1 .

This requires order T multiplications for each j and so order T 2 multiplications in

all. However,
∑

t=0,1,...,2M−1

Xte
it2πj/2M

=
∑

t=0,2,...,2M−2

Xte
it2πj/2M

+
∑

t=1,3,...,2M−1

Xte
it2πj/2M

=
∑

t=0,1,...,2M−1−1

X2te
i2t2πj/2M

+
∑

t=0,1,...,2M−1−1

X2t+1e
i(2t+1)2πj/2M

=
∑

t=0,1,...,2M−1−1

X2te
it2πj/2M−1

+ ei2πj/2M
∑

t=0,1,...,2M−1−1

X2t+1e
it2πj/2M−1

.

Note that the value of either sum on the right hand side at j = k is the complex

conjugate of its value at j = (2M−1 − k); so these sums need only be computed for
j = 1, . . . , 2M−2. Thus we have two sums, each of which is similar to the sum on

the left hand side, but for a problem half as large. Suppose the computational effort
required to work out each right hand side sum (for all 2M−2 values of j) is Θ(M −1).

The sum on the left hand side is obtained (for all 2M−1 values of j) by combining
the right hand sums, with further computational effort of order 2M−1. Explain

Θ(M) = a2M−1 + 2Θ(M − 1) .

Hence deduce that I(·) can be computed (by the FFT) in time T log2 T .

[ The derivation of the recurrence for Θ(M) should be obvious. We have Θ(1) = 1,

and hence Θ(M) = aM2M = O(T log2 T ). ]
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10. Suppose we have the ARMA(1, 1) process

Xt = φXt−1 + ǫt + θǫt−1 ,

with |φ| < 1, |θ| < 1, φ + θ 6= 0, observed up to time T , and we want to calculate

k-step ahead forecasts X̂T,k, k ≥ 1.

Derive a recursive formula to calculate X̂T,k for k = 1 and k = 2.

[

X̂T,1 = φXT + ǫ̂T+1 + θǫ̂T = φXT + θ(XT − X̂T−1,1)

X̂T,2 = φX̂T,1 + ǫ̂T+2 + θǫ̂T+1 = φX̂T,1

]
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11. Consider the stationary scalar-valued process {Xt} generated by the moving
average, Xt = ǫt − θǫt−1.

Determine the linear least-square predictor of Xt, in terms of Xt−1, Xt−2, . . . .

[ We can directly apply our results to give

X̂t−1,1 = −θǫ̂t−1

= −θ[Xt−1 − X̂t−2,1]

= −θXt−1 + θX̂t−2,1

= −θXt−1 + θ[−θXt−2 + θX̂t−3,1]

= −θXt−1 − θ2Xt−2 − θ3Xt−3 − · · ·

Alternatively, take the linear predictor as X̂t−1,1 =
∑∞

r=1 arXt−r and seek to minimize
E[Xt − X̂t−1,1]

2. We have

E[Xt − X̂t−1,1]
2 = E

[

ǫt − θǫt−1 −

∞
∑

r=1

ar(ǫt−r − θǫt−r−1)

]2

= σ2
[

1 + (θ + a1)
2 + (θa1 − a2)

2 + (θa2 − a3)
2 + · · ·

]

Note that all terms, but the first, are minimized to 0 by taking ar = −θr. ]
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12. Consider the ARIMA(0, 2, 2) model

(I − B)2X = (I − 0.81B + 0.38B2)ǫ

where {ǫt} is white noise with variance 1.

(a) With data up to time T , calculate the k-step ahead optimal forecast of X̂T,k for

all k ≥ 1. By giving a general formula relating X̂T,k, k ≥ 3 , to X̂T,1 and X̂T,2,
determine the curve on which all these forecasts lie.

[ The model is

Xt = 2Xt−1 − Xt−2 + ǫt − 0.81ǫt−1 + 0.38ǫt−2 .

Hence

X̂T,1 = 2XT − XT−1 + ǫ̂T+1 − 0.81ǫ̂T + 0.38ǫ̂T−1

= 2XT − XT−1 − 0.81[XT − X̂T−1,1] + 0.38[XT−1 − X̂T−2,1]

and similarly

X̂T,2 = 2X̂T,1 − XT + 0.38[XT − X̂T−1,1]

X̂T,k = 2X̂T,k−1 − X̂T,k−2, k ≥ 3 .

This implies that the forecasts lie on a straight line. ]

(b) Suppose now that T = 95. Calculate numerically the forecasts X̂95,k, k = 1, 2, 3

and their mean squared prediction errors when the last five observations are X91 =
15.1, X92 = 15.8, X93 = 15.9, X94 = 15.2, X95 = 15.9.

[You will need estimates for ǫ94 and ǫ95. Start by assuming ǫ91 = ǫ92 = 0, then
calculate ǫ̂93 = ǫ93 = X93 − X̂92,1, and so on, until ǫ94 and ǫ95 are obtained.]

[ Using the above formulae we obtain

t Xt X̂t,1 X̂t,2 X̂t,3 ǫt

91 15.1 0.000 0.000

92 15.8 16.500 17.200 17.900 0.000
93 15.9 16.486 16.844 17.202 −0.600

94 15.2 15.314 14.939 14.564 −1.286
95 15.9 15.636 15.596 15.555 0.586

Now

XT+k =

∞
∑

r=0

crǫT+k−r and X̂T,k =

∞
∑

r=k

crǫT+k−r .
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Thus

E

[

XT+k − X̂T,k

]2

= σ2
ǫ

k−1
∑

r=0

c2
r .

where σ2
ǫ = 1. Now

XT = ǫT + (2 − 0.81)ǫT−1 + (−2(0.81)− 1 + 0.38)ǫT−2 + · · ·

Hence the mean square errors of X̂95,1, X̂95,2, X̂95,3 are respectively 1, 1.416, 5.018. ]
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13. Consider the state space model,

Xt = St + vt,

St = St−1 + wt ,

where Xt and St are both scalars, Xt is observed, St is unobserved, and {vt}, {wt} are

Gaussian white noise sequences with variances V and W respectively. Write down
the Kalman filtering equations for Ŝt and Pt.

Show that Pt ≡ P (independently of t) if and only if P 2 + PW = WV , and show
that in this case the Kalman filter for Ŝt is equivalent to exponential smoothing.

[ This is the same as Section 8.4 of the notes. Ft = 1, Gt = 1, Vt = V , Wt = W .

Rt = Pt−1 +W . So if (St−1 | X1, . . . , Xt−1) ∼ N
(

Ŝt−1, Pt−1

)

then (St | X1, . . . , Xt) ∼

N
(

Ŝt, Pt

)

, where

Ŝt = Ŝt−1 + Rt(V + Rt)
−1(Xt − Ŝt−1)

Pt = Rt −
R2

t

V + Rt
=

V Rt

V + Rt
=

V (Pt−1 + W )

V + Pt−1 + W
.

Pt is constant if Pt = P , where P is the positive root of P 2 + WP − WV = 0.

In this case Ŝt behaves like Ŝt = (1 − α)
∑∞

r=0 αrXt−r, where α = V/(V + W + P ).
This is simple exponential smoothing. ]
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