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Abstract

In a famous model due to Weitzman (1979) an agent (Pandora) is presented with
boxes containing prizes. She may open them however as she likes, discover prizes
within, and optimally stop. Her aim is to maximize the expected value of the greatest
prize she finds, minus the costs of opening boxes. This problem has an attractive
solution by means of the so-called Pandora rule, and might be applied to searching for
a research topic, house or job.

It does not, however, address the problem of a student who is searching for the subject
to choose as her major and who benefits from all the courses she takes, not just from
those taken once her major is chosen. So motivated, we set out to discover whether
there exist any problems for which a Pandora rule is optimal when the aim is to
maximize is a more general function of all the revealed prizes. We elucidate the
connection between the Pandora rule and the Gittins index solution of an equivalent
multi-armed bandit problem.

Although the Gittins index analysis tells most of the story, there do exist problems
which are not equivalent to multi-armed bandits and for which a Pandora rule is
optimal. We give a sufficient conditions that can be used to identify this and an
example of its application.
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Weitzman’s Pandora problem

Martin L. Weitzman is Professor of Economics at Harvard University.
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Weitzman’s Pandora problem

Pandora has n boxes.
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Weitzman’s Pandora problem

Pandora has n boxes.

Box i contains a prize, of value xi, distributed with known
c.d.f. Fi.

At known cost ci she can open box i and discover xoi .

Pandora may open boxes in any order, and stop at will..

She opens a subset of boxes S ⊆ {1, . . . , n} and then stops.
She wishes to maximize the expected value of

R = max
i∈S

xi −
∑
i∈S

ci.
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Reasons for liking Weitzman’s problem

Weitzmans’ problem is attractive.

1. It has many applications:

hunting for a house

selling a house (accepting the best offer)

searching for a job,

looking for research project to focus upon.

2. It has an index policy solution, a so-called Pandora rule.
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Varian’s problem: ‘economics and search’

Hal Varian (1999) put Weitzman’s problem like this:

You work at airport book store;

people are in a hurry;

mental effort to examining books (c > 0);

will only take one book with them;

you have an idea of how likely it is that person will like the
book (Fi(x)).

Problem: in what order to show them books?

Customer runs in says “I want a travel guide to Borneo.”

Which do you show first: Fodors or Lonely Planet?

If only time for one book, show Fodors

If time for two books, show Lonely Planet
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Scheduling and stopping

Weitzman’s Pandora problem has aspects of both

Scheduling: in what order should the boxes be opened?

Stopping: when should one be content to take the greatest
prize found thus far?

Pure scheduling problems often solved by interchange arguments.

Pure stopping problems often solved by one-step-look-ahead rule.
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An interchange argument

Box i is either empty (w.p. qi) or has e1 (w.p. pi = 1− qi)
Costs ci to look in box i.

Wish to minimize expected cost of finding e1.

Best to search i, j, . . . rather than j, i, . . . if

ci + qi(cj + qjX) < cj + qj(ci + qiX)

i.e. if ci/pi < cj/pj .

So optimal to search in increasing order of index ci/pi.
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Reservation values
Weitzman’s problem. A ‘reservation price’ (or value) for box i is
determined by calibration, by asking

“for what value of prize, already available, would we be indifferent
between taking that prize, or opening box i and then taking the
best prize available?”

x∗i = inf
{
y : y ≥ −ci + E[max{xi, y}]

}
= inf

{
y : ci ≥ E[max{xi − y, 0}]

}
.

Has the character of a one-step-look-ahead rule.

If best prize found has value x < x∗i then we should not stop, since

x < −ci + E[max{xi, x}].
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Pandora rule

Weitzman’s Pandora rule.

SELECTION RULE: If a box is to be opened, it should be that
closed box with highest reservation price.

STOPPING RULE: Terminate search whenever the maximum
sampled reward exceeds the reservation price of every closed box.

“That such an elementary decision strategy as Pandora’s Rule is
optimal depends more crucially than might be supposed on the
simplifying assumptions of the model. There does not seem to be
available a sharp characterization of an optimal solution when
certain features of the present model are changed.

