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AbstractLarge deviation asymptotics can be used to estimate therate with which cell loss occurs because of overow atthe bu�er of an ATM switch. These asymptotics may beappropriate when either the bu�er is large or when alarge number of tra�c sources are multiplexed throughthe switch. In some cases these estimates lead to anatural de�nition of e�ective bandwidths for the sources.As a step towards generalising and applying these ideasto networks in which di�erent qualities of service are tobe guaranteed for di�erent sources, we consider Mtra�c sources, each with its own bu�er of size B, whichare served by a a single deterministic server ofbandwidth c. The server implements a state-dependentservice discipline (for example, to share its e�ort fairlyamongst the bu�ers).We show the frequency of bu�er overow, �, has anasymptotic of log � = �I�B + g(B), wherelimB!1 g(B)=B = 0, and where I� can becomputed as the solution to an optimal control problemposed in terms of rate functions Ii, i = 1; : : : ;M forthe M tra�c sources. 2
ATM/BISDN networks� Data is transmitted in cells (53 bytes).� Tra�c sources are heterogeneous:voice, video, �le transfer, email, etc.� Tra�c sources have di�erent quality of servicerequirements.� Tra�c sources are bursty.� Cells from a single call follow a `virtual circuit' (VC).Here we have four VCs and three 2�2 switches.
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Important issues for ATM� Quality of ServiceCell loss (due to bu�er overow).This should be very small.Cell Delay.� Call acceptance control (CAC)� Call routing� How best to use resources:Bu�ers, bandwidth, alternative routes,Statistical multiplexing,Signalling,Flow control.� Charging and accounting
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The problem of estimating bu�er overow frequencyWe concentrate on a single bu�er and the overowfrequency of this bu�er. cB
In order to know how many virtual circuits may beallowed to use this output link, for a given Quality ofService constraint, we need to estimate the probability ofbu�er overow.P (Xt � B) should be small.
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A discrete time model� Discrete time, with epochs k = 1; 2; : : : .�M independent sources.� Source i produces Uit cells in epoch t.� Ui1; Ui2; : : : can be seen as a dependent sequenceof random variables.� Sources share a single bu�er of size B.� Bu�er is served at the rate of c cells per epoch.� Xt+1 = max(Xt + MXi=1 Ui;t+1 � c; 0).A 2� 2 switch with 4 virtual circuits
B
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The overow probability in a M=M=1=B queueFor a single server M=M=1=B queue, for example(with �nite bu�er), being shared here by two VCs,B c�
we knowP (Xt = B) = � 1� (�=c)1� (�=c)B+1� (�=c)B:HenceP (Xt = B) � e� log(c=�)B for large B:This is typical.
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Cramer's theoremTheorem 1 Suppose U1; U2; : : : is a sequence of i.i.d.random variables. De�ne the logarithmic momentgenerating function'(�) = logE[exp(�U1)]and the rate functionI(u) = sup� [�u� '(�)]:ThenP  1m mXt=1 Ut 2 [a; b]! � e�m infu2[a;b] I(u):meaninglimm!1 1m log P  1m mXt=1 Ut 2 [a; b]! = � infu2[a;b] I(u):Note. I(m) = 0, where m = EUi.
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A typical rate functionSuppose Ui = 0; 1 with probabilities q, p. Then'(�) = log(q + pe�);andI(u) = 8<: u log �up�+ (1� u) log �1�u1�p� ; 0 � u � 11; otherwise:
0:2 0:4 0:6 0:8 100:20:40:60:81 I(u)

uHere p = 0:6.� I(u) is convex.� jI 0(u)j ! 1 as u! boundary of the set whereI(u) is �nite.� I(�) = 0, where � = EU .9

Elements of large deviation theoryWe have seen:P (Xt = B) � e� log(c=�)B for large B:P  1m mXt=1 Ut 2 [a; b]! � e�m infu2[a;b] I(u):This is typical. The general conclusions are:1. The frequency of occurence of rare events depends inan exponential manner on some parameters of theproblem. E.g., B, m.2. If a rare events occurs then it occurs in the mostlikely way. E.g., infu2[a;b].3. Rare events occur as a Poisson process.
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G�artner-Ellis's theoremThe G�artner-Ellis theorem is similar to Cherno�'stheorem but applies to a sequence of vector-valued,dependent random variables.Theorem 2 Suppose U1; U2; : : : 2 RM is a sequenceof random vectors and that the asymptotic logarithmicmoment generating function'(�) = limm!1 1m logE "exp*�; mXt=1 Ut+#exists for all � 2 RM . De�ne the rate functionI(u) = sup� [< �; u > �'(�)]:Then for any set G � RMlimm!1 1m log P  1m mXt=1 Ut 2 G! � � infu2Go I(u);limm!1 1m log P  1m mXt=1 Ut 2 G! � � infu2 �G I(u);where Go and �G are respectively the interior andclosure of G.Note that in many cases the two in�mums are equal andso the limit exists. 11

