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OUTLINE

1. Bin packing, an introduction

2. Discrete uniform distributions and the {8,11} con-

jecture for Best Fit
3. A Markov chain model and how to deal with it
4. Potential functions and the conjectures they resolve

5. Average case analysis of First Fit Decreasing



BIN PACKING

GIVEN: a list of n items L, with sizes

aiy...,a, € (0,1],

FIND: A packing of the items into a minimum number of

unit capacity bins.

~ OPT(L) =4



DEFINITIONS

Given a list of items L with item sizes in (0, 1] and an

algorithm A,

A(L) = number of unit capacity bins used when A
packs L.

OPT (L) = minimum possible number of unit capacity

bins into which L can be packed.

s(L) = sum of sizes of items in L.

(note OPT(L) > s(L))

wp(L) = A(L) — s(L) is the ‘waste’ of the packing
of L by A.



HOW DIFFICULT IS BIN-PACKING?

THEOREM (Karp 1972)
To find the optimal packing (off-line) is NP-hard.

THEOREM (Karmarkar and Karp 1982)

There is a O(n'?) polynomial-time off-line algorithm A

such that for all L,

A(L) < OPT(L) + log?(OPT(L))

THEOREM (Brown 1980, Liang 1980)
Given any on-line algorithm A and n > 0 there is a list

L with |L| > m such that
A(L) > 1.536 OPT(L)

(Van Vliet, 1991, 1.536—1.540.)



ALGORITHMS

FIRST FIT: place next item in lowest indexed bin into
which it fits (FF).

This is an ‘on-line’ algorithm.

BEST FIT: place next item in smallest gap into which it
fits (BF).

FIRST (BEST) FIT DECREASING: first sort the list into
nonincreasing order (FFD/BFD).

This is an ‘off-line” algorithm.



WORST CASE RESULTS

THEOREM (Garey, Graham, Uliman, 1972)
For all lists L,
FF(L),BF(L) < YOPT(L) + 1
For all lists L with sizes in (0,1/2],
FF(L),BF(L) < ;OPT(L) + 1
For all lists L with sizes in (0,1/4],
FF(L),BF(L) < 20OPT(L) + 1

THEOREM (Johnson, 1973)
For all lists L,
FFD(L),BFD(L) < JOPT(L) + 4
For all lists L with sizes in (0,1/2],
FFD(L),BFD(L) < 20PT(L) 4+ C

= 60
For all lists L with sizes in (0,1/4],
FFD(L),BFD(L) < 20PT(L) +C

— 20



CONTINUOUS AND DISCRETE
UNIFORM DISTRIBUTIONS

Continuous uniform:
UO,u]l, uw<1
sizes uniformly drawn from

(0, u].

Discrete uniform:
ULk}, 5 <k
sizes uniformly drawn from

{1/k,2/k, ..., j/k}.



AVERAGE CASE PERFORMANCE OF
NF UNDER U (0, u]

NEXT FIT: if the current item doesn’t fit in the last bin

start a new bin (NF)

THEOREM (Comean, Hofri, So and Yao, 1980)
( NF(Ln, 1)
OPT(Ln, 1)

4
> — (~ 1.333
|-, (~133)

THEOREM (Karmarkar, 1982)

1.359, u = 0.9
1.361, u = 0.8

NF(L,, u)
E > 1.328, u = 0.7

OPT(L,,u)
1.259, u = 0.6

1.195, uw = 0.5

Simulations indicate that NF(L,,, u) /OPT(L,,, u) peaks

around v = 0.8.



NOTATION FOR ASYMPTOTIC GROWTH RATES

f(n) = O(g(n))

means 33 > 0 s.t. f(n) < Bg(n) for all n.

f(n) = Q(g(n))

means da > 0 s.t. ag(n) < f(n) for all n.

f(n) = ©(g(n))

means Ja, B > 0st. ag(n) < f(n) < Bg(n) for

all n.



AVERAGE CASE PERFORMANCE UNDER U (0, u]

List of o items, sizes ~ U (0, u], u < 1

Ewopr = O(1)

Fwrprp = 0(1), v < 1/2

Ewppp = O(n'/?),1/2 < u < 1*

Minimal waste for an on-line algorithm = @(n1/2)T
FEwpr =7 Ewpp =7

(Simulations indicate linear waste for all u < 1.)

