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Sharing Files

A file sharing system Peers contribute files to a shared library of
files which they can access over the Internet.

Q1

Q2

Q3

Q4

Q5

Peer i shares Qi files.
The benefit to peer j is θju(Q1 + · · · + Q5).



Sharing WLANS

A sharing of wireless LANS system Peers share their wireless
Local Area Networks so that they can enjoy Internet
access via one another’s networks whenever they
wander away from their home locations.

Q1

Q2 Q3

Q4

Q5

Peer i makes his WLAN available for a fraction Qi of the time.
The benefit to peer j is θju(Q1 + · · · + Q5).



Grid Computing

A sharing of computing resources Participants share computing
resources, statistically multiplexed through time.
Peer i is present a fraction αi of the time.

Q1

Q2

Q3

Q4

Q5

If the set S ⊂ {1, 2, 3, 4, 5} of peers need resources at the same
time, and peer i ∈ S, then he receives a share yi(α,θ, S) and
obtains benefit θiu(αi, yi), where

∑

j∈S

yj(α,θ, S) ≤ Q1 + · · · + Q5 .



Free Rider Problem

All our example systems can suffer from the free rider problem.
Each peer would like to contribute only a very few files, very little
wireless LAN resources, or only a little computing resource, and yet
fully to enjoy the system that others have provided. This is a
typical problem in the provision of shared resources.



Free Rider Problem

All our example systems can suffer from the free rider problem.
Each peer would like to contribute only a very few files, very little
wireless LAN resources, or only a little computing resource, and yet
fully to enjoy the system that others have provided. This is a
typical problem in the provision of shared resources.

I Free riding is rational for peers, but leads to inefficiency.

I We should like to provide incentives for peers to act
‘honestly’, and enable systems of appropriate size to be built.

I Peers should benefit from the system in proportion to their
contributions.
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A bridge may or may not be built. There are 2 potential users.
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Example: A Bridge

A bridge may or may not be built. There are 2 potential users.

Mathematical Bridge, Queens’ College, Cambridge

If it is built (at costs $1) then user i benefits by $θi. Knowing θ1

and θ2, we should build the bridge if θ1 + θ2 > 1.

If we build the bridge we must charge for the cost. Suppose we
decide to charge user i a fee of θi/(θ1 + θ2). The problem is that
user i will have an incentive to under-report his true value of θi.

What is the best fee mechanism, p1(θ1, θ2) and p2(θ1, θ2)?
Fees should incentivize users to truthfully reveal θ1, θ2, with

p1(θ1, θ2) + p2(θ1, θ2) = 1 or 0 , as bridge is built or not built .



Economic Model

I n agents participate in providing and sharing resources.

I The total resource pool they provide is of quantity Q.

I The total cost of providing it is c(Q).

I Agent i has a usage frequency αi (exogenous and public
knowledge), and a preference parameter θi (private
knowledge).

I Agent i declares θi, and is required to pay pi(α,θ).

α = (α1, . . . , αn), θ = (θ1, . . . , θn).

I This permits a system of size Q(α,θ) to be built.

I When the set of agents who are seeking to share is
S ⊆ {1, . . . , n}, agent i receives a share yi(α,θ, S).

I Agent i obtains benefit θiu(αi, yi).



The Social Planner’s Problem

A social planner wishes to maximize social welfare:

SW = ES

[

n
∑

i=1

θiu(αi, yi(S)) − c(Q)

]

I If he knew the θ1, . . . , θn he would choose Q optimally and
share it optimally (the so-called first-best optimum).

I However, in practice he might have to elicit θi indirectly by
asking agent i to volunteer paying some pi.

I Since cost c(Q) must be met by the agents’ payments
(possibly ‘in kind’) we must have c(Q) ≤

∑

i pi(α,θ).



Peer-to-peer: the case of

Nonrivalrous, Nonexcludable Resources

u(αi, yi(α,θ, S)) = u(Q(θ))
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The Mechanism Design Problem

The social planner has a mechanism design problem.