The logarithmic moment generating function� For source i we de�ne'im(�) = 1m logE exp � mXk=1Uik! :� Suppose the asymptotic logarithmic momentgenerating function exists for all �,'i(�) = limm!1'im(�):� Suppose the conditions of the G�artner-Ellis theoremare satis�ed. Then withIi(u) = sup� [�u� 'i(�)]we have,P  1m mXt=1 Uit 2 [a; b]! � exp�� infu2[a;b] Ii(u)� :
12



The large bu�er asymptoticUnder the above assumptions, Kesidis, Walrand andChang (1993) show thatP (X � B) � e�H(c)B; where�H(c) = limB!1 1B log P (X � B)= � 1B inf� B�I(c+ �) B� c+ �B=�inow at rate
= � inf� 1� sup� ((c+ �)� � MXi=1 'i(�))= � sup(� : MXi=1 'i(�)=� � c) :So e�H(c)B � e��B; provided MXi=1 'i(�)=� � c:This motivates identifying 'i(�)=� as the e�ectivebandwidth for source i. 13

The many sources asymptotic� Suppose there are M identical sources. The bu�erand bandwidth scale with M , so that the sourcesshare a common output bu�er of size B = Mb anda bandwidthMc.� Courcoubetis and Weber (1995) and Du�eld (1995)show that,� J(c; b) � limM!1 1M log P (X �Mb)= � infm sup� ((nc+ b)� �m MXi=1 'im(�)) :� This formula expresses the e�ect of statisticalmultiplexing over sources, whereas the large bu�erasymptotic evaluates statistical multiplexing thatoccurs over time.� It does not lead to a simple notion of e�ectivebandwidths as with the large bu�er asymptotic.� However, P (X � B) � e�J(c;b)M usuallyprovides a more accurate estimate of overowprobabilities than does P (X � B) � e�H(Mc)B.14
Comparison of the asymptoticsThe following data is based on calculations of a Markov modulateduid model of voice sources in a channel that is 66% utilized.peak rate0 mean 353ms= 64 kbps mean 650mspeak bandwidth per source = 64 kbpsmean bandwidth per source = 22:48 kbpsbandwidth per source = c = 33:72 kbpsbu�er per source = b ranges from 0 to 100 bits

0:02 0:04 0:06 0:08 0:100:020:040:060:080:10:120:14
bu�ers per source (Kbits) b�(1=M)log eP(X

�Mb) M = 50M = 100Large bu�er asymptotic bH(c)Many sources asymptotic J(c; b)
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Error of the large bu�er asymptoticsChoudhury, Lucantoni and Whitt (1994) hypothesiseP (Xt � B) � �e�Ne��B:We can give the interpretation that for large N ,P (Xt � B) � e�NJ(c;b)= e�N [J(c;b)�bH(c)]�NbH(c))= e�N [J(c;b)�bH(c)]e�BH(c):So � = H(c).� For large N ,  has the sign of J(c; b)� bH(c).� For a model of a Gaussian autoregressive source,Un = �Un�1 + (1� �)�+ �n:J(c; b)� bH(c) > 0 or < 0 as � > 0 or < 0.These correspond to greater or less burstiness of thesource.The large bu�er estimate exp(�bH(c)) can bothunder- and over-estimate P (Xt � B).
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A switch with dedicated output bu�ersA single output bu�er per output link:
B

cc
Dedicated output bu�ers per virtual circuit:

B
cc
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State dependent service disciplinesNow considerM VCs with separate bu�ers. The state isXt = (X1t; : : : ; XMt) 2 RM :
B cSome possible service disciplines are:1. Serve longest queue. The entire bandwidth c isallocated to serving the longest queue, or sharedequally amongst several equal longest queues.2. Weighted round robin. A nonempty queue i isensured a bandwidth of at least �ic, wherePi�i = 1. Any surplus bandwith that is availablebecause some queues are empty is allocated to thenonempty queues, proportionally to their weights.3. Queue length weighted service. Queue i isserved at rate �iXitPj �jXjt c:4. Threshold based disciplines. Divide thebandwidth equally amongst bu�ers, but if one ismore than 90% full, then it gets all the bandwidth.18