List of o items, sizes ~ U (0, 1]

E’UJQPT, E’UJFFD — @(’nl/2) i

Minimal waste for an on-line algorithm = @(nl/2 log"

Fwgp = ©(n'/?log®* n)}
E’UJFF (")(’1’1,2/3)1T

*Bentley, et al 1984

TShor, 1986, 1991

tKnoder, 1981, Lueker, 1982
8Shor, 1986

TShor, 1986, Coffman, Johnson, Shor and Weber, 1991

/2 n)



AN ON-LINE PACKING THEOREM

Suppose items can are chosen amongst the real-valued
sizes {ai,...,a;} with probabilitiesp = (p1,...,p;)

respectively.

A ‘perfect packing configuration’, can be specified by the
vector ¢ = (c¢y,...,¢;j), such that ¢; items of size aq,
plus c3 items of size aq, ..., plus ¢; items of size a;, will

perfectly pack into a unit size bin.

Let C' be the set of all vectors specifying possible perfect
packing configurations and let A C RJ be the convex

cone spanned by the elements of C'.

EXAMPLE

123
70707

tion vectors are (1,0, 2), (0,2,1), (7,0,0), (1, 3,0),
(5,1,0), (2,1,1), (3,1,1), (4,0,1).

Suppose item sizes are { }. So packing configura-



AVERAGE CASE FOR OPTIMAL ALGORITHM
UNDER DISCRETE DISTRIBUTION

Let C' be the set of all vectors specifying possible perfect
packing configurations and let A C R’ be the convex

cone spanned by the elements of C'.

THEOREM (Courcoubetis and Weber, 1986)

For on-line packing,

O(1) A°
Ewopr = { ©(n'/?) asp € { bdy(A)
O(n) A€

® The proof that Ewopr = O(1) in the first of these
cases involves a randomizing algorithm with this prop-
erty, I.e., one that decides into which partially full bin

to put an item according to a probabilistic rule.

e Clearly, randomization is not necessary. It is possible,
but not easy, to construct a complicated deterministic

algorithm that has provably O (1) expected waste.

e Can any well-known heuristic algorithms, such as BF

or FF be proved to achieve O(1) waste?



THE U{j, k} CASE
In the U{j, k} case, sizesare 1/k,2/k,...,3/k and

P = (1/.7991/.7)

We can prove a combinatorial result about perfect pack-

Ings to show p € A°, and hence

THEOREM Under U {3, k},

0(1), 1<j<k—1

Fwors(l) = O (nl/? € {k,k—1
(n )a J € { ’ }

The combinatorial result we need in order to show p € A

Is that there exist integers r and m, with
rj(j +1)/2 = mk,

such that r7 items, r of each of the sizes 1, ..., 7, can

be packed perfectly into m bins of size k.

A slightly stronger result is needed to show p is strictly
Inside A.



AN IRRESISTIBLE DIGRESSION

THE PERFECT PACKING THEOREM
For all r, 3, k, 3 < k, such that

klr@4+2+4+---4+7) [=7i(G+1)/2]

the set of rj items, comprising r each of sizes 1,2 ..., 7,

can be packed perfectly into bins of size k.

The proof of this is rather difficult. Even the following

simpler theorem requires some ingenuity to prove.

THE SIMPLE PACKING THEOREM
For all 3, k, 3 < k, such that

El1+2+---473) [=30+1)/2]

the set of 7 items, comprising one of each of the sizes

1,2...,7, can be packed perfectly into bins of size k.



AVERAGE CASE UNDER DISCRETE DISTRIBUTION
U{j,k}

THEOREM (Comean, Courcoubetis, Garey, Johnson, McGeoch,
Shor, Weber and Yannakakis, 1991)
If 3 € {k,k — 1}, then

Fwgp = O(n'?log**k).
E’UJFF = @(n1/2k1/2).

and for any on-line algorithm

Fwy = Q(n'/?log'? k).

If 7 < 2k + 2.5 — 1.5, then

OPEN PROBLEM If v/2k +2.5—-1.5 < 3 < k-2,
then

E’UJBF =7

Simulations suggest waste can be both O(1) and ©(n).

Some results are known for small values of 3 and k.



OPEN PROBLEM

Prove that BF or FF has ®(n) expected waste under

some distribution, either the continuous uniform
UO,u], u<1,
or the discrete uniform

U{jak}a .7 <k-1.

For U (0, u], one suspects Fwpgpr = ©(n), for all

u < 1, but this problem remains open.

For U{j, k}, the first likely candidate for linear expected
waste is U {8, 11}.



MARKOV CHAIN MODEL
FOR BF AND U {8, 11}

Empirical observation of the {8, 11} case indicates that
bins with a gap of size 1 are created faster than items of
size 1 arrive, hence items of size 1 always go in gaps of
size 1 under the BF rule. With regard to bins with gaps

2,...,9 the process seems to be ergodic.

