Statistics Examples Sheet 1

This examples sheet covers material of the first 5 lectures and is appropriate for your first supervision. There will be two further examples sheets and a sheet of supplementary questions. A copy of this sheet can be found at: http://www.statslab.cam.ac.uk/~rrw1/stats/

1. (Lecture 1, unbiased estimation) Suppose X_1, X_2 are independent samples from B(1,p). Let $T = X_1 + X_2$. In cases (a)–(c) show that $\hat{\theta}$ is an unbiased estimator of θ . Prove the statement made in case (d).

(a)
$$\theta = 2008 - p, \ \hat{\theta} = 2008 - \frac{1}{2}T.$$

(b) $\theta = (1-p)^2$, $\hat{\theta} = 1$ if T = 0 and $\hat{\theta} = 0$ otherwise.

(c)
$$\theta = (1 - 3p)^2, \ \hat{\theta} = (-2)^T.$$

(d) $\theta = (1 - \frac{1}{2}p)^{-1}$, there is no unbiased estimator of θ .

Hint: Note that $T \sim B(2,p)$ and $\mathbb{E}\hat{\theta}(T) = (1-p)^2\hat{\theta}(0) + 2p(1-p)\hat{\theta}(1) + p^2\hat{\theta}(2)$.

You should note from this example that an unbiased estimator can be silly (as in case (c) where $\hat{\theta} = -2$ when T = 1 even though we know $\theta > 0$), or may not even exist (as in case (d)).

2. (Lecture 2, MLE) In a genetics experiment, a sample of *n* individuals was found to include *a*, *b*, *c* of the three possible genotypes *GG*, *Gg*, *gg* respectively. The population frequency of a gene of type *G* is $\theta/(\theta + 1)$, where θ is unknown, and it is assumed that the individuals are unrelated and that two genes in a single individual are independent. Show that the likelihood of θ is proportional to

$$\theta^{2a+b} \left/ (1+\theta)^{2a+2b+2c} \right.$$

and that the maximum likelihood estimate of θ is (2a+b)/(b+2c).

3. (Lecture 2, MLE and sufficiency) Suppose X_1, \ldots, X_n is a random sample from a gamma (α, λ) distribution with density function

$$f(x \mid \alpha, \lambda) = \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}, \quad x > 0$$

Let $\theta = (\alpha, \lambda)$. What is meant by saying that T(X) is sufficient for θ ? Find a sufficient statistic for θ . How might you find MLEs for α and λ ?

Hint. In this example the sufficient statistic is a vector with two components.

4. (Lecture 2, MLE and sufficiency) In each of cases (a)–(c) write down the likelihood of θ and show that the stated T(X) is a sufficient statistic for θ .

In each case also find a MLE of θ and show that it is a function of T(X). Find the distribution of T(X) and determine whether or not the MLE is an unbiased estimator of θ . If it is not, verify that it is asymptotically unbiased, and find some other estimator which is unbiased.

(a) X_1, \ldots, X_n are independent Poisson random variables, with X_i having mean $i\theta$, where $\theta > 0$. $T(X) = \sum_{i=1}^n X_i$.

(b) X_1, \ldots, X_n are independent normal random variables, with $X_i \sim N(\theta, \sigma_i^2)$ and σ_i^2 , $i = 1, \ldots, n$, known. $T(X) = \sum_{i=1}^n X_i / \sigma_i^2$.

(c) X_1, \ldots, X_n are n > 2 independent and exponentially distributed random variables, with parameter θ , i.e., with density $f(x \mid \theta) = \theta e^{-\theta x}, x > 0$. $T(X) = \sum_{i=1}^{n} X_i$.

Hint: In case (a), $T(X) \sim P(\frac{1}{2}n(n+1)\theta)$. In case (b), $T(X) \sim N(\theta \sum_{i} \sigma_{i}^{-2}, \sum_{i} \sigma_{i}^{-2})$. In case (c), $T(X) \sim gamma(n, \theta)$. Do you understand why?

5. (Lecture 3, Rao-Blackwell theorem) Suppose X_1, \ldots, X_n are independent random variables with distribution B(1, p).

(a) Show that a sufficient statistic for $\theta = (1-p)^2$ is $T(X) = \sum_{i=1}^n X_i$ and that the MLE for θ is $\left(1 - \frac{1}{n}T\right)^2$. Hint: Use the chain rule, $df/d\theta = (df/dp)(dp/d\theta)$.

(b) The MLE is a biased estimator for θ . Find a function of T which is an unbiased estimator for θ .

Hint: $\theta = \mathbb{P}(X_1 + X_2 = 0)$. *Recall example 1(b) above.*

6. (Lecture 3, Rao-Blackwell theorem) Suppose X_1, \ldots, X_n are independent random variables uniformly distributed over $(\theta, 2\theta)$. Show that a sufficient statistic for θ is $T(X) = (\min_i X_i, \max_i X_i)$ and that an unbiased estimator of θ is $\hat{\theta} = \frac{2}{3}X_1$. Find an unbiased estimator of θ which is a function of T(X) and whose mean square error is no more than that of $\hat{\theta}$.

Note that this is another example in which the sufficient statistic turns out to be a vector, despite the fact that the parameter θ is only a scalar.

