
Anchoring and Bias

In the absence of hard data, a person’s estimate of an

unknown parameter, such as

• the risk of being in an earthquake,

• the literacy rate in South Africa, or

• the proportion of unwashed students in a IB lecture,

can be distorted by providing a reference point or anchor.

For example, in one study subjects were asked to give the

percent of African countries in the United Nations. In each

case, a number between 0 and 100 was assigned as an initial

value and the subject was asked if this was too high or two low,

and what adjustment needed to be made. Despite the fact that

each of the subjects knew that the initial value had been

determined randomly (by spinning a wheel in the subject’s

presence), there still tended to be a bias toward the initial

value.

A knowledge of the psychology of human judgment can be

relevant in interpreting the results of a study. One must watch

out for bias introduced by the way a question is phrased.

Suppose a jury is shown a videotape of a car collision. The

following two questions can elicit quite different answers.

• How fast was the car going when it hit the wall?

• How fast was the car going when it crashed into the wall?



A survey method for a sensitive question

How can we get accurate answers to a sensitive question

which respondents might be reluctant to answer truthfully?

Examples:

(a) “Have you ever used illegal drugs?”

(b) “Have you ever used a sick day leave when you weren’t

really sick?”

(c) “Have you not bathed or showered in the last 24 hours?”



Method 1: The Innocuous Question

Let Qs be the sensitive question and Qi be an innocuous

question which has a known probability of yielding a YES

response. For example,

Qs = “Have you not bathed in the last 24 hours?”

Qi = “Flip a coin. Did you get a head?”

The respondent answers Qs with probability θ and Qi with

probability (1 − θ). The key point is that the respondent

determines which question she answers by using some

probability device which is under her control. For example: She

rolls a die. If the result is {1, 2, 3, or 4} answer Qs; if it is

{5 or 6} answer Qi. Since only the respondent knows which

question she is answering, there should be no stigma attached

to a YES or N0 response.

If the known probability of a YES to Qi is α, we find thatP(YES) = θp + (1 − θ)α

p =
P(YES) − (1 − θ)α

θ
and hence if the number of YESs in a sample of size n is X,

p̂ =
X/n − (1 − θ)α

θ
For the experiment in Lecture 1, (1997 class),

θ = 251/365 = 0.688, α = 1.

If p were 0.20 we would have P(YES) = .450.

We observed X/n = 89/194 = 0.46, so p̂ = 0.21.



Method 2: Warner (1965)

Let Qs be the sensitive question and Q̄s be its complement.

For example,

Qs = “Have you not bathed in the last 24 hours?”

Q̄s = “Have you bathed in the last 24 hours?”

With some (known) probability θ a subject answers Qs,

otherwise (with probability 1 − θ) he or she answers Q̄s.

Let p = proportion in the population for which the true

response to Qs is YES. So the chance of getting a YES

response is given byP(YES) = θp + (1 − θ)(1 − p)

We solve easily for p to give

p =
P(YES) − (1 − θ)

2θ − 1

If the number of YES answers in a sample of size n is Y , we

can estimate p with

p̃ =
Y/n − (1 − θ)

2θ − 1

For θ = 251/365, p = 0.20, P(YES) = 0.387.



Comparison of variances

Both p̂ and p̃ are unbiased estimators of p. We might ask,

which method is more efficient in the sense of having smaller

variance.

Determine this for the case θ = 251/365, p = 0.20, α = 1.

Recall that

p̂ =
X/n − (1 − θ)α

θ
and p̃ =

Y/n − (1 − θ)

2θ − 1

and var(X/n) = (1/n)P(YES)(1 − P(YES)). This gives

var p̃

var p̂
=

var(Y/n)/(2θ − 1)2

var(X/n)/θ2

=
(.387)(.613)n−1/(137/365)2

(.450)(.550)n−1/(251/365)2

= 3.22

Thus the first scheme is more than 3 times as efficient as the

second.



How many words did Shakespeare know?

Shakespeare’s known works comprise 884,647 words. He

wrote 31,534 different words, of which 14,376 appear only once,

4,343 twice, etc. How many words did he know but not use?

Let us suppose that he knew S words. Suppose word i

occurs in such a way that the number of its occurrences in a

sample of any 884,647v words of Shakepeare is distributed as a

Poisson RV with parameter λiv, v > 0.

Let Nx be the number of words which occur x times in a

random sample of 884,647 words of Shakespeare. As an

observed value of Nx we have nx, e.g., n1 =14,376. Then

ηx := ENx = E [
S∑

i=1

1{word i is used x times}

]
=

S∑

i=1

λx
i

x!
e−λi

Suppose we want to make an estimate of ∆(t), the expected

number of distinct words that will occur in a sample of

884,647(1 + t) words, t > 0, but which are not include

amongst the first 884,647 such words. Now

∆(t) = E [
S∑

i=1

1{word i is in large sample but not in subset}

]

=

S∑

i=1

e−λi
(
1 − e−λit

)
.



