Time Series - Examples Sheet

This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/
Throughout, unless otherwise stated, the sequence $\left\{\epsilon_{t}\right\}$ is white noise, variance σ^{2}.

1. Find the Yule-Walker equations for the $\operatorname{AR}(2)$ process

$$
X_{t}=\frac{1}{3} X_{t-1}+\frac{2}{9} X_{t-2}+\epsilon_{t} .
$$

Hence show that it has autocorrelation function

$$
\rho_{k}=\frac{16}{21}\left(\frac{2}{3}\right)^{|k|}+\frac{5}{21}\left(-\frac{1}{3}\right)^{|k|}, \quad k \in \mathbb{Z} .
$$

2. Let $X_{t}=A \cos (\Omega t+U)$, where A is an arbitrary constant, Ω and U are independent random variables, Ω has distribution function F over $[0, \pi]$, and U is uniform over $[0,2 \pi]$. Find the autocorrelation function and spectral density function of $\left\{X_{t}\right\}$. Hence show that, for any positive definite set of covariances $\left\{\gamma_{k}\right\}$, there exists a process with autocovariances $\left\{\gamma_{k}\right\}$ such that every realization is a sine wave.
[Use the following definition: $\left\{\gamma_{k}\right\}$ are positive definite if there exists a nondecreasing function F such that $\gamma_{k}=\int_{-\pi}^{\pi} e^{i k \omega} d F(\omega)$.]
3. Find the spectral density function of the $\mathrm{AR}(2)$ process

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+\epsilon_{t} .
$$

What conditions on (ϕ_{1}, ϕ_{2}) are required for this process to be an indeterministic second order stationary? Sketch in the (ϕ_{1}, ϕ_{2}) plane the stationary region.
4. For a stationary process define the covariance generating function

$$
g(z)=\sum_{k=-\infty}^{\infty} \gamma_{k} z^{k}, \quad|z|<1
$$

Suppose $\left\{X_{t}\right\}$ satisfies $X=C(B) \epsilon$, that is, it has the Wold representation

$$
X_{t}=\sum_{r=0}^{\infty} c_{r} \epsilon_{t-r}
$$

where $\left\{c_{r}\right\}$ are constants satisfying $\sum_{0}^{\infty} c_{r}^{2}<\infty$ and $C(z)=\sum_{r=0}^{\infty} c_{r} z^{r}$. Show that

$$
g(z)=C(z) C\left(z^{-1}\right) \sigma^{2}
$$

Explain how this can be used to derive autocovariances for the $\operatorname{ARMA}(p, q)$ model.
Hence show that for $\operatorname{ARMA}(1,1), \rho_{2}^{2}=\rho_{1} \rho_{3}$. How might this fact be useful?
5. Consider the $\operatorname{ARMA}(2,1)$ process defined as

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+\epsilon_{t}+\theta_{1} \epsilon_{t-1}
$$

Show that the coefficients of the Wold representation satisfy the difference equation

$$
c_{k}=\phi_{1} c_{k-1}+\phi_{2} c_{k-2}, \quad k \geq 2
$$

and hence that

$$
c_{k}=A z_{1}^{-k}+B z_{2}^{-k}
$$

where z_{1} and z_{2} are zeros of $\phi(z)=1-\phi_{1} z-\phi_{2} z^{2}$, and A and B are constants. Explain how in principle one could find A and B.
6. Suppose

$$
Y_{t}=X_{t}+\epsilon_{t}, \quad X_{t}=\alpha X_{t-1}+\eta_{t},
$$

where $\left\{\epsilon_{t}\right\}$ and $\left\{\eta_{t}\right\}$ are independent white noise sequences with common variance σ^{2}. Show that the spectral density function of $\left\{Y_{t}\right\}$ is

$$
f_{Y}(\omega)=\frac{\sigma^{2}}{\pi}\left\{\frac{2-2 \alpha \cos \omega+\alpha^{2}}{1-2 \alpha \cos \omega+\alpha^{2}}\right\} .
$$

For what values of p, d, q is the autocovariance function of $\left\{Y_{t}\right\}$ identical to that of an $\operatorname{ARIMA}(p, d, q)$ process?
7. Suppose X_{1}, \ldots, X_{T} are values of a time series. Prove that

$$
\left\{\hat{\gamma}_{0}+2 \sum_{k=1}^{T-1} \hat{\gamma}_{k}\right\}=0
$$

where $\hat{\gamma}_{k}$ is the usual estimator of the k th order autocovariance,

$$
\hat{\gamma}_{k}=\frac{1}{T} \sum_{t=k+1}^{T}\left(X_{t}-\bar{X}\right)\left(X_{t-k}-\bar{X}\right)
$$

Hint: Consider $0=\sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)$.
Hence deduce that not all ordinates of the correlogram can have the same sign.
Suppose $f(\cdot)$ is the spectral density and $I(\cdot)$ the periodogram. Suppose f is continuous and $f(0) \neq 0$. Does $\mathbb{E} I(2 \pi / T) \rightarrow f(0)$ as $T \rightarrow \infty$?
8. Suppose $I(\cdot)$ is the periodogram of $\epsilon_{1}, \ldots, \epsilon_{T}$, where these are i.i.d. $N(0,1)$ and $T=2 m+1$. Let ω_{j}, ω_{k} be two distinct Fourier frequencies, Show that $I\left(\omega_{j}\right)$ and $I\left(\omega_{k}\right)$ are independent random variables. What are their distributions?