7. (Lecture 4, confidence intervals) A random variable is uniformly distributed over $(0,\theta)$. Show that the maximum of a random sample of *n* values of this variable is sufficient for θ and that this is also the MLE for θ . Show also that a $100\gamma\%$ confidence interval for θ is $(y_n, y_n/(1-\gamma)^{1/n})$, y_n being the maximum of the sample.

8. (Lecture 4, confidence intervals) Suppose that $X_1 \sim N(\theta_1, 1)$ and $X_2 \sim N(\theta_2, 1)$ independently, where θ_1 and θ_2 are unknown. For this model, $(\theta_1 - X_1)^2 + (\theta_2 - X_2)^2$ has the distribution $\mathcal{E}(\frac{1}{2})$, i.e., the exponential distribution with mean 2. (A fact you may recall from Probability IA, and which we will prove again later.)

Show that both the square S and circle C in \mathbb{R}^2 , given by

$$S = \{(\theta_1, \theta_2) : |\theta_1 - X_1| \le 2.236; |\theta_2 - X_2| \le 2.236\}$$
$$C = \{(\theta_1, \theta_2) : (\theta_1 - X_1)^2 + (\theta_2 - X_2)^2 \le 5.991\}$$

are 95% confidence regions for (θ_1, θ_2) , in the sense that $\mathbb{P}(S \text{ contains } (\theta_1, \theta_2)) = 0.95$ and $\mathbb{P}(C \text{ contains } (\theta_1, \theta_2)) = 0.95$. *Hint:* $\Phi(2.236) = (1 + \sqrt{.95})/2$, where Φ is the cdf of N(0, 1).

Which of S and C would you prefer, and why?

9. (Lecture 5, Bayes estimation) Each word that baby Hamlet speaks is chosen independently and with equal probability from a set of k words. Suppose your prior belief is that k is equally likely to be either 5, 6, 7 or 8. You hear him say 'to not be or be to'. Show that the posterior probability mass function of k is proportional to $q(k) := (k-1)(k-2)(k-3)/k^5$, k = 5, 6, 7, 8, and is 0 otherwise.

Given that q(k) has values 0.00768, 0.00772, 0.00714, 0.00641 for k = 5, 6, 7, 8 respectively, find a point estimate of k under the loss function

$$L(k, \hat{k}) = \begin{cases} 0 & \text{if } \hat{k} = k, \\ 1 & \text{if } \hat{k} \neq k. \end{cases}$$

How does this particular choice of prior distribution and loss function relate to maximum likelihood estimation?

10. (Lecture 5, Bayes estimation) Suppose that the number of defects on a roll of magnetic recording tape has a Poisson distribution for which the mean λ is known to be either 1 or 1.5. Suppose the prior mass function for λ is

$$\pi_{\lambda}(1) = 0.4, \quad \pi_{\lambda}(1.5) = 0.6.$$

A collection of 5 rolls of tape are found to have x = (3, 1, 4, 6, 2) defects respectively. Show that the posterior distribution for λ is

$$\pi_{\lambda}(1 \mid x) = 0.012, \quad \pi_{\lambda}(1.5 \mid x) = 0.988.$$

You will have to use your calculator for this one.

11. (Lecture 5, Bayes estimation) Suppose X_1, \ldots, X_n are IID from a distribution uniform on $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$, and that the prior for θ is uniform on (10,20). Calculate the posterior distribution for θ , given $x = X_1, \ldots, X_n$ and show that the point estimate for θ under both quadratic and absolute error loss functions is

$$\hat{\theta} = \frac{1}{2} \left[\max_{i} (x_i - \frac{1}{2}) \lor 10 + \min_{i} (x_i + \frac{1}{2}) \land 20 \right].$$

The notation here is $a \lor b = \max\{a, b\}$ and $a \land b = \min\{a, b\}$.

12. (Lecture 5, Bayes estimation) Suppose X_1, \ldots, X_n form a random sample from the following pdf:

$$f(x \mid \theta) = \begin{cases} \theta x^{\theta - 1} & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

and that the prior for θ is gamma(α, β), $\alpha > 0, \beta > 0$, with density

$$\pi(\theta) = \frac{\beta^{\alpha}\theta^{\alpha-1}e^{-\beta\theta}}{\Gamma(\alpha)}, \quad \theta > 0 \,.$$

Show that the posterior distribution of θ is gamma $(\alpha + n, \beta - \sum_i \log x_i)$ and hence that a point estimate for θ under quadratic loss function is

$$\frac{\alpha+n}{\beta-\sum_{i=1}^n\log x_i}.$$

Hint: You may want to refer to the notes for Lecture 1 to remind yourself of some basic facts about the gamma distribution.

13. (Lecture 5, Bayes estimation) Suppose that X is distributed as a binomial random variable $B(n, \theta)$. Suppose the prior distribution for θ is the uniform distribution on [0, 1] and the loss function is

$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 / \theta (1 - \theta)$$
.

Show that, based on the single observation x, the point estimate for θ is $\hat{\theta} = x/n$.

Hint: You may want to refer to the notes for Lecture 1 to remind yourself of some basic facts about the beta distribution. Recall

$$\int_0^1 x^{a-1} (1-x)^{b-1} \, dx = B(a,b) := \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

and that $\Gamma(a) = (a-1)!$ when a is an integer.

R Weber, January 22, 2008