Thus far we have

ηx = ENx =
S∑

i=1

λx
i

x!
e−λi and ∆(t) =

S∑

i=1

e−λi
(
1 − e−λit

)

Using the fact that

1 − e−λit = λit −
λ2

i

2!
t2 + · · ·

and substituting, this gives

∆(t) = η1t − η2t
2 + η3t

3 − · · · .

Recall that ηx = ENx. Thus an unbiased estimator of ∆(t) is

∆̂(t) = N1t − N2t
2 + N3t

3 − · · ·

and we have n1t − n2t
2 + n3t

3 − · · · as an estimate of ∆(t).

For the Shakespeare data, and t = 1, this gives[∆(1) =11,430.

Thus if the exisiting known works of Shakepeare were twice

as large as they actually are then we would expect to see about

11,430 new words in addition to the 31,534 we have already

seen. The expected error of this estimate is less than 150.

What about \∆(∞), i.e., an estimate of the total number of

words which Shakespeare knew? Unfortunately, the above

estimator does not converge as t → ∞.

However, other methods, too complicated to explain here,

suggest that Shakepeare knew at least 35,000 words which he

did not use.



A Confidence Interval for Remaining Life

J. Richard Gott, Princeton astrophysicist, has written an

article in Nature explaining how to obtain 95% confidence

intervals for the remaining lifetime of about anything you wish.

The idea is that if we are at a randomly chosen point of the

lifetime, then with probability .95 we are somewhere between

1/40 and 39/40 through the total life.

The Rule of 39

Suppose a restauranter wants to obtain a 95% confidence

interval for the remaining time that a party will remain at their

table. He notes how long they have been there already, say T .

Assuming that the point at which the data is obtained is

equally likely to be at any point during the meal, the

probability is 1/20 that the diners are between 1/40th and

39/40th of the way through their total stay. In this case their

remaining stay is at least T/39 and no more than 39T .

Thus the probability that the interval [T/39, 39T ] contains

the true length of the remaining stay is at least .95.

In practice, of course there should be better ways to estimate

this quantity, taking account of, for example, what course of

the meal the party is on, or how long a typical party tends to

take over a meal.



Confidence Interval for Remaining Life

But now consider an example where we can’t possibly know

‘what course of the meal the party is on’ or ‘how long a typical

party tends to take over a meal’.

Limits on Human Existence

Suppose we want to estimate how much longer the human

race will remain in existence. We estimate that the human race

has been around for about 200, 000 years.

If we’re between 1/40th and 39/40th of the way through

the lifetime of the human race, then we have no more than

39 × 200, 000 = 7.8 million years left to go. Similarly, we

have at least 1/39 × 200, 000 = 5128 years to go. Thus a

> 95% confidence interval for the remaining lifetime of the

human race is

[5, 000, 8, 000, 000] years.



A Confidence Interval for Remaining Life

Limits on Human Existence — is this sense or

nonsense?

Having developed this beautiful rule of thumb, Gott goes on

to demonstrate, by example, the dangers of taking this kind of

thing too seriously. He concludes that the space program, now

32 years old, will (with 95% confidence) end before another

1200 years are up, surely too short a time for us to colonize

the galaxy and thus escape the 8, 000, 000 year deadline

derived above.

Fortunately for the human race, Gott’s whole theory is only

about a year old, and thus can be expected to last somewhere

between another 39 years and another 9 days. Thus it will

most likely die long before it has a chance to doom the space

program, and thereby the whole human race.

Reference: Formula projects limits seen on human existence.

The New York Times, 1 June 1993, Sec. C Page 1. Macolm

W. Browne



Utility

Is playing lotteries rational? To investigate this question we

need a notation for a lottery. Denote ‘the consumer wins prize

x with probability p and prize y with probability 1 − p’ by

p ◦ x ⊕ (1 − p) ◦ y .

The set of lotteries is denoted L. Let ∼ denote indifference

between two lotteries. Rational preferences between lotteries

should obey some reasonable assumptions, namely for all prizes

x, y and p, q ∈ [0, 1]

• 1 ◦ x ⊕ (1 − 1) ◦ y ∼ x,

• p ◦ x ⊕ (1 − p) ◦ y ∼ (1 − p) ◦ y ⊕ p ◦ x,

• q ◦ [p ◦ x ⊕ (1 − p) ◦ y] ⊕ (1 − q) ◦ y

∼ (qp) ◦ x ⊕ (1 − qp) ◦ y.