BF induces a Markov chain.

STATE:
(T2, T3, T4, T5, Tg, T, Ty, Tg) € 2T,
where &; = # of bins in current packing having a gap of
size 1.
(Making the conjecture &1 — 00)

Note: xg + ®7 + xs + 9 < 1 since at most one bin

can be less than half-full

TRANSITIONS:

There are 8 transitions in each state, each having proba-

bility 0.125.



BEHAVIOR OF BF UNDER U {8, 11}

TRANSITIONS

There are 8 transitions in each state, each having proba-
bility 0.125.

Let T'(x) be the set of eight possible transitions from
state @.

Fort € T'(x), let w(t) = 1 if t creates a new bin with

a gap of 1.

CONJECTURE

If P(x) is the equilibrium distribution of &, then

> P(x) ¥ (0.125)w(t) > 0.125
Z teT(x)

EMPIRICAL OBSERVATION
Average rate at which excess 1-gaps are produced over a
10,000,000 item packing ~ 0.0012, which suggests the
right hand side above ~ 0.1262, (> 0.125).



APPROXIMATING THE INFINITE MC

In observations of 1000 runs of BF for each m, the maxi-
mum component encountered in the state vector,
(5132, L3y L4y L5y LGy L7y Ly 5139),

7T, ave max max max

10° 13.8 20

10" 18.4 24

10° 23.1 27

TRUNCATING THE INFINITE CHAIN

t(x); = min{M, t(x)};

NUMBER OF STATES

(M+1)*+(M+1)*+(M+1)°+(M+1)+1
M # states
10 16,105
20 204,205
25 475,225

30 954 305
Our simulation studies used M = 30.



MULTI-DIMENSIONAL MARKOV CHAINS
- WHAT'S KNOWN -

THEOREMS (I\/Ialyshev, Menshikov, 1979, Fayolle, 1989)

For Markov chains in Z_‘f_,

® Simple conditions for ergodicity, null-recurrence and
transience for d = 2 when the Markov chain is

jump-bounded, i.e., || X,+1 — Xy|| < C, and

m-limited, i.e., * — o+ A has the same probability

as & — & + A, where &; = min(x;, m).
® Claims of results for d = 3, without proof.

® Suggested approach for larger d.



A LEMMA ABOUT DRIFTS

LEMMA (Hajek 1982)
Suppose X1, X2, ... is a random path of an irreducible
Markov chain; U is a finite subset of the state space .S;
~, B are positive reals, and ¢ is a positive-valued function
on S such that
(2)
|(Xn+1) — ¢(Xn)| < B almost surely,
and
(b)
Bl¢(Xu11)—$(Xa) | Xo =] < —v,2 € S\U.
Then

lim sup El¢(X,)] < oco.

Note that if ¢ is linear with positive coefficients then this
will imply E(||X,||) < oo, which will imply bounded

waste.



CAN WE USE A LINEAR POTENTIAL FUNCTION ?

Let £;(¢) is the transition effected by arrival of an item

of size 2.
ti(x) =+ 6;(x), 2=1,...,8,

Suppose we try a potential function ¢(x) = y'z. To
prove ergodicity we want to show there are y, A > 0

such that
0.0125 ii y'ti(x) —y'zr < —A <0
for all . Equivalently, we want
y'6(x) =y (0.0125§1 6i(a3)> < —A
where we define expected drift out of state x,
§(x) = BE(X1—Xo | Xo = ) = 0.0125 ii 8:(x)
KEY OBSERVATION

If &; > 1, then replacing x; by 1 does not change §(x),
which depends only on the pattern of non-zeros. Thus

there are actually only 2% constraints in the above.



LINEAR PROGRAM
Recall the definition of the expected drift out of state «,
§(x) = E(X1—Xo | Xo = 2) = 0.0125 5 6;(x)
1=1
Then we want to find a solution to the LP:
Maximize A

subject to y'8(x) < —A,
for all  with max(xz;) = 1,andy > 0, y» = 1.

SOLUTION
A = —0.09959 % 0

so there is no linear potential function that works.



m-STEP, m-LIMITED, MARKOV CHAIN
But now consider the expected drift over m steps:

This can be computed recursively.

NEW LINEAR PROGRAM
Maximize A
subject to y' 6™ (x) < —A,

for all  with max(xz;) = m, andy > 0, y» = 1.

SOLUTION
Finally get A > 0 for m = 20 (an LP with 35,784
constraints and solved by CPLEX in 37 seconds).