Pandora’s Rule does not readily generalize.” (Weitzman, 1979)
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Generalizing Weitzman’s problem

In Weitzman’s problem the reward is

R = max
i∈S

xi −
∑
i∈S

ci.

Let’s try to generalize this, so that if a set of boxes
S ⊂ {1, 2, . . . , n} have been opened:

R = u(xS)−
∑
i∈S

ci,

where xS = (xi : i ∈ S), and u(·) is some general function of xS .
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Motivating applications

R = u(xS)−
∑
i∈S

ci.

Student benefits from the courses she takes while searching
for the subject to choose as her major;

Person obtains a flow utility of dating with different partners
in the process of looking for a spouse;

Organization which experiments with different forms of
organization, before adopting a more permanent form, is
affected by those temporary forms.
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Generalized Pandora rule

Weitzman’s Pandora rule.

Open the unopened box with greatest reservation value, until all
reservations values are less than the greatest prize that has been
found.

Generalized Pandora rule.

Open the unopened box with greatest reservation value, until all
reservations values are 0 or all boxes have been opened.
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Generalized reservation values

Weitzman’s problem. The reservation value of box i is

x∗i = inf
{
y : y ≥ −ci + E[max{xi, y}]

}
= inf

{
y : ci ≥ E[max{xi − y, 0}]

}
.

Generalized Weitzman problem. Now the reservation value of
box i must depend on what as already been uncovered, xS .

x∗i (xS) = inf
{
y : u(xS , y) ≥ −ci + E[u(xS , xi, y)]

}
= smallest prize whose addition to prizes already discovered makes
it as good to stop as to open box i and then stop.
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Generalized utility function

Recall we wish to maximize the expected value of

R = u(xS)−
∑
i∈S

ci.

For what utility functions u is a Pandora rule optimal?

Obviously will need some assumptions.
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Assumptions

Assumption 1 (motivated by u of Weitzman’s problem)

u(0, x2, . . . , xk) = u(x2, . . . , xk); u(0, . . . , 0) = 0;

u is continuous, nonnegative, symmetric, nondecreasing and
submodular in its arguments;

‘submodular’ means the increase in u(x) obtained by increasing a
component of x is nonincreasing as any other component increases.

Assumption 2

The benefit of due to opening box j and adding xj to the set of
prizes is independent of the values of already uncovered prizes xS
which are greater than xj . That is, for xj ≤ xk < xk,

u(xS , xj , xk)− u(xS , xk) = u(xS , xj , xk)− u(xS , xk).

At first sight Assumption 2 appears stronger than we would like.
But it is inescapable, as the following lemma makes clear.
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Necessity of Assumption 2

Lemma 1 Suppose the utility u satisfies Assumption 1 and the
Pandora rule maximizes expected utility for all distributions Fi and
costs ci. Then u also satisfies Assumption 2.

Proof. Suppose there were a violation of Assumption 2 of the
form, xj ≤ xk < xk,

u(xS , xj , xk)− u(xS , xk) > u(xS , xj , xk)− u(xS , xk).

(By Assumption 1 (submodularity) we can only have ≥.)

One shows that if this is true then the Pandora rule cannot be
optimal for all (ci, Fi, i ∈ N), by explicitly constructing an
example for which it fails to be optimal. �
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More necessity

Lemma 2 Suppose the utility u satisfies Assumptions 1 and 2.
For any (xS : i ∈ S), now let x̃` denote the `th greatest element.
Then,

(a) there exist functions f` : R→ R, ` = 1, 2, . . . such that for any
xS we have

u(xS) =

|S|∑
`=1

f`(x̃`).

(b) f`(0) = 0.

(c) f`(x) is nondecreasing in x and nonincreasing in `,

(d) f`(x)− f`+1(x) nonincreasing in x.
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For what utility functions u

is a Pandora rule optimal?

Researching this feels like a Pandora box problem!
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Yet even more necessity!

The following is true in special cases, but not yet proved in general.