These are enough to show that there must exist a function

u(·), mapping lotteries to R such that

p ◦ x ⊕ (1 − p) ◦ y ≻ q ◦ w ⊕ (1 − q) ◦ z

⇐⇒ u
(
p ◦ x ⊕ (1 − p) ◦ y

)
> u

(
q ◦ w ⊕ (1 − q) ◦ z

)

That is, we can determine a consumer’s preference amongst

two lotteries just by comparing the values of the utility u(·).
Note that u is not unique, since if u(·) works, so does

au(·) + b, a > 0.



The expected utility property

It is reasonable to guess that there is a u(·) which satisfies

the expected utility property (EUP):

u
(
p ◦ x ⊕ (1 − p) ◦ y

)
= pu(x) + (1 − p)u(y) .

But this has to be proved. The EUP is not as obvious as it first

appears. We might think that the utility of a lottery could be

worth more than simply the expected value of the utility from

the prizes. I.e., we might think the consumer is the sort of

person who likes lotteries. That would help ‘explain’ why

people like to play lotteries. In fact, the EUP obliterates such

an explanation and we must conclude that playing lotteries is

irrational, or that some of the ‘obvious’ assumptions about ∼
used to prove the EUP do not apply to some consumers.

To prove the EUP, let us assume there is a best prize b and

worse prize w. Define u(b) = 1, u(w) = 0. For an arbitrary

lottery z, define u(z) = pz where pz is chosen so that

pz ◦ b ⊕ (1 − pz) ◦ w ∼ z.

Then p ◦ x ⊕ (1 − p) ◦ y

∼ p ◦
(
px ◦ b ⊕ (1 − px) ◦ w

)
⊕ (1 − p) ◦

(
py ◦ b ⊕ (1 − py) ◦ w

)

∼
[
ppx + (1 − p)py

]
◦ b ⊕

[
1 − ppx − (1 − p)py

]
◦ w

∼
[
pu(x) + (1 − p)u(y)

]
◦ b ⊕

[
1 − pu(x) − (1 − p)u(y)

]
◦ w

Hence this u has the EUP.



A utility function

Playing a lottery can only be rational if the utility of the

expected value of the lottery, = u(px + (1 − q)y) is less

than the utility of the lottery,

= u(p ◦ x ⊕ (1 − p) ◦ y) = pu(x) + (1 − p)u(y).

This occurs for the lottery illustrated in the following

diagram.

x ypx + (1 − p)y

u
(
px + (1 − p)y

)pu(x) + (1 − p)u(y)

However, most people have a concave utility function. If so,

and if the assumption leading to the EUP are valid, then

playing lotteries is irrational.



Allias Paradox

Which of these choices do you find most attractive?

A. £1 million guaranteed

B. 89% chance of £1 million

10% chance of £2.5 million

1% chance of nothing

Now consider these choices:

C. 89% chance of nothing

11% chance of £1 million

D. 90% chance of nothing

10% chance of £2.5 million

Most people prefer A to B and D to C. However, this is

inconsistent. Preference of A to B means

u(1) > .89u(1) + .10u(2.5) + .01u(0)

Whereas preference of D to C means

.89u(0) + .11u(1) < .90u(0) + .10u(2.5)

.11u(1) < .01u(0) + .10u(2.5)

u(1) < .89u(1) + .10u(2.5) + .01u(0)



Ellsberg Paradox

A bag contains 300 balls, of which 100 are red and 200 are

either blue and green. One is drawn at random.

Which of gamble do you find most attractive?

Gamble A. You get £ 1000 if the ball is red.

Gamble B. You get £ 1000 if the ball is blue.

A bag contains 300 balls, of which 100 are red and 200 are

either blue and green. One is drawn at random.

Which gamble do you find most attractive?

Gamble C. You get £ 1000 if the ball is not red.

Gamble D. You get £ 1000 if the ball is not blue.

Most people prefer A to B and C to D. However, this is

inconsistent. Preference of A to B means we thinkP(red) > P(blue) and preference of C to D means we thinkP(not red) > P(not blue). But these cannot both be true

since,P(not red) = 1 − P(red) and P(not blue) = 1 − P(blue)

Some psychologists think the Allias and Ellsberg paradoxes

require new models to describe people’s behaviour. Other think

these paradoxes are just ‘optical illusions’.



An Estimation Game

Players 1 and 2 are to play the following game.

Player 1

• thinks of any real number, say θ;

• adds an error to θ that is equally likely to be +10 or −10

(i.e., chosen by his tossing a fair coin);

• tells the result to Player 2.

Player 2 learns x.

He now knows that θ is either x − 10 or x + 10.

Player 2 must try to guess (estimate) θ.

With what probability can Player 2 guess correctly?



Solution to the Estimation Game

It is surprising, but Player 2 can guess θ correctly with a

probability > 0.5. How does he do that?

Player 2 should privately sample a real number, say y, from

a distribution on (−∞, ∞), say from N(0, 1).

If x < y he should guess θ = x + 10.

If x > y he should guess θ = x − 10.

To see why this works, consider 3 cases.