It is a sort of game: the planner asks agent i to declare θi. The
agents know that as a function of what they say,

I the system size (quality/quantity) will be Q(θ1, . . . , θn);

I agent i will required to make payment pi(θ1, . . . , θn);

I agent i will be excluded with probability πi(θ1, . . . , θn).

Knowing that the planner will adopt this mechanism, the agents
behave self-interestedly.

The planner wishes to design the mechanism so that the expected
social welfare is maximized (achieving the so-called second best

optimum).
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Example

Suppose

u(Q) = 2
3Q1/2 , c(Q) = Q ,

θ1, . . . , θn are known a priori to be i.i.d. samples from U [0, 1].

The first best policy has expected social welfare

SW = E

[

max
Q

{

n
∑

i=1

θiu(Q) − c(Q)

}]

=
1

36
n2 +

1

108
n

The second-best policy (difficult to compute!) achieves about 84%

SW =
3

128
n2 +

7

148
n + O(1)
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What if exclusions are not allowed?

I First-best social welfare

1

36
n2 +

1

108
n

I Second-best social welfare

3

128
n2 +

7

348
n + O(1) .

I Second-best social welfare (without exclusions)

n(
√

1 + 3n − 1)

27
.



Simple ‘Equal Contribution’ Schemes

Suppose we try a simple mechanism in which all participants pay
the same fee, or make the equal contributions, perhaps in kind.

I Post a size Q and share the cost equally. Agent i participates
if he has

θu(Q) − c(Q)E(1/X) ≥ 0 ,

where X has the a priori distribution of the number who will
participate. Choosing Q optimally,

SW =
3

128
n2 − 1

384
n + O(1)



I Post a fee φ and then build the largest facility that can be
covered by the fees. Agent i participates if he has

θu(Xφ) − φ ≥ 0 ,

where X has the a priori distribution of the number who will
participate. Choosing φ optimally gives

SW =
3

128
n2 +

7

1536
n + O(1)
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I Post a fee φ and size Q. Agent i participates if he has

θiu(Q) − φ ≥ 0 .

Choosing φ,Q optimally, and also so expected cost is covered,

SW =
3

128
n2

I This is almost as good as achieved by the second-best
mechanism:

SW =
3

128
n2 +

7

148
n + O(1)

We aim to understand why this is, and generalize the type of
simple mechanism that just posts a fee φ and size Q.



The Social Welfare Maximization Problem

Maximize expected social welfare:

maximize
π1(·),...,πn(·), Q(·)

E
[

∑n
i=1 πi(θ)θiu(Q(θ)) − c(n,Q(θ))

]

The expectation here is over θ = (θ1, . . . , θn), where these are
assumed to be i.i.d. samples from some distribution with known
distribution function F and density f .

The maximization is subject to constraints as follow.
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The maximization is subject to an ex-ante budget balance

constraint, that expected payments balance with the expected cost

E
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= c(n,Q(θ)) .



Budget Balance

The maximization is subject to an ex-ante budget balance

constraint, that expected payments balance with the expected cost

E
[

∑n
i=1 πi(θ)pi(θ)

]

= c(n,Q(θ)) .

Surprisingly, there is no decrease in social welfare if we require the
stronger ex-post budget balance constraint, that

∑n
i=1 πi(θ)pi(θ) = c(n,Q(θ)) .



Individual Rationality

Also ex-ante individual rationality constraints, that each agent
can expect positive net benefit:

Eθ−i

[

πi(θi,θ−i) {θiu(Q(θi,θ−i) − pi(θi,θ−i)}
]

≥ 0 , for all θi .



Incentive Compatibility

Also ex-ante incentive compatibility constraints, that each
agent i does best by declaring his true θi rather than declaring
some other θ′i:

Eθ−i
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≥ Eθ−i
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πi(θ
′
i,θ−i)

{

θiu(Q(θ′i,θ−i) − pi(θ
′
i,θ−i)

}

]

,

for all i and θ′i .