Conjecture 1 Suppose the utility u satisfies Assumption 1, and
the Pandora rule maximizes expected utility for all distributions Fi
and costs ci. Let x̃1 ≥ x̃2 ≥ · · · ≥ x̃|S| denote the ordered
(xi : i ∈ S). In particular, x̃1 = maxi∈S xi.

Then necessarily,

u(xS) = u(x̃1)− f(x̃1) +
∑
i∈S

f(x̃i), (1)

where u, f and u− f are all nonnegative, nondecreasing functions.

Is a generalization of Pandora rule evaporating?
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Sufficiency

Theorem 1 Suppose u has the form described as necessary, i.e.

u(xS) = u(x̃1)− f(x̃1) +
∑
i∈S

f(x̃i), (2)

where u, f and u− f are all nonnegative, nondecreasing functions.

Then Pandora rule is optimal for all (ci, Fi).

Before proof, a digression about bandit processes.
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A digression on

multi-armed bandits
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Two-armed bandit

Robbins, H. (1952). ”Some aspects of the sequential design of
experiments”.
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Two-armed bandit

Robbins, H. (1952). ”Some aspects of the sequential design of
experiments”.
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Two-armed bandit

3, 10, 4, 9, 12, 1, ...

5, 6, 2, 15, 2, 7, ...

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

3, 10, 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, 10, 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , 4, 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , , 9, 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , , , 12, 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4, 9 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Two-armed bandit

, , , , , 1, ...

, , 2, 15, 2, 7, ...
5, 6, 3, 10, 4, 9, 12 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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, , , , , 1, ...

, , , 15, 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2 

0 < β < 1. Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.

24/57 ,



Two-armed bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

0 < β < 1. Of course, in practice we must choose which arms to
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Two-armed bandit

, , , , , 1, ...

, , , , 2, 7, ...
5, 6, 3, 10, 4, 9, 12, 2, 15

Reward = 5 + 6 + 3 + 10 + . . .β β2 β3

0 < β < 1.

Of course, in practice we must choose which arms to
pull without knowing the future sequences of rewards.

Each of the two arms is a bandit process.
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Bandit processes

A bandit process is a special type of Markov Decision Process in
which there are just two possible actions:

u = 1 (continue)

produces reward r(xt) and the state changes, to xt+1,
according to Markov dynamics Pi(xt, xt+1).

u = 0 (freeze)

produces no reward and the state does not change (hence the
term ‘freeze’).

A simple family of alternative bandit processes (SFABP) is a
collection of N such bandit processes, in known states
x1(t), . . . , xN (t).
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SFABP

At each time, t ∈ {0, 1, 2, . . .},
One bandit process is to be activated (pulled/continued)

If arm i activated then it changes state:

x→ y with probability Pi(x, y)

and produces reward ri(xi(t)).

All other bandit processes remain passive (not pulled/frozen).

Objective: maximize the expected total β-discounted reward

E

[ ∞∑
t=0

rit(xit(t))β
t

]
,

where it is the arm pulled at time t, (0 < β < 1).
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Dynamic effort allocation
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Dynamic effort allocation

Job Scheduling: in what order should I work on the tasks in
my in-tray?

Research projects: how should I allocate my research time
amongst my favorite open problems so as to maximize the
value of my completed research?
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Dynamic effort allocation

Searching for information: shall I spend more time browsing
the web, or go to the library, or ask a friend?

Dating strategy: should I contact a new prospect, or try
another date with someone I have dated before?
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Dynamic programming for bandit processes

The dynamic programming equation is

F (x1, . . . , xN )

= max
i

{
ri(xi) + β

∑
y

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xN )
}

If bandit i moves on a state space of size ki, then (x1, . . . , xN )
moves on a state space of size

∏
i ki (exponential in N).
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i ki (exponential in N).

28/57 ,



Gittins index theorem

Theorem [Gittins, ‘74, ‘79, ‘89]

The expected discounted reward obtained from a simple family of
alternative bandit processes is maximized by always continuing the
bandit having greatest Gittins index

Gi(xi) = sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t
∣∣∣ xi(0) = xi

]
E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

] .

where τ is a (past-measurable) stopping-time.