1. If y > θ + 10, then x < y and Player 2 guesses

θ = x + 10. He is correct half the time,

i.e., when Player 1 added the error −10 rather than +10.

2. Similarly, if y < θ − 10, then x > y and Player 2 is also

correct with probablity 0.5.

3. However, if y is in the interval (θ − 10, θ + 10) then

Player 2’s guess is always correct. E.g., if Player 1

subtracted 10 then x = θ − 10 < y and Player 1

correctly guesses θ = x + 10.

As long as there is a positive probability that

y ∈ (θ − 10, θ + 10) — which is ensured by sampling y

from N(0, 1) — the total probability that Player 2 is correct

is therefore > 0.5.

This is significant compared to χ2
1 whose 5% point is 3.84.



A Love Story

“You haven’t told me yet,” said Lady Nuttal, “what it is your

fiance does for a living?”

“He’s a statistician,” replied Lamia, with an annoying sense

of being on the defensive.

Lady Nuttal was obviously taken aback. It had not occurred

to her that statisticians entered into normal social

relationships. The species, she would have surmised, was

perpetuated in some collateral manner, like mules.

“But Aunt Sara, it’s a very interesting profession,” said

Lamia warmly.

“I don’t doubt it,” said her aunt, who obviously doubted it

very much. ”To express anything important in mere figures is

so plainly impossible that there must be endless scope for

well-paid advice on how to do it. But don’t you think that life

with a statistician would be rather, shall we say, humdrum?”

Lamia was silent. She felt reluctant to discuss the surprising

depth of emotional possibility which she had discovered below

Edward’s numerical veneer.

“It’s not the figures themselves,” she said finally. “it’s what

you do with them that matters.”

(K.A.C. Manderville, The Undoing of Lamia Gurdleneck)



Benford’s law

Benford’s law states that the distribution of the leading digit

in data sets is typically not equi-distributed but rather given by

the distribution p(k) = log10(k + 1) − log10(k) for

k = 1, 2, . . . , 9. (The leading digit of .0034 is 3, of 243 is

2 etc.). Numerous explanations for this have been given but

perhaps the most persuasive is that Benford’s distribution is the

unique distribution for the leading digits that is not changed by

a change of units, i.e., multiplying the data by a constant c.

Here are 56 physical constants:
Speed of light 299792458 m s(-1)

Gravitation constant 6.67259e-11 m3 kg(-1) s(-2)

Planck constant 6.6260755e-34 J s

Planck constant/2pi 1.0545726691251e-34 J s

Planck mass 2.17671e-08 kg

Planck length 1.61605e-35 m

Planck time 5.39056e-44 s

Elementary charge 1.60217733e-19 C

Vacuum permeability 1.25663706143592e-06 N A(-2)

Vacuum permitivity 8.85418781762039e-12 F m(-1)

Magnetic flux quantum 2.06783461e-15 Wb

Quantized Hall resistance 25812.8056 Ohm

Electron mass 9.1093897e-31 kg

Muon mass 1.8835327e-28 kg

Proton mass 1.6726231e-27 kg

Neutron mass 1.6749286e-27 kg

Deuteron mass 3.343586e-27 kg

Proton/Electron mass 1836.152701 1

Fine-structure constant 0.00729735308 1

Rydberg constant 10973731.534 m(-1)

Bohr radius 5.29177249e-11 m

Hartree energy 4.3597482e-18 J

Bohr magneton 9.2740154e-24 J T(-1)

Nuclear magneton 5.0507866e-27 J T(-1)

Electron g-factor 2.002319304386 1

Electron radius 2.81794092e-15 m

Von-Klitzing constant 25812.807 Ohm

Proton mass 1.0072764666 amu

Electron mass 0.0005485799111 amu

Astronomical Unit (AU) 1.4959789e11 m

Parsec 206264.806 AU

Light Year (Ly) 9.46053e15 m

Sidereal Year 3.155815 sec

Mass of the Sun 1.989e30 kg

Radius of the Sun 6.96e5 km

Luminosity of the Sun 3.90e26 W

Solar Constant 1370 W/m2

Boltzmann constant 1.380658e-23 J K(-1)

Avogadro constant 6.0221367e+23 mol(-1)

Faraday constant 96485.309 C mol(-1)

Gas constant 8.31451 J mol(-1) K(-1)

Stefan-Boltzmann const. 5.67051e-08 W m(-2) K(-4)

Molar volume 22.441 l/mol

1st radiation constant 3.7417749e-16 W m2

2nd radiation constant 0.01438769 m K

Electron volt 1.60217733e-19 J

Atomic mass unit 1.6605402e-27 kg

Standard acceleration 9.80665 m s(-2)

Standard athmosphere 101325 Pa

Thermodynamic calorie 4.184 J

Inch 0.0254 m

Foot 0.3048 m

Yard 0.9144 m

Mile 1609.344 m

Ounce 0.02834952 kg

Pound 0.45359232 kg



UNIVERSAL CONSTANTS

Speed of light 299792458 m s(-1)