Incentive Compatibility

Also ex-ante incentive compatibility constraints, that each
agent i does best by declaring his true θi rather than declaring
some other θ′i:

Eθ−i

[

πi(θi,θ−i) {θiu(Q(θi,θ−i) − pi(θi,θ−i)}
]

≥ Eθ−i

[

πi(θ
′
i,θ−i)

{

θiu(Q(θ′i,θ−i) − pi(θ
′
i,θ−i)

}

]

,

for all i and θ′i .

This constraint does not decrease the maximum SW that we can
obtain. The revelation principle says that any Nash equilibrium
that can obtained by some mechanism can also be obtained by an
incentive compatible mechanism.



The Equivalent Problem

Let us define

g(θi) = θi −
1 − Fi(θi)

f(θi)
.

E.g., g(θi) = 2θ1 − 1 when θi ∼ U [0, 1].



The Equivalent Problem

Let us define

g(θi) = θi −
1 − Fi(θi)

f(θi)
.

E.g., g(θi) = 2θ1 − 1 when θi ∼ U [0, 1].

It can be shown that the mechanism design problem reduces to

maximize
π1(·),...,πn(·), Q(·)

E
[

∑n
i=1 πi(θ)θiu(Q(θ)) − c(n,Q(θ))

]

subject to a single constraint:

E
[

∑

i πi(θ)g(θi)u(Q(θ)) − c(n,Q(θ))
]

≥ 0 .

A key idea is that this can be solved by Lagrangian methods (but
this must be proved).



The Lagrangian

That is, for some λ > 0 the problem can be solved by maximizing
a Lagrangian of

E
[

∑n
i=1 πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n,Q(θ))

]

.



The Lagrangian

That is, for some λ > 0 the problem can be solved by maximizing
a Lagrangian of

E
[

∑n
i=1 πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n,Q(θ))

]

.

The maximization is carried out pointwise.
Given θ, the values of π1(θ), . . . , πn(θ) and Q(θ) are chosen to
maximize

A(θ, λ)u(Q(θ)) − c(n,Q(θ))

where

A(θ, λ) =

∑n
i=1 πi(θ)(θi + λg(θi))

1 + λ
.

Assuming θi + λg(θi) is increasing in θi we will exclude agents with
small θi, such that θi + λg(θi) < 0.



Optimal mechanism design for the bridge

Suppose n = 2, θ1, θ2 ∼ U [0, 1]. The bridge costs 1 to build.
First-best optimum has SW = 1/6 = 0.1666̇.

A possible second-best mechanism builds the bridge only if
θ1 + θ2 ≥ 1.25 and obtains SW = 9/64 = 0.140625.

Agent i pays fee of

pi(θ) = (1/2)θ2
i − 1/32 , θi > 1/4 ,

= 0 , otherwise.

However, this mechanism is not ex-post budget balanced

p1(θ) + p2(θ) 6= 1{θ1+θ2≥1.25}



An ex-post budget balance design

The optimal design is not unique. There is an equally good
second-best mechanism in which agent 1 pays fee of

p1(θ) = 1
21{θ1+θ2≥1.25} +

(

3
32 − 1

2θ1(1 − θ1)
)

1{θ1≥.25}

−
(

3
32 − 1

2θ2(1 − θ2)
)

1{θ2≥.25}

Now there is ex-post budget balance, as

p1(θ) + p2(θ) = 1{θ1+θ2≥1.25} ,

but this is still unsatisfactory.
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A better optimal mechanism design for the bridge

An even better second best optimal mechanism design has agent 1
paying a fee

p1(θ) =
(

1
3(θ1 − θ2) + 1

2

)

1{θ1+θ2≥1.25} .

This design has the advantages over the previous scheme.

1. p1(θ) ≥ 0.

2. p1(θ) = 0 when the bridge is not built;

3. θ1 − p1(θ) > 0 when it is built (ex-post individual rationality).



An fixed-fee design

Note that we might simply announce that we will charge a usage
fee of $0.50 and build the bridge if and only if both users are
willing to pay. This produces SW of 1/8 = 0.125. This is less than
the 9/64 = 0.140625 that is achieved with an optimal design.



The Asymptotically Optimal Mechanism

The full solution of our problem is, in general, very complex.

Our new idea (Theorem 1) is that, when n is large, a nearly
optimal solution is achieved with a simple mechanism design.