CONCLUSION

The 20-step Markov chain is ergodic and the equilibrium

value of E[5_, x;] < oo.

COROLLARY

Same holds for the 1-step chain.



DEALING WITH THE 1-GAPS

STATES: 1, x4, ..., x9,

—oo < 1 < 00, and o, ..., x9 > 0.
TRANSITIONS

As before except that creation of a 1-gap adds 1 to x;
and arrival of a 1-item subtracts 1 from @y, even if that

makes &1 go negative.

NEW LINEAR PROGRAM
Maximize A
subject to y' 6™ (x) < —A,

for all , and y2,...,y9 > 0, y; = —1.

If A > 0 then this means we must have £y — o0, 1.e.,

explosion of 1-gaps.

PROBLEM
The difficult is showing that there is negative drift for all
states, not just those with max(x;) = m. Restricted

to that finite set of states, the LP solution works for m =

15.



HOW TO GET NEGATIVE DRIFT FROM ALL STATES

TRANSITIONS

We look at the expected drift over M steps, where this is
now the minimum of 5,000 steps or 15 steps beyond the

first exit from the set
U= {x : x; <15, allz > 2}.

RECURSIVELY COMPUTE

the expected drift from every state, for the linear poten-

tial function ¢(x) = y 'z, where

y; = —1.000000

y, = 1.190854 yg = 0.003516
ys = 0.190854 y; = 0.091374
ys, = 0.376722 yg = 0.020421
ys = 0.329896 y9 = 0

(This is from the optimal solution to the LP restricted to
U and m = 15.) Note that U is finite, and for all initial
x & U there are only finitely many values of §°(x) to

compute.

We find that the drift is negative from all states.




CONCLUSION OF PROOF

CONCLUDE FROM THE ABOVE

For this chain the expected number of 1-gaps grows lin-

early to +o0.

EVEN STRONGER

Almost surely there will only be a finite number of steps
when &7 < 0. (Proof uses supermartingale argument

based on negative drift and fact that over 5014 steps the
drift is bounded.)

COROLLARY

There exists a state, say @, where there is positive prob-

ability that x; is never again < 0.

OBSERVATION
Given any initial state with ;1 > 0 the probability that

the true Markov chain reaches & is positive.

QED



ANOTHER DRIFT LEMMA

LEMMA (Coffman, Johnson, Shor, Weber, 1992)

Suppose X1, X2, ... is a random path of an irreducible
Markov chain; «v, B are positive reals, and ¢ is a positive-
valued function on S such that

(2)

|(Xn+1) — ¢(Xn)| < B almost surely,

and

(b)

Elp(Xni1) — ¢(Xn) | Xn =] > vB forall x.

Then for all v/ > ~

lim inf [qb(Xn) — vn 4+ (1 +~')/2n log n] > 0.

Note that this implies the Markov chain is transient.



USING LINEAR PROGRAMMING
TO DESIGN
QUADRATIC POTENTIAL FUNCTIONS

KEY OBSERVATION:

Suppose f(x) = x' Az, where A is a non-negative

and symmetric matrix. Then

20T AA + ATAA

f(z+A) - f(a)

IA

22:115

) %'Aj] + G
J
So

E[f(X1) — f(Xo) | Xo = =]

< 2Yx; + Cs

> aijb;(x)

Therefore we need to choose a;; s.t
?az‘j@'(w) < —2<0

for all 2 such that x; > m, and all x.

Actually, we take ¢p(x) = VT Ax.



KNOWN AND CONJECTURED RESULTS FOR
AVERAGE WASTE UNDER BF

73=13 4 5 6 7 8 9 10 11 12
k=5]|B-L2
6| B-L2 B-L4
7|B-L2 B-L3 B-L23
8| B-Q1 B-Q1 B-Q1 B-Q2
9 B-Th B-Q1 B-Q1 B-Q5 B-Q7
10 | B-Th B-Q1 B-Q1 B-Q1 B-Q15 B-Q13
11 | B-Th B-Q1 B-Q1 B-Q1 B-Q2 Ln-P B-x
12 | B-Th B-Q1 B-Q1 B-Q1 B-Q2 B-x Ln-P B-x
13 | B-Th B-Q1 B-Q1 B-Q1 B-Q1 B-x Ln-x Ln-x B-x
14 | B-Th B-Th B-Q1 B-Q1 B-Q1 B-Q7 B-x Ln-x Ln-x B-x
B= Bounded waste O(1)
Ln=Linear waste ®(n)
x= based on experimental evidence only
Th=proof based on theorem for 3 < +/2k + 2.5 — 1.5
P—= proof based on linear potential function and drift calculation
Lm= proof based on linear potential function, m steps
Qm= proof based on quadratic potential function, m steps




SURPRISE OF U {6, 13}

THEOREM
Expected waste for BF under U {6, 13} is O(1).