Gi(xi) is called the Gittins index.

Gittins and Jones (1974). A dynamic allocation index for the sequential design of
experiments. In Gani, J., editor, Progress in Statistics, pages 241–66. North-Holland,
Amsterdam, NL. Read at the 1972 European Meeting of Statisticians, Budapest.
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Gittins index for bandits
Like Weitzman’s reservation value the Gittins index can be defined
by calibration. Suppose there is just one bandit process, Bi.

What bandit process, B0, producing constant reward Gi per ‘pull’,
would if offered as an alternative to Bi, make us indifferent as to
which of these two bandits to continue next?

i.e. as a function of the current state xi(0) = x,

(1 + β + β2 + · · · )Gi(x)

= sup
τ≥1

E
[∑τ−1

t=0 ri(xi(t))β
t + (βτ + βτ+1 + · · · )Gi(x)

∣∣∣ xi(0) = x
]

where supremum is over time τ of switching from B0 to Bi.

Equivalently,

Gi(x) = sup
τ>0

E
[∑τ−1

t=0 β
tri(xi(t)

∣∣∣ xi(0) = x
]

E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = x

] .
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Gittins index
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E
[∑τ−1

t=0 β
t
∣∣∣ xi(0) = xi

]
Discounted reward up to τ .

Discounted time up to τ .

Note the role of the stopping time τ .
Stopping times are times recognisable when they occur.
How do you make perfect toast?

There is a rule for timing toast,
One never has to guess,
Just wait until it starts to smoke,
then 7 seconds less. (David Kendall)
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A short history of the index theorem

Many applications to clinical trials, job scheduling, search, etc.
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A short history of the index theorem

Exploration vs Exploitation

“Bandit problems embody in
essential form a conflict evident
in all human action: information
versus immediate payoff.”
(Whittle)

Many applications to clinical trials, job scheduling, search, etc.
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Gittins index theorem is surprising!

Peter Whittle tells the story:

“A colleague of high repute asked an equally well-known col-
league:

— What would you say if you were told that the multi-armed
bandit problem had been solved?’

— Sir, the multi-armed bandit problem is not of such a
nature that it can be solved.’
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Proofs of the Index Theorem

Since Gittins (1974, 1979), many researchers have reproved,
remodelled and resituated the index theorem.

Beale (1979)

Karatzas (1984)

Varaiya, Walrand, Buyukkoc (1985)

Chen, Katehakis (1986)

Kallenberg (1986)

Katehakis, Veinott (1986)

Eplett (1986)

Kertz (1986)

Tsitsiklis (1986)

Mandelbaum (1986, 1987)

Lai, Ying (1988)

Whittle (1988)

Weber (1992)

El Karoui, Karatzas (1993)

Ishikida and Varaiya (1994)

Tsitsiklis (1994)

Bertsimas, Niño-Mora (1996)

Glazebrook, Garbe (1996)

Kaspi, Mandelbaum (1998)

Bäuerle, Stidham (2001)

Dimitriu, Tetali, Winkler (2003)
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Golf with N balls

Dumitriu, Tetali and Winkler, (2003). On playing golf with two balls.

N balls are strewn about a golf course at locations x1, . . . , xN .

Objective

Minimize the expected total cost incurred until sinking a first ball.

Answer

When ball i is in location xi it has an index γi(xi).

Play the ball of smallest index, until a ball goes in the whole.
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Gittins index theorem for golf with N balls

Golf with one ball

Consider golf with one ball, initially in location xi.

Offer golfer a prize λ, obtained when ball goes in the hole (state 0).

We might ask, what is the least λ for which it is optimal for him to
take at least one more stroke — allowing him the option to retire
at any point thereafter?
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Gittins index theorem for golf with N balls

Golf with one ball

Consider golf with one ball, initially in location xi.

Offer golfer a prize λ, obtained when ball goes in the hole (state 0).