Intuitively, if n is large then we would expect about nf(t) dθ
agents to have values of θi in the interval [t, t + dθ]. So if we build
a system of size Q and charge a fee of φ, then agents with θ ≥ θ∗

will decide to participate, where θ∗u(Q) = φ. The social welfare
will be about

n

(
∫ 1

θ∗
θu(Q)f(θ) dθ

)

− c(Q) ,

and we will collect fees that about cover our cost if

n[1 − F (θ∗)]φ = n[1 − F (θ∗)]θ∗u(Q) ≥ c(Q) .



The Near Optimality of the Asymptotic Mechanism

Theorem 1
Let P be the problem of maximizing second-best social welfare,
and suppose the maximal value is Φn. Let Q∗ and θ∗ be the
optimizing decision variables in the problem P∗, defined as

maximize
θ∈[0,1],Q≥0

{

n

(
∫ 1

θ
ηf(η)dη

)

u(Q) − c(n,Q)

}

subject to
n[1 − F (θ)]θu(Q) − c(n,Q) ≥ 0 .

Let the optimal value be Φ∗
n. Suppose we take as a feasible

solution to P the decision variables πi(θ) = 1{θi ≥ θ∗} and
Q(θ) = Q∗. Then the expected social welfare under this
(suboptimal) mechanism is Φ∗

n, and this is asymptotically optimal,
in the sense that Φn/Φ∗

n = 1 + O(n−1) (under Assumption 1), or
Φn/Φ∗

n = 1 + O(1/
√

n) (under Assumption 2).



Assumptions

Assumptions are that u(·) and c(·) are concave and convex
respectively, and grow as powers of Q.

Assumption 1.

u(Q) = AQα ,

c(n,Q) = BnδQβ ,

where A,B > 0, δ ≥ 0, 0 < α ≤ 1, β ≥ 1, and α < β.

Assumption 2. There are positive constants A1, A2, B1, B2, and
a function h such that for all Q and n,

A1Q
α ≤ u(Q) ≤ A2Q

α ,

B1h(n)Qβ ≤ c(n,Q) ≤ B2h(n)Qβ .
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Numerical Example

u(Q) = 2
3Q1/2 , c(Q) = Q , θ1, . . . , θn are i.i.d. U [0, 1].

I Second-best social welfare is

Φn =
3

128
n2 +

7

348
n − 1

162
+ o(1) .

I Approximate second-best social welfare is Φ∗
n =

3

128
n2, with

Q∗ = n2/64 and φ∗ = n/48.

I Φn/Φ∗
n = 1 + 0.858n−1 + o(1/n).



We have here a theorem, which for θ1, . . . , θn i.i.d., compares the
solution of

maximize
x(·)

Eθ

[

n
∑

i=1

f(θi, x(θ))

]

, s.t. Eθ

[

n
∑

i=1

g(θi, x(θ))

]

= b

with the solution of

maximize
x

n
∑

i=1

Eθi

[

f(θi, x)
]

, s.t.

n
∑

i=1

Eθi

[

g(θi, x)
]

= b

The key idea that permits the solutions to be compared is that the
constraint can be accommodated in a Lagrangian.
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paid in kind as the number of files that agent i is required to
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The Applications

I File sharing. Q is content availability. The fee pi = Qi is
paid in kind as the number of files that agent i is required to
share, and Q =

∑

i Qi.

I WLAN sharing. Q is coverage — availability of WLAN
service at a random geographic point. The fee pi is paid in
kind as the availability, or rate of roaming requests served to
others by agent i’s WLAN in i’s home geographic location.
For this model we can take the cost in a form
c(m,Q) = γmQ =

∑

i γmQi so that the cost depends on the
number of peers, m, who participate.



Ex-ante and ex-post constraints

I We have solved a very complicated sort of constrained
optimization problem.

I We have solved a problem with an ex-ante budget balance
constraint, but remarked that that budget balance can be
achieved ex-post.

I The asymptotically approximate solution is simple, but
somewhat unsatisfactory, because excluded agents are
required to pay. This might be hard to enforce in practice.

