
Lent Term 2001 Richard Weber

Time Series — Examples Sheet

This is the examples sheet for the M. Phil. course in Time Series. A copy can be

found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/

Throughout, unless otherwise stated, the sequence {ǫt} is white noise, variance σ2.
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1. Find the Yule-Walker equations for the AR(2) process

Xt = 1
3Xt−1 + 2

9Xt−2 + ǫt .

Hence show that it has autocorrelation function

ρk = 16
21

(

2
3

)|k|
+ 5

21

(

−1
3

)|k|
, k ∈ Z .
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2. Let Xt = A cos(Ωt+U), where A is an arbitrary constant, Ω and U are independent
random variables, Ω has distribution function F over [0, π], and U is uniform over

[0, 2π]. Find the autocorrelation function and spectral density function of {Xt}.
Hence show that, for any positive definite set of covariances {γk}, there exists a

process with autocovariances {γk} such that every realization is a sine wave.

[Use the following definition: {γk} are positive definite if there exists a nondecreasing

function F such that γk =
∫ π

−π eikωdF (ω).]
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3. Find the spectral density function of the AR(2) process

Xt = φ1Xt−1 + φ2Xt−2 + ǫt .

What conditions on (φ1, φ2) are required for this process to be an indeterministic

second order stationary? Sketch in the (φ1, φ2) plane the stationary region.
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4. For a stationary process define the covariance generating function

g(z) =
∞

∑

k=−∞

γkz
k, |z| < 1 .

Suppose {Xt} satisfies X = C(B)ǫ, that is, it has the Wold representation

Xt =
∞

∑

r=0

crǫt−r ,

where {cr} are constants satisfying
∑∞

0 c2
r < ∞ and C(z) =

∑∞
r=0 crz

r. Show that

g(z) = C(z)C(z−1)σ2 .

Explain how this can be used to derive autocovariances for the ARMA(p, q) model.

Hence show that for ARMA(1, 1), ρ2
2 = ρ1ρ3. How might this fact be useful?
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5. Consider the ARMA(2, 1) process defined as

Xt = φ1Xt−1 + φ2Xt−2 + ǫt + θ1ǫt−1 .

Show that the coefficients of the Wold representation satisfy the difference equation

ck = φ1ck−1 + φ2ck−2, k ≥ 2 ,

and hence that

ck = Az−k
1 + Bz−k

2 ,

where z1 and z2 are zeros of φ(z) = 1 − φ1z − φ2z
2, and A and B are constants.

Explain how in principle one could find A and B.
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6. Suppose
Yt = Xt + ǫt, Xt = αXt−1 + ηt ,

where {ǫt} and {ηt} are independent white noise sequences with common variance
σ2. Show that the spectral density function of {Yt} is

fY (ω) =
σ2

π

{

2 − 2α cos ω + α2

1 − 2α cos ω + α2

}

.

For what values of p, d, q is the autocovariance function of {Yt} identical to that of

an ARIMA(p, d, q) process?
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7. Suppose X1, . . . , XT are values of a time series. Prove that
{

γ̂0 + 2
T−1
∑

k=1

γ̂k

}

= 0 ,

where γ̂k is the usual estimator of the kth order autocovariance,

γ̂k =
1

T

T
∑

t=k+1

(Xt − X̄)(Xt−k − X̄) .

Hint: Consider 0 =
∑T

t=1(Xt − X̄).

Hence deduce that not all ordinates of the correlogram can have the same sign.

Suppose f(·) is the spectral density and I(·) the periodogram. Suppose f is contin-
uous and f(0) 6= 0. Does EI(2π/T ) → f(0) as T → ∞?
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8. Suppose I(·) is the periodogram of ǫ1, . . . , ǫT , where these are i.i.d. N(0, 1) and
T = 2m + 1. Let ωj, ωk be two distinct Fourier frequencies, Show that I(ωj) and

I(ωk) are independent random variables. What are their distributions?