If it is suspected that $\left\{\epsilon_{t}\right\}$ departs from white noise because of the presence of a single harmonic component at some unknown frequency ω a natural test statistic is the maximum periodogram ordinate

$$
T=\max _{j=1, \ldots, m} I\left(\omega_{j}\right)
$$

Show that under the hypothesis that $\left\{\epsilon_{t}\right\}$ is white noise

$$
P(T>t)=1-\left\{1-\exp \left(-\pi t / \sigma^{2}\right)\right\}^{m} .
$$

9. Complete this sketch of the fast Fourier transform. From data X_{0}, \ldots, X_{T}, with $T=2^{M}-1$, we want to compute the 2^{M-1} ordinates of the periodogram

$$
I\left(\omega_{j}\right)=\frac{1}{\pi T}\left|\sum_{t=0}^{T} X_{t} e^{i t 2 \pi j / 2^{M}}\right|^{2}, \quad j=1, \ldots, 2^{M-1}
$$

This requires order T multiplications for each j and so order T^{2} multiplications in all. However,

$$
\begin{aligned}
& \sum_{t=0,1, \ldots, 2^{M}-1} X_{t} e^{i t 2 \pi j / 2^{M}}=\sum_{t=0,2, \ldots, 2^{M}-2} X_{t} e^{i t 2 \pi j / 2^{M}}+\sum_{t=1,3, \ldots, 2^{M}-1} X_{t} e^{i t 2 \pi j / 2^{M}} \\
= & \sum_{t=0,1, \ldots, 2^{M-1}-1} X_{2 t} e^{i 2 t 2 \pi j / 2^{M}}+\sum_{t=0,1, \ldots, 2^{M-1}-1} X_{2 t+1} e^{i(2 t+1) 2 \pi j / 2^{M}} \\
= & \sum_{t=0,1, \ldots, 2^{M-1}-1} X_{2 t} e^{i t 2 \pi j / 2^{M-1}}+e^{i 2 \pi j / 2^{M}} \sum_{t=0,1, \ldots, 2^{M-1}-1} X_{2 t+1} e^{i t 2 \pi j / 2^{M-1}} .
\end{aligned}
$$

Note that the value of either sum on the right hand side at $j=k$ is the complex conjugate of its value at $j=\left(2^{M-1}-k\right)$; so these sums need only be computed for $j=1, \ldots, 2^{M-2}$. Thus we have two sums, each of which is similar to the sum on the left hand side, but for a problem half as large. Suppose the computational effort required to work out each right hand side sum (for all 2^{M-2} values of j) is $\Theta(M-1)$. The sum on the left hand side is obtained (for all 2^{M-1} values of j) by combining the right hand sums, with further computational effort of order 2^{M-1}. Explain

$$
\Theta(M)=a 2^{M-1}+2 \Theta(M-1) .
$$

Hence deduce that $I(\cdot)$ can be computed (by the FFT) in time $T \log _{2} T$.
10. Suppose we have the $\operatorname{ARMA}(1,1)$ process

$$
X_{t}=\phi X_{t-1}+\epsilon_{t}+\theta \epsilon_{t-1},
$$

with $|\phi|<1,|\theta|<1, \phi+\theta \neq 0$, observed up to time T, and we want to calculate k-step ahead forecasts $\hat{X}_{T, k}, k \geq 1$.
Derive a recursive formula to calculate $\hat{X}_{T, k}$ for $k=1$ and $k=2$.
11. Consider the stationary scalar-valued process $\left\{X_{t}\right\}$ generated by the moving average, $X_{t}=\epsilon_{t}-\theta \epsilon_{t-1}$.

Determine the linear least-square predictor of X_{t}, in terms of X_{t-1}, X_{t-2}, \ldots.
12. Consider the $\operatorname{ARIMA}(0,2,2)$ model

$$
(I-B)^{2} X=\left(I-0.81 B+0.38 B^{2}\right) \epsilon
$$

where $\left\{\epsilon_{t}\right\}$ is white noise with variance 1 .
(a) With data up to time T, calculate the k-step ahead optimal forecast of $\hat{X}_{T, k}$ for all $k \geq 1$. By giving a general formula relating $\hat{X}_{T, k}, k \geq 3$, to $\hat{X}_{T, 1}$ and $\hat{X}_{T, 2}$, determine the curve on which all these forecasts lie.
(b) Suppose now that $T=95$. Calculate numerically the forecasts $\hat{X}_{95, k}, k=1,2,3$ and their mean squared prediction errors when the last five observations are $X_{91}=$ 15.1, $X_{92}=15.8, X_{93}=15.9, X_{94}=15.2, X_{95}=15.9$.
[You will need estimates for ϵ_{94} and ϵ_{95}. Start by assuming $\epsilon_{91}=\epsilon_{92}=0$, then calculate $\hat{\epsilon}_{93}=\epsilon_{93}=X_{93}-\hat{X}_{92,1}$, and so on, until ϵ_{94} and ϵ_{95} are obtained.]
13. Consider the state space model,

$$
\begin{aligned}
X_{t} & =S_{t}+v_{t} \\
S_{t} & =S_{t-1}+w_{t},
\end{aligned}
$$

where X_{t} and S_{t} are both scalars, X_{t} is observed, S_{t} is unobserved, and $\left\{v_{t}\right\},\left\{w_{t}\right\}$ are Gaussian white noise sequences with variances V and W respectively. Write down the Kalman filtering equations for \hat{S}_{t} and P_{t}.
Show that $P_{t} \equiv P$ (independently of t) if and only if $P^{2}+P W=W V$, and show that in this case the Kalman filter for \hat{S}_{t} is equivalent to exponential smoothing.