I Individual rationality and incentive compatibility we imposed
only ‘on average’. This may be enough if we see things as a
‘repeated game’.
But can we guarantee more?



Ex-ante constraints

Under ex-ante constraints we are to maximize expected SW
subject to a ‘budget balance’ constraint:

E
[

∑n
i=1 pi(θ) − c(Q(θ))

]

= 0 , (1a)

‘individual rationality’ constraints, :

Eθ−i

[

πi(θi,θ−i)θiu(Q(θi,θ−i) − pi(θi,θ−i)
]

≥ 0 , (1b)

and ‘incentive compatibility’ constraints:

Eθ−i

[

πi(θi,θ−i)θiu(Q(θi,θ−i) − pi(θi,θ−i)
]

≥ E
[

πi(θ
′
i,θ−i)θiu(Q(θ′i,θ−i) − pi(θ

′
i,θ−i)

]

. (1c)



Ex-post constraints

Under ex-post constraints we are to maximize expected SW
subject to a ‘budget balance’ constraint:

∑n
i=1 pi(θ) − c(Q(θ)) = 0 , (2a)

‘individual rationality’ constraints, :

πi(θi,θ−i)θiu(Q(θi,θ−i) − pi(θi,θ−i) ≥ 0 , (2b)

and ‘incentive compatibility’ constraints:

πi(θi,θ−i)θiu(Q(θi,θ−i) − pi(θi,θ−i)

≥ πi(θ
′
i,θ−i)θiu(Q(θ′i,θ−i) − pi(θ

′
i,θ−i) . (2c)



Strengthening the Constraints

Theorem 2 Given a mechanism design π1(·), . . . , πn(·), Q(·),
p1(·), . . . , pn(·) satisfying the ex-ante constraints (1a), (1b) and
(1c), there is a mechanism design which achieves the same value
of expected social welfare, but which additionally satisfies the
ex-post budget balance constraint (2a).

It is also possible to arrange that (1b) can be partially replaced by
(2b), (ex-post individual rationality), so that pi(θi,θ−i) = 0
whenever π(θi,θ−i) = 0.
This is nice since it says we need not take payments from (or pay)
agents who are completely excluded from the system.



Strengthening the Constraints

Theorem 3 Given a mechanism design π1(·), . . . , πn(·), Q(·),
p1(·), . . . , pn(·) satisfying the ex-ante constraints (1a), (1b) and
(1c), there is a mechanism design which achieves the same value
of expected social welfare, but which additionally satisfies the
ex-post individual rationality and incentive compatibility
constraints (2b) and (2c).



Proof of Theorem 2. Suppose we start with some scheme which
satisfies ex-ante constraints (1a), (1b) and (1c).

1. We construct a new scheme that is closer to satisfying the
ex-post constraint (2a) by making an adjustment to the
original scheme. This involves increasing and decreasing the
payments that some pair of agents make in various
circumstances.

2. The adjustment is similar to a step in the transportation
algorithm. E.g., payments change as

p1(θ) → p1(θ) −ε
p1(θ

′′) → p1(θ
′′) +ε

p2(θ
′′) → p2(θ

′′) −ε
p2(θ

′) → p2(θ
′) +ε

3. After finitely many such steps the scheme that satisfies (2a).



Summary

I We have explored effects of externalities that arise in
peer-to-peer systems by the study of a simple model or a
nonrivalous nonexcludable good.

I Found that an ‘equal contribution’ scheme performs well as a
control for large n.

I The scheme is easy to implement and enforce.
I Simple to compute optimal fee.
I Can model payments that are ‘contributions in kind’.
I It is the first term of a more exact solution.

I Results can be extended to multiple constraints (subsets of
peers must pay for certain portions of the total cost. E.g.,
perhaps peers in the same city must contribute ‘in kind’ to the
total amount of shared WLAN that available in that city.)

I Robust (when users respond iteratively to the size of system
they see produced then the system converges to an
equilibrium where social welfare is maximized).