Gravitation constant 6.67259e-11 m3 kg(-1) s(-2)

Planck constant 6.6260755e-34 J s

Planck constant/2pi 1.0545726691251e-34 J s

Planck mass 2.17671e-08 kg

Planck length 1.61605e-35 m

ASTRONOMICAL CONSTANTS

Astronomical Unit (AU) 1.4959789e11 m

Parsec 206264.806 AU

Light Year (Ly) 9.46053e15 m

Sidereal Year 3.155815 sec

Mass of the Sun 1.989e30 kg

Radius of the Sun 6.96e5 km

· · ·
The number of these 56 constants whose leading digit is

1, 2, . . . , 9 are respectively 19, 11, 5, 3, 5, 4, 1, 2, 6. So the

numbers in the sets {1},{2, 3},{4, 5, 6, 7} are 19, 16, 13.

Under Benford’s distribution we would expect these to be

equal, i.e., 16. The Pearson’s chi-squared statistic is therefore

T =
∑

i

(oi − ei)
2

ei

=
(19 − 16)2 + (16 − 16)2 + (13 − 16)2

16
= 1.125

The 90% point of the χ2
2 is 4.61. So this statistic reveals no

significant departure from Benford’s distribution.



Jane Austen and her imitator†

When Jane Austen died she left the novel Sanditon only

partially finished, but a summary of its remainder. A highly

literate admirer finished the novel attempting to emulate Jane

Austen’s style. Here are counts of some common words.

by Austen by Imitator

Sense and

word Sensibility Emma Sanditon Sanditon

a 147 186 101 83

an 25 26 11 29

this 32 39 15 15

that 94 105 37 22

with 59 74 28 43

without 18 10 10 4

Total 375 440 202 196

† This example is taken from pages 485-489 of Rice’s book,

where he quotes Morton’s 1978 analysis in his book Literary

Detection.



A test of homogeneity

We might first of all check that the first three columns have

the same distribution (expected counts shown in parentheses).

by Austen

Sense and

word Sensibility Emma Sanditon

a 147 (160.0) 186 (187.8) 101 (86.2)

an 25 (22.9) 26 (26.8) 11 (12.3)

this 32 (31.7) 39 (37.2) 15 (17.1)

that 94 (87.0) 105 (102.1) 37 (46.9)

with 59 (59.4) 74 (69.7) 28 (32.0)

without 18 (14.0) 10 (16.4) 10 (7.5)

Total 375 440 202

The usual statistic
∑

ij

(oij − eij)
2

eij

= 12.27

and this is to be compared to χ2
10, whose 10% point is 15.99.

So the data are consistent with authorship by the same person.



A second test of homogeneity

Now we compare Austen and the imitator, pooling all the

data for Austin in one column.

word Austen Imitator

a 434 (433.5) 83 (83.52)

an 62 (76.3) 29 (14.73)

this 86 (84.7) 15 (16.31)

that 236 (216.3) 22 (41.79)

with 161 (171.0) 43 (33.00)

without 38 (35.2) 4 (6.85)

Total 1017 196

The statistic is
∑

ij

(oij − eij)
2

eij

= 32.81

which is highly significant compared to the χ2
5, whose 0.5%

point is 16.75. The imitator was not succesful in imitating

this aspect of Austen’s work.

Their main differences are in frequencies of use of the words

an and that.



A child’s puzzle

Place the 16 court cards Ace, King, Queen and Jack, of

Spades, Hearts, Diamonds and Clubs, in a 4 × 4 array so that

no row or column contains more than one card of the same

value or the same suit.

Solution:

A♠ K♥ Q♦ J♣
K♦ A♣ J♠ Q♥
Q♣ J♦ A♥ K♠
J♥ Q♠ K♣ A♦



Latin Squares

A simpler puzzle is to simply place the letters A,B,C,D in a

4 × 4 array so that no letter appears more than once in any

row or column. Such an array is called a Latin square.

A B C D

B A D C

C D A B

D C B A

Euler wrote about these in 1782.

There are many Latin squares. Not counting those that are

equivalent by permutation of rows and columns the number of

distinct n × n Latin squares is

n no. squares

2 1

3 1

4 4

5 56

6 9,408

7 16,942,080
...



Experimental design

The aim of a good experimental design is to get the most

information from the least amount of experimental effort.

Suppose we want to compare four possible methods of caring

for apple trees: A,B,C,D.

We have resources to do 16 experiments, which we do by

dividing a square plot of land into 16 blocks, and then using

one method (treatment) in each block. At the end of the

season we will compare the yields under different methods.

There are various ways we could allocate the treatments.