THEOREM
Expected waste for BFD under U{6,13} is ©®(n).

This goes against one’s intuition that the off-line algo-

rithm BFD does better than the on-line algorithm BF.



CONCLUSIONS

® There's still a lot more to learn about expected be-

havior of bin packing algorithms.

— For large k and 3 < k — 3 not only the 1-gaps
go to infinity.
— For 3 = k — 2, waste might be constant, but

proportional to k? log k, or something like that.
— FF 1s more complicated.

— Markov chain technique may have reached the lim-
its of its usefulness. Can these results be proved some

other way, not relying on long computation?

® Techniques here should be applicable to other prob-

lems (e.g., queues).

® This research has demonstrated the usefulness of the
computer in the mathematics of operations research,
both as an experimental tool to suggest conjectures,

and as an aid in constructing the proof of theorems.



OFF-LINE BEHAVIOR

THEOREM (Coffman, Johnson, Shor and Weber, 1994)

Suppose D is a discrete probability distribution over a

finite set of item sizes S. Then the expected waste of

FFD and BFD under D is one of
O(1) ©(»'?) ©(n)

There is a polynomial-time algorithm that, given D), de-

termines which case holds.



FFD FLUID ALGORITHM ANALYSIS
EXAMPLEOF 3 =6, £k = 13

Size = 6 5 4 3 21
Amount= 7»» » r r r r
A 1 1 1 1
3 3 2 2
4
_ 6 2 2
Bin 13 5 , 3 2 2
Type 3 2 2
6 2 2
° 4 3 2 2
Y
Amount r/2 r/2 r/'3 r/8 r/24 r/8

Thus the expected waste

n 1

1 n
X — X —=—=0(n)
6 13 8 624

The idea is to show, by arguments using the Central Limit
Theorem, that the average case behavior of FFD must be

close to that predicted by running the fluid algorithm.



500

400

300

200
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EXPECTED WASTE UNDER U {jy, k}
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FFD RESULTS

THEOREM
If 5 < k'/% then the expected waste for FFD is O(1).

THEOREM
There exist pairs 3, k with j arbitrarily large 7 < k/2,

such that the expected waste is @ (n).

THEOREM

For all pairs 3, k with 3 < k — 1 the expected waste is

no more than
n 0.00614n

624" Vk

min

OPEN PROBLEM
Expected waste for FFD is provably ®(n'/2) if the fluid
algorithm terminates with just enough items of size 1 to

avoid waste. Do there exist 7, k for which this happens?

(No. 4,k < 3000.)



SUMMARY OF AVERAGE CASE RESULTS FOR
UNIFORM DISTRIBUTIONS

U0, UL, k)
u=1 je{k—-1,k}
Optimal packing O (nl/?) O(n'/?)
Best poly. time alg | @(n!/?) O (nl/?)
Best poss on-line Q((nlogn)'/?) | Q(n'/?)
Best known on-line | @((nlogn)/?) | ©(n'/?)
FFD @(nl/z) @(n1/2)
BF ©(n'/2log**n) | ©(n'/?)
FF O (n?/3) O(n'/?)
u<l 1< k-1
Optimal packing O(1) O(1)
Best poly. time alg | O(1) O(1)
Best poss on-line Q(n'/?) O(1)
Best known on-line | ®((nlogn)'/?) | O(1)
FFD 0(1),©(n'/3) 0(1),©(n'/?)7,0(n)
BF O(n)? 0(1),0(n)
FF O(n)? 0(1),0(n)?




COMPUTER PROOF

COMPUTING RESOURCES
® 128 Megabytes memory
® 33 MHz MIPS processor
e CPLEX™ linear programming software
® ~ 24 hours for largest problems

e Limiting factor is memory to store the LP constraints
(e.g., proof of O(1) waste for (3,k) = (8,14)
requires an LP with 415,953 constraints, (=57 Mb))

VALIDITY OF THE PROOFS DOES NOT DEPEND

® on correctness of the LP code

VALIDITY OF THE PROOFS DOES DEPEND

e on the check that the solution to the LP satisfies all
the constraints that it should

® on recursive code that generates the constraints

® on maufacturer’'s certification that computer meets

|IEEE floating point standard



STRIP PACKING

R6

RS

R7
R3

R1
R?2 R4

First Fit Level Packing

There are many open problems.



