
Statistics Examples Sheet 1

This examples sheet covers material of the first 5 lectures and is appropri-
ate for your first supervision. There will be two further examples sheets and
a sheet of supplementary questions. A copy of this sheet can be found at:
http://www.statslab.cam.ac.uk/~rrw1/stats/

1. (Lecture 1, unbiased estimation) Suppose X1, X2 are independent samples from

B(1, p). Let T = X1 + X2. In cases (a)–(c) show that θ̂ is an unbiased estimator of
θ. Prove the statement made in case (d).

(a) θ = 2008− p, θ̂ = 2008− 1
2T .

(b) θ = (1 − p)2, θ̂ = 1 if T = 0 and θ̂ = 0 otherwise.

(c) θ = (1 − 3p)2, θ̂ = (−2)T .

(d) θ =
(

1 − 1
2p

)−1
, there is no unbiased estimator of θ.

Hint: Note that T ∼ B(2, p) and Eθ̂(T ) = (1 − p)2θ̂(0) + 2p(1 − p)θ̂(1) + p2θ̂(2).

You should note from this example that an unbiased estimator can be silly (as in case

(c) where θ̂ = −2 when T = 1 even though we know θ > 0), or may not even exist
(as in case (d)).

2. (Lecture 2, MLE) In a genetics experiment, a sample of n individuals was found
to include a, b, c of the three possible genotypes GG, Gg, gg respectively. The pop-
ulation frequency of a gene of type G is θ/(θ + 1), where θ is unknown, and it is
assumed that the individuals are unrelated and that two genes in a single individual
are independent. Show that the likelihood of θ is proportional to

θ2a+b
/

(1 + θ)2a+2b+2c

and that the maximum likelihood estimate of θ is (2a + b)/(b + 2c).

3. (Lecture 2, MLE and sufficiency) Suppose X1, . . . , Xn is a random sample from a
gamma (α, λ)distribution with density function

f(x | α, λ) =
λαxα−1e−λx

Γ(α)
, x > 0.

Let θ = (α, λ). What is meant by saying that T (X) is sufficient for θ? Find a
sufficient statistic for θ. How might you find MLEs for α and λ?

Hint. In this example the sufficient statistic is a vector with two components.

4. (Lecture 2, MLE and sufficiency) In each of cases (a)–(c) write down the likelihood
of θ and show that the stated T (X) is a sufficient statistic for θ.

In each case also find a MLE of θ and show that it is a function of T (X). Find
the distribution of T (X) and determine whether or not the MLE is an unbiased
estimator of θ. If it is not, verify that it is asymptotically unbiased, and find some
other estimator which is unbiased.

(a) X1, . . . , Xn are independent Poisson random variables, with Xi having mean iθ,
where θ > 0. T (X) =

∑n
i=1 Xi.

(b) X1, . . . , Xn are independent normal random variables, with Xi ∼ N(θ, σ2
i ) and

σ2
i , i = 1, . . . , n, known. T (X) =

∑n
i=1 Xi/σ2

i .

(c) X1, . . . , Xn are n > 2 independent and exponentially distributed random vari-
ables, with parameter θ, i.e., with density f(x | θ) = θe−θx, x > 0. T (X) =

∑n
i=1 Xi.

Hint: In case (a), T (X) ∼ P
(

1
2n(n + 1)θ

)

. In case (b), T (X) ∼
N

(

θ
∑

i σ−2
i ,

∑

i σ−2
i

)

. In case (c), T (X) ∼ gamma(n, θ). Do you understand why?

5. (Lecture 3, Rao-Blackwell theorem) Suppose X1, . . . , Xn are independent random
variables with distribution B(1, p).

(a) Show that a sufficient statistic for θ = (1 − p)2 is T (X) =
∑n

i=1 Xi and that the

MLE for θ is
(

1 − 1
nT

)2
.

Hint: Use the chain rule, df/dθ = (df/dp)(dp/dθ).

(b) The MLE is a biased estimator for θ. Find a function of T which is an unbiased
estimator for θ.
Hint: θ = P(X1 + X2 = 0). Recall example 1(b) above.

6. (Lecture 3, Rao-Blackwell theorem) Suppose X1, . . . , Xn are independent random
variables uniformly distributed over (θ, 2θ). Show that a sufficient statistic for θ is

T (X) = (mini Xi, maxi Xi) and that an unbiased estimator of θ is θ̂ = 2
3X1. Find an

unbiased estimator of θ which is a function of T (X) and whose mean square error is

no more than that of θ̂.

Note that this is another example in which the sufficient statistic turns out to be a
vector, despite the fact that the parameter θ is only a scalar.