AssumptionsWe let the scaled bu�er process beXBt = 1BXtand take a state-dependent service allocation thatdepends on the scaled queue lengths XBt ,Xt+1 = Xt + Ut+1 � c(XBt ):Throughout the following the norm applied to x 2 RMis jxj = maxi jxij. We make the followingassumptions.AssumptionsA1. ��Ut+1 � c �XBt ��� < K.A2 c(�) is Lipschitz continuous with constant L. Thatis, jc(x)� c(x0)j � Ljx� x0j.
19

AssumptionsA3. Let � � � denote any past history of the process.Then 8� > 0,' (�)= limB!1 1�B logEx "exp*�; �B+�BXt=�B Ut+ ����� � � � #exists and satis�es G�artner-Ellis conditions, so that withthe de�nitionI(u) = sup� [< �; u > �'(�)]and G � RM ,limB!1 1�B log P  1�B �B+�BXt=�B Ut 2 G ����� � � �!� � infu2 �G I(u);limB!1 1�B log P  1�B �B+�BXt=�B Ut 2 G ����� � � �!� � infu2Go I(u);where Go and �G are respectively the interior andclosure of G. 20



The large bu�er scalingFirst scale with respect to bu�er size:XBt = 1BXt; t = 0; : : : ; �BThen scale with respect to time, so that for 0 � t � � ,xB(t) = (1� tB + [tB])XB[tB] + (tB � [tB])XB[tB]+1:
�0 �BXt

0 �B0Xt KB0
KB

0 �K
KxB(t)

xB0(t)
0

Note that xB(�) is piecewise linear.21

Upper and Lower BoundsTheorem 3 Suppose A is a subset of paths over [0; t]and A1{A3 hold. ThenlimB!1 1B log P �xB(�) 2 A�� � infx(�);u(�)_x=u�c(x)x(�)2 �A Z �t=0 I(u(t))dt;limB!1 1B log P �xB(�) 2 A�� � infx(�);u(�)_x=u�c(x)x(�)2Ao Z �t=0 I(u(t))dt:where �A and Ao are the closure and interior of Arespectively.Note. The right hand side of the lower bound is �1 ifAo is empty.
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Proof of the upper boundSuppose B� = nm. Divide time into n blocks of mepochs. Divide the vertical axis into N increments ofwidth K�B=N . Any path xB(�) 2 A must passthrough certain `gates' Cj0; : : : ; Cjn.
Cjn0 m 2m 3m nm = �BCj0 Cj1 Cj2 Cj3Xt xB(�) 2 A K�BK�BN

Hence writing �B(A) = P (xB(�) 2 A),�B(A) � Xj0;::: ;jn nYi=1P �Xim 2 CjijX0; U1; : : : ; U(i�1)m�where the sum is over possible j0; : : : ; jn.For n;N large, the path cannot only move betweenCji�1 and Cji if 1mPimt=(i�1)m+1Ut lies in some smallset, say1m imXt=(i�1)m+1Ut 2 Sjiji�1; i = 1; : : : ; n:23

Conclusion of the proof of the upper boundSo we have�B(A)� Xj0;::: ;jn nYi=1P 0@ 1m imXt=(i�1)m+1Ut 2 Sjiji�1������ � � �1AApplying Assumption A3, as B !1 via m!1limB!1 1B log P 0@ 1m imXt=(i�1)m+1Ut 2 Sjiji�1������ � � �1A� � infui2Sjiji�1 �nI(u):HencelimB!1 1B log �B(A)� � infj0;::: ;jnu1;::: ;unui2Sjiji�1�n nXi=1 I(u) � � infx(�);u(�)_x=u�c(x)x(�)2 �A Z �0 I(u)dt:
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The limiting dynamicsLet ti = im, �i = i�=n. Note that�xB(�i)� �xB(�i�1)�i � �i�1= �XBti � �XBti�1�=n= 1B�=n tiXt=ti�1+1 � �Ut� c( �XBt )�� 1m tiXt=ti�1+1 �Ut � c( �XBti�1) + LK�=n= u(ji�1; ji)� c(�xB(�i�1)) + LK�=n:The reversed inequality follows similarly, but with anegative sign on the term LK�=n. So in the limit asB !1 and N;n!1 the in�mum is over pathsx(�) 2 �A such that _x = u� c(x).Hence� infj0;::: ;jnu1;::: ;unui2Sjiji�1�n nXi=1 I(u) � � infx(�);u(�)_x=u�c(x)x(�)2 �A Z �0 I(u)dt:25