We might ask, what is the least λ for which it is optimal for him to
take at least one more stroke — allowing him the option to retire
at any point thereafter?

λi(xi) = inf

{
λ : 0 ≤ sup

τ≥1
E

[
λ1{xi(τ)=0} −

τ−1∑
t=0

ci(xi(t)

∣∣∣∣∣xi(0) = xi

]}
.

Call λi(xi) the fair prize, (or Gittins index).
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How to play golf
with one ball and an increasing fair prize

Having been offered a fair prize the golfer will play until the ball

goes in the hole, or

reaches a state xi(t) from which the offered prize is no longer
great enough to tempt him to play further.

If the latter occurs, let us increase the prize to λi(xi(t)).

It becomes the ‘prevailing prize’ at t, i.e.
γi(t) = max0≤s≤t λi(xi(s)), which is nondecreasing in t.

Now the golfer need never retire and can keep playing until the ball
goes in the hole, say at time τ .

But his expected profit is just 0.

E

[
γi(xi(τ − 1))−

τ−1∑
t=0

ci(xi(t)

∣∣∣∣∣ xi(0) = xi

]
= 0.
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Golf with 1 ball

γ(x) = 3.0

x

γ(x)

′′
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Golf with 1 ball

γ(x) = 3.0, γ(x′) = 2.5, γ(x′′) = 4.0
Prevailing prize sequence is 3.0, 3.0, 4.0, . . .
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Golf with 2 balls

γ(x) = 3.0
γ(y) = 3.2

x

γ(x)

y
γ(y)

′′
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Golf with 2 balls

γ(x) = 3.0, γ(x′) = 2.5
γ(y) = 3.2
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Index theorem for golf with N balls

Suppose the golfer keeps playing until a ball goes in the hole.

His prize is the prevailing prize of the ball he sinks.

Prevailing prizes are defined in such a way that the golfer cannot
make a strictly positive profit, and so for any policy σ,

Eσ(cost incurred) ≥ Eσ(prize eventually won) (1)

Let π be the policy: always play the ball with least prevailing prize.

Because each ball’s sequence of prevailing prizes is nondecreasing.

Eσ(prize eventually won) ≥ Eπ(prize eventually won) (2)

But the golfer breaks even under π.

Eπ(prize eventually won) = Eπ(cost incurred) (3)
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Generalizing Weitzman’s

Pandora problem
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Gittins index theorem and Weitzman’s problem

Theorem (Gittins index theorem, 1972) The problem posed by
a family of alternative bandit processes, is solved by always
continuing the bandit process having the greatest Gittins index.

Compare this to the solution to the Weitzman’s problem which is

Theorem (Weitzman’s Pandora rule, 1979). Pandora’s problem
is solved by always opening the unopened box with greatest
reservation value, until all reservations values are less than the
greatest prize that has been found.
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Pandora plays golf

Learn how to play golf with more than one ball.

- You can solve Generalized Pandora’s boxes problem.

Pandora’s box i is now ball i, starting in state 1, say.

First time ball i is hit, cost ci is incurred, and ball lands at
location (xi, 1) (where xi sampled from Fi).

Second time ball i is hit, (from current state (xi, 1)), cost
−f(xi) is incurred, the ball goes to state (xi, 2).

Third time ball i is hit, (from current state (xi, 2)), cost
f(xi)− u(xi) is incurred, it goes in hole, 0, and game ends.

The following two problems are equilvalent.

Minimize the expected cost of putting a ball in the hole

Maximize the expected value of Pandora’s greatest discovered
prize, net of costs of opening boxes.

Gittins =⇒ Weitzman, (is mentioned by Chade and Smith (2006))
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Gittins index for generalized Pandora

The Gittins index of ball i is its prevailing prize, γi, which in state
0 is the least γ such that

0 ≤ −ci + Ef(xi) + Emax {0, u(xi)− f(xi) + γ} .

The generalized reservation value is the least x∗i such that

u(xS , x
∗
i ) ≥ −ci + E[u(xS , xi, x

∗
i )}]

Easy to check γi = x∗i , and so prescription of Gittins index theorem
is identical to Pandora rule with generalized reservation values.
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Is Gittins index the whole story?