7. (Lecture 4, confidence intervals) A random variable is uniformly distributed over
(0, θ). Show that the maximum of a random sample of n values of this variable is
sufficient for θ and that this is also the MLE for θ. Show also that a 100γ% confidence
interval for θ is (yn, yn/(1 − γ)1/n), yn being the maximum of the sample.



8. (Lecture 4, confidence intervals) Suppose that X1 ∼ N(θ1, 1) and X2 ∼ N(θ2, 1)
independently, where θ1 and θ2 are unknown. For this model, (θ1−X1)

2 +(θ2−X2)
2

has the distribution E(1
2 ), i.e., the exponential distribution with mean 2. (A fact you

may recall from Probability IA, and which we will prove again later.)

Show that both the square S and circle C in R
2, given by

S = {(θ1, θ2) : |θ1 − X1| ≤ 2.236; |θ2 − X2| ≤ 2.236}
C =

{

(θ1, θ2) : (θ1 − X1)
2 + (θ2 − X2)

2 ≤ 5.991
}

are 95% confidence regions for (θ1, θ2), in the sense that P(S contains (θ1, θ2)) = 0.95
and P(C contains (θ1, θ2)) = 0.95. Hint: Φ(2.236) = (1+

√
.95)/2, where Φ is the cdf

of N(0, 1).

Which of S and C would you prefer, and why?

9. (Lecture 5, Bayes estimation) Each word that baby Hamlet speaks is chosen in-
dependently and with equal probability from a set of k words. Suppose your prior
belief is that k is equally likely to be either 5, 6, 7 or 8. You hear him say ‘to not be
or be to’. Show that the posterior probability mass function of k is proportional to
q(k) := (k − 1)(k − 2)(k − 3)/k5, k = 5, 6, 7, 8, and is 0 otherwise.

Given that q(k) has values 0.00768, 0.00772, 0.00714, 0.00641 for k = 5, 6, 7, 8 respec-
tively, find a point estimate of k under the loss function

L(k, k̂) =

{

0 if k̂ = k,

1 if k̂ 6= k.

How does this particular choice of prior distribution and loss function relate to max-
imum likelihood estimation?

10. (Lecture 5, Bayes estimation) Suppose that the number of defects on a roll of
magnetic recording tape has a Poisson distribution for which the mean λ is known to
be either 1 or 1.5. Suppose the prior mass function for λ is

πλ(1) = 0.4, πλ(1.5) = 0.6 .

A collection of 5 rolls of tape are found to have x = (3, 1, 4, 6, 2) defects respectively.
Show that the posterior distribution for λ is

πλ(1 | x) = 0.012, πλ(1.5 | x) = 0.988 .

You will have to use your calculator for this one.

11. (Lecture 5, Bayes estimation) Suppose X1, . . . , Xn are IID from a distribution
uniform on (θ− 1

2 , θ+ 1
2 ), and that the prior for θ is uniform on (10,20). Calculate the

posterior distribution for θ, given x = X1, . . . , Xn and show that the point estimate
for θ under both quadratic and absolute error loss functions is

θ̂ = 1
2

[

max
i

(xi − 1
2 ) ∨ 10 + min

i
(xi + 1

2 ) ∧ 20
]

.

The notation here is a ∨ b = max{a, b} and a ∧ b = min{a, b}.

12. (Lecture 5, Bayes estimation) Suppose X1, . . . , Xn form a random sample from
the following pdf:

f(x | θ) =

{

θxθ−1 0 < x < 1

0, otherwise

and that the prior for θ is gamma(α, β), α > 0, β > 0, with density

π(θ) =
βαθα−1e−βθ

Γ(α)
, θ > 0 .

Show that the posterior distribution of θ is gamma (α + n, β − ∑

i log xi) and hence
that a point estimate for θ under quadratic loss function is

α + n

β − ∑n
i=1 log xi

.

Hint: You may want to refer to the notes for Lecture 1 to remind yourself of some
basic facts about the gamma distribution.

13. (Lecture 5, Bayes estimation) Suppose that X is distributed as a binomial random
variable B(n, θ). Suppose the prior distribution for θ is the uniform distribution on
[0, 1] and the loss function is

L(θ, θ̂) = (θ − θ̂)2/θ(1 − θ) .

Show that, based on the single observation x, the point estimate for θ is θ̂ = x/n.

Hint: You may want to refer to the notes for Lecture 1 to remind yourself of some
basic facts about the beta distribution. Recall

∫ 1

0

xa−1(1 − x)b−1 dx = B(a, b) :=
Γ(a)Γ(b)

Γ(a + b)

and that Γ(a) = (a − 1)! when a is an integer.
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