(i)

A A B B

A A B B

A A B B

C C D D

(ii)

A A B B

A A B B

C C D D

C C D D

(iii)

A B C D

B A D C

C D A B

D C B A

If we use (i) then we won’t learn as much about treatments

C and D as we do about A and B.

In (ii) each treatment is used the same number of times. But

suppose there is a strong prevailing wind from the east, and the

soil in the north is less fertile than in the south. Then this

makes it hard to compare B and C on an equal basis.

It is (iii) that looks best. Each treatment appears exactly

once in each row and column. Each treatment will be equally

confounded with wind and soil effects.



Eliminating nuisance parameters

Suppose the yield in plot (i, j) can be modelled as

yij = µi + λj + θij + ǫij,

where µi is an effect that applies to experiments in the ith

row; λj is an effect that applies to experiments in the jth

column; θij, θij ∈ {θA, θB, θC, θD}, is a effect due to the

treatment used in that plot; and ǫij are IID N(0, σ2) errors.

Here µi and λj are nuisance parameters. It is only

θA − θB, θA − θC, etc. which really interest us.

To estimate θA − θB, say, we would take

θ̂A − θ̂B =
∑

ij

aijyij

where the matrix (aij) is chosen such that we have an

unbiased estimator, i.e.,∑

ij

aij

(
µi + λj + θij

)
= θA − θB.

The variance of this estimator is σ2
∑

ij a2
ij.

It can be shown that the maximum of the variances of

θ̂A − θ̂B, θ̂A − θ̂C, etc., is minimized by the ‘orthogonal

design’ obtained with the Latin square

A B C D

B A D C

C D A B

D C B A



Eliminating even more nuisance parameters

Suppose we hire 4 workers, Aphrodite, Boreas, Ganymede

and Dionysius, to pick the apple trees. The model is now

yij = µi + λj + πij + θij + ǫij,

where πij ∈ {πα, πβ, πγ, πδ} is an effect due to the picker

of plot (i, j). Now we use a Graeco-Latin square design:

A α B β C γ D δ

B γ A δ D α C β

C δ D γ A β B α

D β C α B δ A γ

e.g., plot (2,1) gets treatment B and is picked by Ganymede.

n × n Graeco-Latin squares exist for all n except n = 2

and 6. This was conjectured by Euler, and proved in 1900.

(Euler also thought there was none for n = 10, 14, 18, . . . )

e.g., n = 3

A α B β C γ

B γ C α A β

C β A γ B α



Existence of Graeco-Latin squares

Euler conjectured that no n × n Graeco-Latin square exists

for n = 6, 10, 14 . . . .

This was proved true for n = 6 in 1900, and false for

n = 10, 14, . . . by Bose, Shrikhande and Parker in 1959.

Here is a 10×10 Graeco-Latin square which disproves Euler’s

conjecture.

4 6 5 7 6 8 7 0 8 1 0 2 1 3 2 4 3 5 9 9

7 1 9 4 3 7 6 5 1 2 4 0 2 9 0 6 8 8 5 3

9 3 2 6 5 4 0 1 3 8 1 9 8 5 7 7 6 0 4 2

1 5 4 3 8 0 2 7 0 9 7 4 6 6 5 8 9 2 3 1

3 2 7 8 1 6 8 9 6 3 5 5 4 7 9 1 0 4 2 0

6 7 0 5 7 9 5 2 4 4 3 6 9 0 8 3 2 1 1 8

8 4 6 9 4 1 3 3 2 5 9 8 7 2 1 0 5 6 0 7

5 9 3 0 2 2 1 4 9 7 6 1 0 8 4 5 7 3 8 6

2 8 1 1 0 3 9 6 5 0 8 7 3 4 6 2 4 9 7 5

0 0 8 2 9 5 4 8 7 6 2 3 5 1 3 9 1 7 6 4



How far can we go?

Suppose the workers can only pick one plot a day. They pick

Monday–Thursday. The weather might be different on these

days, or the workers might become more or less efficient as the

week progresses. Clearly we would now like a design based on

what is known as a ‘complete hyper-square’. E.g., plot (2,1)

gets treatment B and is picked by Ganymede on Thursday.

A α 1 B β 2 C γ 3 D δ 4

B γ 4 A δ 3 D α 2 C β 1

C δ 2 D γ 1 A β 4 B α 3

D β 3 C α 4 B δ 1 A γ 2

In this square each pair of ‘symbols’, one drawn from each of

two out of five sets (row, column, Roman letter, Greek letter,

or number), appears together once and only once.

That’s all we can do. We can eliminate at most n nuisance

parameters using a n × n square.

It is a theorem that complete hyper-squares exist for all n

that are a power of a prime number.

This is all quite amusing, but in practice other experimental

designs are often better than Latin squares. For one thing, it is

not usually the case that all ‘factors’ have the same number of

‘levels’ (4 in these examples).