We seem to have come to the (disappointing?) conclusion that a
Pandora rule is optimal iff

u(xS) = u(x1)− f(x1) +
∑
i∈S

f(xi),

and the ‘if’ part follows from an application of the Gittins index
theorem.

So is there any more to say?
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A problem which cannot be
solved by Gittins index theorem

Pandora has n boxes.

Box i is either empty (w.p. qi) or has e1 (w.p. pi)

Costs ci to take content of box i.

Wish to maximize expected value of

ψ

(∑
i∈S

xi

)
−
∑
i∈S

ci

where ψ is concave increasing of total wealth.

Having found ek the reservation value of unopened box i is
least y such that

ψ(k + y) ≥ −ci + piψ(k + y + 1) + qiψ(k + y)
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least y such that

ci/pi ≥ ψ(k + y + 1)− ψ(k + y)

and so the x∗i are ordered in the same way as ci/pi.

Suppose c1/p1 ≤ c2/p2 ≤ · · · ≤ cn/pn.

Pandora rule: Open the boxes in the order 1, 2, . . . , n, stopping
when we are about to open some box j, have accumulated ek,
k ≤ j − 1, and

cj/pj > ψ(k + 1)− ψ(k).

While it would also be possible to guess this answer, and establish
optimality of the Pandora rule by a fairly short proof tailored to
this problem and using induction on n, the sufficient conditions
provided by Theorem 2 are quick to check.
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A sufficient condition for Pandora rule optimality

History-Independence of the Ordering of Reservation Values
(ORD): The ordering of reservation values x∗k of the covered
variables is independent of both the number of variables that have
already been uncovered and their realizations. That is, for any S,
xS , and k, j /∈ S,

x∗k(xS) ≥ x∗j (xS) ⇐⇒ x∗k(∅) ≥ x∗j (∅)

This is a joint property of the utility function u, costs ci and
distributions Fi.

Theorem 2 If the utility function u satisfies Assumptions 1, 2,
and ORD then the Pandora rule maximizes expected utility.
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Back to the open conjecture

Conjecture 1 Suppose the utility u satisfies Assumption 1, and
the Pandora rule maximizes expected utility for all distributions Fi
and costs ci. Let x1 ≥ x2 ≥ · · · ≥ x|S| denote the ordered
(xi : i ∈ S). In particular, x1 = maxi∈S xi.

Then necessarily,

u(xS) = u(x1)− f(x1) +
∑
i∈S

f(xi), (3)

where u, f and u− f are all nonnegative, nondecreasing functions.

Conjecture has been proved, . . . but not if we require all reservation
values to be finite.
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A special case

Lemma 2 Suppose the utility u satisfies Assumptions 1 and 2.
Let x̃1 ≥ x̃2 ≥ · · · ≥ x̃|S| denote the ordered (xi : i ∈ S).Then,

u(xS) =

|S|∑
`=1

f`(x̃`).

where f1 ≥ f2 ≥ · · · ≥ f|S|.

Theorem 3 Suppose conditions of Lemma 2 and consider the
special case f`(x) = w`x, so the utility u is

u(xS) =

|S|∑
i=1

wix̃i

where w1 ≥ w2 ≥ w3 ≥ · · · are given. If the Pandora rule is to be
optimal for all (ci, Fi) then necessarily, w2 = w3 = w4 = · · · .
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Proof of Theorem 3

Proof is interesting.

Start with 3 boxes and construct distributions that force us to
conclude that if the Pandora rule is optimal then w2 = w3.
One box is of ‘type A’ and two boxes are of ‘type B’.

Type A box has prize taking values 0,1,2 with probabilities
α, β, γ respectively, where (α, β, γ) = (12 ,

3
8 ,

1
8).

Type B variable is similar, but (α, β, γ) = (0, 12 ,
1
2).

Taking cA = 3w2/8; cB = 3w2/2 can show that boxes have
equal reservation values x∗A = x∗B = 2.