Proof of the lower boundAgain B� = nm and divide time into n blocks of mepochs. Let �i = i�=n. Pick any �x 2 Ao.
�-pipe 2 Ao0 �1 �2 �2 � = nmB

K�
�x(�) 2 Ao1m imXt=(i�1)m+1Ut � �u(�i); 8i) xB(�) 2 �-pipe � Ao:So limB!1 1B log�B(A) � limB!1 1B logP �xB(�) 2 �-pipe�� limB!1Xi 1B logP 0@ 1m imXt=(i�1)m+1Ut near �u(�i) ������ � � �1A� � Z �0 I(�u) dt� �(�):Hence limB!1 1B log �B(A) � � infx(�);u(�)_x=u�c(x)x(�)2Ao Z �0 I(u)dt:26

The control problemTheorem 4 Suppose A1{A3 hold. ThenlimB!1 1B log P (X1t � B)= � inf�;x(�);u(�)_x=u�c(x)x(0)=(0;0); x1(� )=1 Z �t=0 I(u(t))dt:Proof. De�ne A as the set of paths for whichx(0) = 0 and x1(� ) � 1. Show that as � !1 theupper and lower bounds are the same, and independentof the starting state x(0) = 0. Alternatively, use abounding argument (see below).This is an optimal control problem that can be solvedusing Pontryagin's maximum principle. We choose u tomaximize H(x; u; �), whereH = �T (u� c)� I(u);_�i = ��T @c@xi;_xi = u� ci:27

Its solution for two bu�ers and fair sharesConsider the case in which there are just two bu�ers andthe service discipline is `weighted fair-shares'. That is,bu�er i is guaranteed at least �ic when it is not empty.But if a bu�er is empty the surplus bandwidth can beallocated to serving the other bu�er. Then assumingmi = EUit � �ic,Theorem 5limB!1 1B log P (X1t � B)= �min�>0 minu1+u2=c+1=�;u2��2c � [I1(u1) + I2(u2)]= � minu1+u2>c;u2��2c I1(u1) + I2(u2)u1� (c� u2) :
u2 = m2_x2 = m2 � �2c0 � �_x2 = u2 � u2 = 0_x1 = u1 � (c� u2) 1

�u1 = m1_x1 = m1 � �1c
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BoundsWe desire the proportion of time that bu�er 1 is fullwhere bu�er 1 is of size B.1. For an upper bound we suppose bu�er 1 is of size Band bu�er 2 is in�nite. Initially, the state is (B; 0).We calculate the asymptotic for the probability thatbu�er 1 is at level B at �B and let B !1.2. For a lower bound we suppose bu�er 1 is in�nite andbu�er 2 is of size B. Initially, the state is (0; B).We calculate the asymptotic for the probability thatbu�er 1 is full at �B and let B !1.These are pathwise bounds for the desired probabilityand yet they have the same asymptotic.
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Character of the solutionSuppose we consider the most likely way that bu�er 1can �ll over time [0; �B], when X0 = (0; 0).For a given � , the optimal choice of u1; u2 can takeone of two forms:1. I 02(�2c) � I 01(�1c+ 1=� ): In this caseu1 = �1c+ 1=� , u2 = �2c.2. I 02(�2c) > I 01(�1c+ 1=� ): In this caseu1 = c + 1=� � u2, u2 < �2c, where these arechosen so that I 02(u2) = I 01(u1).This is the same asymptotic that would result if bothsources were sharing a single bu�er of size B.
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Costs and risk-sensitivitySuppose one wishes to choose a scheduling policy � tominimize over time [0; B� ] the cost function,�B = inf� E " B�Xk=0  �XBk ; Uk=B; k=B�# :Following an idea of Whittle (1990), a `risk-sensitive'form of this would have cost��B = inf� E "exp � B�Xk=0  �XBk ; Uk=B; k=B�!# :The idea is that � > 0 makes one sensitive not only tothe expected cost but also the variance of the cost.Taking � < 0 corresponds to `risk-seeking' behaviour.
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Risk-sensitive control problem��B = inf� E "exp � B�Xk=0  �XBk ; Uk=B; k=B�!# :By Varadhan's Lemma the large B asymptotic for �B iscomputed by multiplying the cost of a path by itsprobability and �nding the combination of greatest cost,solimB!1 1B log ��B= inf� supx(�);u(�)_x=u�c(x) Z �t=0�(x; u; t)� I(u)dt:where the in�mum over � is understood as an in�mumover a set of admissible c(�), e.g., a class of thresholdpolicies. This may lead to interesting control problemsand scheduling rules.
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