Stein’s Paradox

Suppose X1 is a sample from N(θ1, σ2) and on the basis

of this sample we want to estimate θ1. Clearly θ̂ = X1

minimizes E (θ̂1 − θ1)
2, to a value of σ2.

Now suppose X1, . . . , Xk are independent samples,

Xi ∼ N(θi, σ2), and we want to estimate θ1, . . . , θk, so

as to minimizeE (θ̂1 − θ1)
2 + E (θ̂2 − θ2)

2 + · · · + E (θ̂k − θk)
2 .

Here θ1, . . . , θk have nothing at all to do with one another.

E.g., we might have

θ1 = mean IQ of Cambridge students;

θ2 = mean diameter of craters on the moon;

θ3 = mean weight of New Zealand sheep, etc.

You might think we should take θ̂i = Xi.

In fact, for k > 2 we do better with

θ̂i = Xi +
(k − 2)(X̄ − Xi)σ

2

∑
j(Xj − X̄)2

, i = 1, . . . , k

It is paradoxical that we do better to take account of data

other than simply Xi when forming our estimate of θi!



Stein’s lemma

To evaluate the performance of the Stein estimator we first

need Stein’s lemma:E [(X − θ)g(X)] = σ2E g′(X).

The proof of this lemma is by integration by parts:

E [(X − θ)g(X)]

=

∫ ∞

−∞
(x − θ)g(x)

e−(x−θ)2/2σ2

√
2πσ2

dx

= −σ2g(x)
e−(x−θ)2/2σ2

√
2πσ2

∣∣∣∣∣

∞

−∞

+ σ2

∫ ∞

−∞
g′(x)

e−(x−θ)2/2σ2

√
2πσ2

dx

= σ2E g′(X) .



Evaluation of Stein’s estimator

E [
k∑

i=1

(θ̂i − θi)
2

]

=
k∑

i=1

E [
Xi +

(k − 2)(X̄ − Xi)σ
2

∑
j(Xj − X̄)2

− θi

]2

=
k∑

i=1

{E [
X̄i − θi

]2
+ 2E [

(X̄i − θi)
(k − 2)σ2(X̄ − Xi)∑

j(Xj − X̄)2

]

+E [
(k − 2)(X̄ − Xi)σ

2

∑
j(Xj − X̄)2

]2




= kσ2 + 2(k − 2)σ4
k∑

i=1

E [
∂

∂Xi

(X̄ − X̄i)∑
j(Xj − X̄)2

]

+ (k − 2)2σ4E [
1∑

j(Xj − X̄)2

]

= kσ2 − (k − 2)2σ4E [
1∑

j(Xj − X̄)2

]

< kσ2 = E [
k∑

i=1

(Xi − θi)
2

]
.

As noted above, it is remarkable that we should gain by

taking account of the values of X2, . . . , Xk when estimating

θ1, since θ1 might have nothing to do with θ2, . . . , θk.



Some intuition about the Stein estimator

The Stein estimator is

θ̂i = Xi +
(k − 2)(X̄ − Xi)σ

2

∑
j(Xj − X̄)2

A small value of the denominator, say S =
∑

j(Xj − X̄)2,

would suggest that we should not reject the hypothesis

H0 : θ1 = · · · = θk. If H0 is true then we would minimize
∑

i E (θ̂i − θ)2 to σ2 (< kσ2) by taking θ̂i = X̄.

The Stein estimator shrinks θ̂i towards X̄ precisely when S

is small.

It is also interesting to compare this to the estimation game

in which Player 1 thinks of any real number, say θ; adds an

error to θ that is equally likely to be +10 or −10 (i.e., chosen

by his tossing a fair coin) and tells the result to Player 2.

Player 2 learns x and knows that θ is either x ± 10. He has

a better than 50% chance of guessing θ correctly if he samples

a real number, say y, from a distribution on (−∞, ∞), say

from N(0, 1). If x < y he should guess θ = x + 10. If

x > y he should guess θ = x − 10.

If Player 2 plays this game against two players, 1 and 1′, he

could use Player 1’s x as his y′ for guessing the θ′ of Player 1′,

and the x′ of Player 1′ as his y for guessing the θ of Player 1.



Factor analysis

Suppose n subjects take a psychological test of p questions,

say p = 70. The ith candidate’s answers are xi1, . . . , xip.

The total variation in the data is

S =

p∑

j=1

n∑

i=1

(xij − x̄j)
2

Factor analysis tries to ‘explain’ this variation via a smaller

number of ‘factors’, z1, . . . , zm, (say m = 4), such that

(a) zj = βj
1x1 + · · · + βj

pxp, with ||βj|| = 1,

(subject i scores zij = βj
1xi1 + · · · + βj

pxip on factor j);

(b) zj and zk are uncorrelated, in the sense that for j 6= k
n∑

i=1

(zij − z̄j)(zik − z̄k) = 0, and

(c) the variation in the factor scores (which is always ≤ S)

S′ =
m∑

j=1

n∑

i=1

(zij − z̄j)
2

is almost as large as S.