Is it really optimal to start by opening either box?
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Mathematica program

Can discover the answer by dynamic programming.

{p0,p1,p2}={1/2,3/8,1/8};

{q0,q1,q2}={0,1/2,1/2};

y=2;

Solve[y w1 == -cA + p0 w1 y + p1 (w1 y + w2 1) + p2 (w1 2 + w2 y), cA];

cA=cA /.%[[1]];

Solve[y w1 == -cB + q0 w1 y + q1 (w1 y + w2 1) + q2 (w1 2 + w2 y), cB];

cB=cB /.%[[1]];

cA=3 w2/8; cB=3 w2/2;

v[a_, b_, c_] := Sort[{a, b, c}].{w3, w2, w1}

vA[a_, b_]:= Max[v[a, b, 0], -cA + p0 v[a, b, 0] + p1 v[a, b, 1] + p2 v[a, b, 2]]

vB[a_, b_]:= Max[v[a, b, 0], -cB + q0 v[a, b, 0] + q1 v[a, b, 1] + q2 v[a, b, 2]]

vBB[a_] := Max[v[a, 0, 0], -c2B+ q0 vB[a, 0] + q1 vB[a, 1] + q2 vB[a, 2]]

vAB[a_] := Max[v[a, 0, 0], -cA + p0 vB[a, 0] + pi vB[a, 1] + p2 vB[a, 2],

-cB + q0 vA[a, 0] + q1 vA[a, 1] + q2 vA[a, 2]]

vABB := Max[0, -cA + p0 vBB[a, 0] + pi vBB[a, 1] + p2 vBB[a, 2],

-cB + q0 vAB[a, 0] + q1 vAB[a, 1] + q2 vAB[a, 2]]
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Mathematica as proof engine

Can test by input numeric values of w1, w2, w3, and can also
Mathematica as a ‘proof engine’.

vABB := Max[0, -cA + p0 vBB[a, 0] + pi vBB[a, 1] + p2 vBB[a, 2],

-cB + q0 vAB[a, 0] + q1 vAB[a, 1] + q2 vAB[a, 2]]

Assuming[{w1>w2>w3}, 0 < -cA + p0 vBB[a, 0] + pi vBB[a, 1] + p2 vBB[a, 2]

< -cB + q0 vAB[a, 0] + q1 vAB[a, 1] + q2 vAB[a, 2]) // Simplify]

Out[1]=

True

Assuming[{w1>w2==w3}, 0 < -cA + p0 vBB[a, 0] + pi vBB[a, 1] + p2 vBB[a, 2]

== -cB + q0 vAB[a, 0] + q1 vAB[a, 1] + q2 vAB[a, 2]) // Simplify]

Out[2]=

True
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Mathematica as proof engine

Can test by input numeric values of w1, w2, w3, and can also
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== -cB + q0 vAB[a, 0] + q1 vAB[a, 1] + q2 vAB[a, 2]) // Simplify]

Out[2]=

True

Out[1] shows that if w1 > w2 then Pandora rule is not optimal, as
it is better to start opening a type B box than the one of type A.

So if the Pandora rule is optimal then necessarily w2 = w3. �
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Presumably, the manipulations that Mathematica makes to prove
the truth of these inequalities can be replicated ‘by hand’.
Is that important?
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Digression: an open problem

Consider the same set up of Weitzman’s problem.

But now ‘offers’ do not remain open.

On opening a box Pandora must immediately take the prize it
reveals, or reject it with no opportunity to recall.

Easily ‘solved’ in the special case that Fi = F , i.e. the
distribution of the prize value in all boxes is the same.

But if the Fi differ then even ci = 0 is hard.

Is it better to open first a box that is likely to contain a large
prize, or small prize, or a highly variable prize?
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‘Four Rooms’ on Channel 4 TV

‘People who believe they have a valuable artifact get a chance to
sell it to some of the country’s leading dealers. But, once they turn
down an offer, there’s no going back...’

