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Motivation: Shared Infrastructures

Virtual facilities

. . . composed of shared resources, such as computers, routers, and
communication links, which are used together to so that agents
can perform tasks.

Example: grid computing
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Issue for this talk

How do we derive sensible resource allocation policies in shared
infrastructures (Grids, communication links) when participants
have private information?

Key observation: system operating policies influence strategies of
agents.

Naive policies (like ‘internal market’, or ‘equal sharing’) may not
be suitable.

Two main problems:

I Since the facility cost must be shared, agents like to free-ride.

I We must resolve contentions for resource in a way incentivizes
agents to truthfully reveal private information.
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A model of a managed shared infrastructure

I An infrastructure is composed of resources (links, servers,
buffers, etc.)

I It an be operated in different ways, say ω ∈ Ω (by scheduling,
routing, bandwidth allocation, etc.)

I On a given day the subset of agents who wish to use the
infrastructure is S (a ‘state of nature’). This occurs with
frequency α(S).

I If the infrastructure is operated in manner ω then agent i has
benefit

θiui(ω)

where ui(·) is pubic knowledge, but only agent i knows θi.

I ω is to be chosen as a function of S and the declared
θ = (θ1, . . . , θn).
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Agents pay for operating cost

Agent i is charged a fee pi(S, θ).

Fees are to cover a daily operating cost, c, so we require

ES,θ [p1(S, θ) + · · · + pn(S, θ)] ≥ c

Agent i wishes to maximize his expected net benefit

nbi(θi) = ES,θ [θiui(ω(S, θ)) − pi(S, θ)]

In some situations we may take the fee as money.

In others we may wish to take the fee as a contribution to the pool
of resources that is available in the infrastructure.



The efficient frontier

We wish to find Pareto optimal points of the vector
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Maximum social welfare

Suppose we wish to find the particular point that maximizes

nb1 + · · · + nbn =

ES,θ [θ1u1(ω(S, θ)) + · · · + θnun(ω(S, θ))] − c
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We call this the ‘social welfare’.
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Our infrastructure optimization problem

The problem of economics for infrastructure optimization is as
follows.

I Say how the infrastructure will be operated for possible subset
of users S.

I Say what fees will be collected from users.

Do the two things above, as function of declared θi, so that:

1. Users find it in their best interest to truthfully reveal their θi.

2. Users will see positive expected net benefit from participation.

3. Expected total fees cover the daily running cost, say c.

4. Expected social welfare (total net benefit) is maximized
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Example: scheduling a server

I Suppose N agents share a single server. Agent i generates a
jobs as a Poisson process of rate λi, whose service times are
exponentially distributed with parameter 1.

I Initially, agents contribute resource amounts y1, . . . , yN . This
results in a server of rate

∑

k yk. Under FCFS scheduling all
jobs have mean waiting time 1/(

∑

k yk −
∑

k λk).

I Agent i suffers delay cost, so his net benefit is, say,

nbi = λir − θiλi

1
∑

k yk −
∑

k λk

− yi .

θi is private information of agent i, but it has an a priori

distribution that is public information.
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Optimal queue scheduling

Instead of declaring contributions they are willing to make, we can
imagine that agents (equivalently) declare their θi.

Suppose θ1 < θ2 < · · · < θn.

As a function of these declarations we take contributions of the
form y(θi) from some subset of agents i = 1, . . . , j (a set with
smallest θi).

We employ a priority scheduling policy in which priority is always
given to the current job belonging to the agent with greatest θi.

Under this scheme, an agent with too great a θi will find
unprofitable to consider participating.

yi(θi) is increasing in θi, and is determined by an incentive
compatibility condition.
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just 2 participants, both present on all days. On day t, agent i has
utility for resource of θi,tu(x), where θi,t is assumed known to be
distributed U [0, 1]. The infrastructure is described by a single
resource parameterized by a number(such as computing cycles), so
operating methods choice of allocations:
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just 2 participants, both present on all days. On day t, agent i has
utility for resource of θi,tu(x), where θi,t is assumed known to be
distributed U [0, 1]. The infrastructure is described by a single
resource parameterized by a number(such as computing cycles), so
operating methods choice of allocations:

{ω} = {x1, x2 : x1 + x2 ≤ 1}

Suppose u(x) = x. Focus on one day; let θi,t = θi.

Eθ1,θ2

[

max
x1,x2

{θ1u(x1) + θ2u(x2)}

]

= E [max{θ1, θ2}] = 2
3

We call this the ‘first best’.



A ‘second-best’ mechanism can be constructed as follows. If agent
i declares θi then he is charged a fee

p(θi) =

{

(1/2)(θ2
i + θ2

0) , θi ≥ θ0

0 , θi < θ0

He obtains xi = 1 if θi > θ2 and θ1 ≥ θ̄.
Note that the resource is given wholly to one agent.



It turns out that

I Agents are incentivized to truthful.



It turns out that

I Agents are incentivized to truthful.

I The sum of the expected payments is

E
[

p(θ1) + p(θ2)
]

= 1/3 + θ2
0 − (2/3)θ2

0 .



It turns out that

I Agents are incentivized to truthful.

I The sum of the expected payments is

E
[

p(θ1) + p(θ2)
]

= 1/3 + θ2
0 − (2/3)θ2

0 .

I The expected social welfare is decreasing in θ0.

But by taking 1/3 + θ2
0 − (2/3)θ2

0 = c we maximize the social
welfare

E

[

2
∑

i=1

θiu(xi) − p(θi)

]

subject to covering cost c.



Second-best versus first-best
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Expected social welfare as a function of c, compared to the
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12 = 0.416.
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2c + 1

2 (θ2
1 + θ2

0)1{θ1>θ0} −
1
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2 + θ2
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This makes p1(θ1, θ2) + p2(θ1, θ2) = c. We call this ‘ex-post’
cost-covering.

(b)
p1(θ1, θ2) = max(θ0, θ2)1{θ1>max(θ0,θ2)}

This makes incentive compatibility and rationality ex-post.



Suppose u(x) =
√

x

The resource is shared differently.

The optimal policy is found by solving a Lagrangian dual problem

min
λ≥0







Eθ1,θ2



 max
x1, x2≥0

x1+x2≤1

2
∑

i=1

hλ(θi)u(xi)



 − (1 + λ)c







.

where h(θi) = (θi + λ(2θi − 1)) and

xi(θ1, θ2) =
hλ(θi)

2

∑2
j=1 hλ(θj)2

Note that λ is a tuning parameter. As λ increases the fee structure
changes, so that greater cost can be covered. The social welfare
decreases, but is maximal subject to the constraint of covering the
cost.
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I The resource is not allocated in the ‘most efficient’ way.
That would be xi(θ1, θ2) = θ2

i /(θ
2
1 + θ2

2).

This is one of our most important lessons:

To optimally incentivize participation in shared infrastructures, and
make the most of the resources available, one should appreciate
that both (i) fee structure, and (ii) operating methods, must both
play a part in providing the correct incentives to users.
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Conclusions

I In most realistic resource allocation problems there is private
information to participants.

I Resource allocation policies need to take account of need to
give right incentives. To encourage agents who value the
resource more to say so, and so be willing to contribute more
towards the cost, we need to reward them better than an
internal market would do. But figuring out exactly how to do
this is not a simple task!

I Simple-minded sharing policies (like proportional sharing) may
not to produce sufficient incentives for participants to
contribute resources.

I Many new interesting problems!!!