If it is suspected that {ǫt} departs from white noise because of the presence of a

single harmonic component at some unknown frequency ω a natural test statistic is
the maximum periodogram ordinate

T = max
j=1,...,m

I(ωj) .

Show that under the hypothesis that {ǫt} is white noise

P (T > t) = 1 −
{

1 − exp
(

−πt/σ2
)}m

.
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9. Complete this sketch of the fast Fourier transform. From data X0, . . . , XT , with
T = 2M − 1, we want to compute the 2M−1 ordinates of the periodogram

I(ωj) =
1

πT

∣

∣

∣

∣

∣

T
∑

t=0

Xte
it2πj/2M

∣

∣

∣

∣

∣

2

, j = 1, . . . , 2M−1 .

This requires order T multiplications for each j and so order T 2 multiplications in

all. However,
∑

t=0,1,...,2M−1

Xte
it2πj/2M

=
∑

t=0,2,...,2M−2

Xte
it2πj/2M

+
∑

t=1,3,...,2M−1

Xte
it2πj/2M

=
∑

t=0,1,...,2M−1−1

X2te
i2t2πj/2M

+
∑

t=0,1,...,2M−1−1

X2t+1e
i(2t+1)2πj/2M

=
∑

t=0,1,...,2M−1−1

X2te
it2πj/2M−1

+ ei2πj/2M
∑

t=0,1,...,2M−1−1

X2t+1e
it2πj/2M−1

.

Note that the value of either sum on the right hand side at j = k is the complex

conjugate of its value at j = (2M−1 − k); so these sums need only be computed for
j = 1, . . . , 2M−2. Thus we have two sums, each of which is similar to the sum on

the left hand side, but for a problem half as large. Suppose the computational effort
required to work out each right hand side sum (for all 2M−2 values of j) is Θ(M −1).

The sum on the left hand side is obtained (for all 2M−1 values of j) by combining
the right hand sums, with further computational effort of order 2M−1. Explain

Θ(M) = a2M−1 + 2Θ(M − 1) .

Hence deduce that I(·) can be computed (by the FFT) in time T log2 T .
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10. Suppose we have the ARMA(1, 1) process

Xt = φXt−1 + ǫt + θǫt−1 ,

with |φ| < 1, |θ| < 1, φ + θ 6= 0, observed up to time T , and we want to calculate

k-step ahead forecasts X̂T,k, k ≥ 1.

Derive a recursive formula to calculate X̂T,k for k = 1 and k = 2.
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11. Consider the stationary scalar-valued process {Xt} generated by the moving
average, Xt = ǫt − θǫt−1.

Determine the linear least-square predictor of Xt, in terms of Xt−1, Xt−2, . . . .
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12. Consider the ARIMA(0, 2, 2) model

(I − B)2X = (I − 0.81B + 0.38B2)ǫ

where {ǫt} is white noise with variance 1.

(a) With data up to time T , calculate the k-step ahead optimal forecast of X̂T,k for
all k ≥ 1. By giving a general formula relating X̂T,k, k ≥ 3 , to X̂T,1 and X̂T,2,

determine the curve on which all these forecasts lie.

(b) Suppose now that T = 95. Calculate numerically the forecasts X̂95,k, k = 1, 2, 3

and their mean squared prediction errors when the last five observations are X91 =
15.1, X92 = 15.8, X93 = 15.9, X94 = 15.2, X95 = 15.9.

[You will need estimates for ǫ94 and ǫ95. Start by assuming ǫ91 = ǫ92 = 0, then
calculate ǫ̂93 = ǫ93 = X93 − X̂92,1, and so on, until ǫ94 and ǫ95 are obtained.]
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13. Consider the state space model,

Xt = St + vt,

St = St−1 + wt ,

where Xt and St are both scalars, Xt is observed, St is unobserved, and {vt}, {wt} are

Gaussian white noise sequences with variances V and W respectively. Write down
the Kalman filtering equations for Ŝt and Pt.

Show that Pt ≡ P (independently of t) if and only if P 2 + PW = WV , and show
that in this case the Kalman filter for Ŝt is equivalent to exponential smoothing.
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