Fred Astaire’s suitcases, a Dali sculpture, a dress made from car parts

and a rare Patek watch are amongst the collectibles members of the

public are hoping to exchange for life-changing sums.
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A More General Pandora’s Rule?
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Appendix
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Proof of Theorem 2

For ease of explanation we prove this for the special case of
Weitzman’s problem. The application to more general u is
essentially the same, mainly a matter of notation.

Consider first the case of just two boxes, when the reservation
value of box 1 is less than that of box 2, i.e. x∗1 < x∗2.

The optimal strategy, π1, contingent on box 1 being opened
first and revealing prize x1 is to open box 2 iff x1 ≤ x∗2.

The optimal strategy contingent on box 2 being opened first
and revealing prize x2 is to open box 1 iff x2 ≤ x∗1.

A suboptimal strategy, π2, contingent on box 2 being opened
first and revealing prize x2 is to open box 1 iff x2 ≤ x∗2.

We show that π2 is at least as good as π1.
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Table below shows payoffs of π1 and π2 contingent on realizations
of x1 and x2.

Divided into four cells, depending on whether each xi is below or
above the cutoff x∗2.

Within each cell

upper rows are payoffs for strategy π1

lower rows are payoffs for strategy π2

we now cancel things that are the same for π1 and π2.

x1 < x∗2 x1 ≥ x∗2
x2 ≥ x∗2 x2 − c1 − c2 x1 − c1

x2 − c2 x2 − c2
x2 < x∗2 max{x1, x2} − c1 − c2 x1 − c1

max{x1, x2} − c1 − c2 x1 − c1 − c2
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Now we replace c1 and c2.

x∗2 = −c2 +
∫

max{x∗2, x2} dF2(x2)

=⇒ −c2 =

∫ {
1x2<x∗

2
0 + 1x2≥x∗

2
(x∗2 − x2)

}
dF2(x2).

x1 < x∗2 x1 ≥ x∗2
x2 ≥ x∗2 − c1 x1 − c1

x2− c2
x2 < x∗2

− c2

4/5 ,



Now we replace c1 and c2.

x∗2 = −c2 +
∫

max{x∗2, x2} dF2(x2)

=⇒ −c2 =

∫ {
1x2<x∗

2
0 + 1x2≥x∗

2
(x∗2 − x2)

}
dF2(x2).

x1 < x∗2 x1 ≥ x∗2
x2 ≥ x∗2 − c1 x1 − c1

x∗2

x2 < x∗2

0

4/5 ,



Now we replace c1 and c2.

x∗1 = −c1 +
∫

max{x∗1, x1} dF1(x1)

=⇒ −c1 =

∫ {
1x1<x∗

1
0 + 1x1≥x∗

1
(x∗1 − x1)

}
dF1(x1)

≤
∫ {

1x1<x∗
2
0 + 1x1≥x∗

2
(x∗2 − x1)

}
dF1(x1),

x1 < x∗2 x1 ≥ x∗2
x2 ≥ x∗2 − c1 x1− c1

x∗2

x2 < x∗2

0

4/5 ,



Now we replace c1 and c2.

x∗1 = −c1 +
∫

max{x∗1, x1} dF1(x1)

=⇒ −c1 =

∫ {
1x1<x∗

1
0 + 1x1≥x∗

1
(x∗1 − x1)

}
dF1(x1)

≤
∫ {

1x1<x∗
2
0 + 1x1≥x∗

2
(x∗2 − x1)

}
dF1(x1),

x1 < x∗2 x1 ≥ x∗2
x2 ≥ x∗2 0 x∗2

0 x∗2

x2 < x∗2 0 0

0 0

Done! π2 is at least as good as π1. �
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The proof in the general case is an easy induction with respect to
the number of boxes which are still closed.

Fix a number of remaining boxes, and suppose that the Pandora
rule is optimal when there are fewer than that number of
remaining boxes.

Proof similar to that just completed shows that the first box
opened should be the one with greatest reservation prize.

Of course we could have done the proof ‘in algebra’, but the figure
makes it easy to follow.
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