Grid Computing: the case of

Rivalrous, Excludable Resources

u(αi, yi(α,θ, S)) = αiu(yi(α,θ, S))



The game

1. The mechanism designer posts rules.

2. Agent i declares θi truthfully (assuming incentive
compatibility is designed into the rules). αi is exogenous and
public knowledge.

3. A system is built of size Q(α,θ), and is shared so that

∑

i∈S

yi(α,θ, S) ≤ Q(α,θ) .

4. The system is self-financing. Agent i pays pi(α,θ) and

c(Q(α,θ)) ≤
n

∑

i=1

pi(α,θ) .

The charge pi(α,θ) can either occur up front, or as a usage
charge. They are equivalent so far as incentivizing agents.



The mechanism design problem

The aim is to maximize the social welfare

E

[

n
∑

i=1

[θiu(yi(α,θ, S)) − pi(α,θ)]

]

subject to the ex-post constraints

c(Q(α,θ)) ≤
n

∑

i=1

pi(α,θ)

∑

i∈S

yi(α,θ, S) ≤ Q(α,θ)

and also constraints of ex ante individual rationality and incentive
compatibility.



A special case

I Suppose θ1 = · · · = θn = 1, α1, . . . , αn ∼ U [0, 1], C(Q) = Q,

u(αi, yi) = αiu(yi) ,

and the system is large so that
∑

i∈S

yi(α,θ, S) ≤ Q(α,θ)

is nearly the same as

n
∑

i=1

αiyi(αi) ≤
n

∑

i=1

p(αi) .

I We offer agents a choice of tariffs {p(a), y(a)}, 0 ≤ a ≤ 1,
designed to be incentive compatible, in the sense that

αi = argmax
a

{αiu(y(a)) − p(a)} .



A calculus of variations problem

The problem becomes:

maximize
y(·), p(·)

∫ 1

0
[au(y(a)) − p(a)] da

where for incentive compatibility we require

au′(y(a))y′(a) − p′(a) = 0

and as a capacity constraint we have

∫ 1

0
ay(a) da ≤

∫ 1

0
p(a) da .

This can be solved using Pontryagin’s Maximum Principle (after
some changes of variables and the use of a Lagrange multiplier
with the second constraint).



The optimal control problem

Let x1(a) denote the net benefit of by an agent having αi = a.
The formulation as an optimal control problem is

maximize
v(·)

∫ 1

0
x1(t) dt

subject to

0 = w +

∫ 1

0
[tu(x2(t)) + x1(t) − tx2(t)] dt

x′
1(t) = x2(t)

x′
2(t) = v(t)

x1(t) ≥ 0

x2(t) ≥ 0

v(t) ≥ 0

w ≥ 0



The solution

For u(y) =
√

y the solution is

x1(a) =

{

0 , 0 ≤ a ≤ 0.1586
−0.2677 + 0.5942 a − 0.0942 log(a) , 0.1586 ≤ a ≤ 1

p(a) = ax2(a) − x1(a)

y(a) = x2(a)2

1. The social welfare is 0.1161 per agent, which is a bit less than
the 0.125 that could be obtained by a central planner.

2. Note that agents with small α (less than t∗ = 0.1586) are
completely prevented from participating.



The optimal tariffs

Red lines show p(α) and y(α) (the amounts that agents will pay
and receive). Most agents receive more than for what they pay.
But some agents, with small values of α receive less than they
contribute. However, if going-it-alone is not possible they will take
up this scheme, since their net benefit is positive.
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In blue we show x1(t) (an agent’s net benefit), and in green t2/4
(an agent’s stand-alone net benefit).



The optimal tariffs

It is optimal to offer to provide y(p) for a payment p.

y(p) = 0.3531 + 0.3531e−21.23 p − 0.7062e−10.61 p , 0 ≤ p ≤ 0.1735 .
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Summary

I We have modelled the sharing of rivalrous excludable good
such as the computing resources shared in grid computing.

I We see that just as in the model for a nonrivalous
nonexcludable good, it is optimal to set tariffs that effectively
exclude from participating agents who value the system little.

Intuitively, we need to prevent agents who value the system
highly from masquerading as those who don’t, so there is
social benefit in excluding the latter type of agent.
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