E.g., subjects are separated almost as much by their scores

on 4 uncorrelated factors as they were by their answers to 70

questions. (We will have S′ = S once m = p.)



The Myers–Briggs personality typing inventory

In this test subjects answer 70 questions of the sort:

1. When the phone rings do you:
(a) hasten to get to it first, or (b) hope someone else will

answer?

2. . . .

(You can take an on-line test which is similar to the
Myers–Briggs at the web site
http://sunsite.unc.edu/personality/keirsey.html.)

These answers are converted to scores on 4 binary factors. To
get a sense of how you might score on these factors, consider:

Do you prefer to draw energy from

the outside world of people, activities or things (E)?

the internal world of ideas, emotions, or impressions (I)?

Do you prefer to take in information

through the five senses and noticing what is actual (S)?

through a “sixth sense” and noticing what might be (N)?

Do you prefer to organize and structure information to decide

in a logical, objective way (T)?

in a personal, value-oriented way (F)?

Do you have a preference for living

a planned and organized life (J)?

a spontaneous and flexible life (P)?

Note your type, e.g., ENTP.



The four factors

How a person is energized:

Extroversion (E)- Preference for drawing energy from the

outside world of people, activities or things.

Introversion (I)- Preference for drawing energy from one’s

internal world of ideas, emotions, or impressions.

What a person pays attention to:

Sensing (S)- Preference for taking in information through

the five senses and noticing what is actual.

Intuition (N)- Preference for taking in information through

a “sixth sense” and noticing what might be.

How a person decides:

Thinking (T)- Preference for organizing and structuring

information to decide in a logical, objective way.

Feeling (F)- Preference for organizing and structuring

information to decide in a personal, value-oriented way.

Life style a person adopts:

Judgement (J)- Preference for living a planned and

organized life.

Perception (P)- Preference for living a spontaneous and

flexible life.



The 16 personality types

ENFJ : “Pedagogue”. Outstanding leader of groups. Can be
aggressive at helping others to be the best that they can
be. 5% of the total population.

INFJ : “Author”. Strong drive and enjoyment to help others.
Complex personality. 1% of the total population.

ENFP : “Journalist”. Uncanny sense of the motivations of
others. Life is an exciting drama. 5% of the total
population.

INFP : “Questor”. High capacity for caring. Calm and
pleasant face to the world. High sense of honor derived
from internal values. 1% of the total population.

ENTJ : “Field Marshall”. The basic driving force and need is
to lead. Tend to seek a position of responsibility and enjoys
being an executive. 5% of the total population.

INTJ : “Scientist”. Most self-confident and pragmatic of all
the types. Decisions come very easily. A builder of systems
and the applier of theoretical models. 1% of the total
population.

ENTP : “Inventor”. Enthusiastic interest in everything and
always sensitive to possibilities. Non-conformist and
innovative. 5% of the total population.

INTP : “Architect”. Greatest precision in thought and
language. Can readily discern contradictions and
inconsistencies. The world exists primarily to be
understood. 1% of the total population.



The 16 personality types continued

ESTJ : “Administrator”. Much in touch with the external
environment. Very responsible. Pillar of strength. 13% of
the total population.

ISTJ : “Trustee”. Decisiveness in practical affairs. Guardian
of time-honored institutions. Dependable. 6% of the total
population.

ESFJ : “Seller”. Most sociable of all types. Nurturer of
harmony. Outstanding host or hostesses. 13% of the total
population.

ISFJ : “Conservator”. Desires to be of service and to minister
to individual needs - very loyal. 6% of the total population.

ESTP : “Promotor”. Action! When present, things begin to
happen. Fiercely competitive. Entrepreneur. Often uses
shock effect to get attention. Negotiator par excellence.
13% of the total population.

ESFP : “Entertainer”. Radiates attractive warmth and
optimism. Smooth, witty, charming, clever. Fun to be with.
Very generous. 13% of the total population.

ISTP : “Artisan”. Impulsive action. Life should be of impulse
rather than of purpose. Action is an end to itself. Fearless,
craves excitement, master of tools. 5% of the total
population.

ISFP : “Artist”. Interested in the fine arts. Expression
primarily through action or art form. The senses are keener
than in other types. 5% of the total population.



Factor scores

1

2

3

4

5

6

7

8

50

50

60

60

70

70

80

80

90

90

11

22

33

44

55

66

77

88

50

50

60

60

70

70

80

80

90

90

IQ factor = .653(math score) + .757(verbal score)

mathmo factor = .757(math score) − .653(verbal score)

math score = .653(IQ factor) + .757(mathmo factor)

verbal score = .757(IQ factor) − .653(mathmo factor)

student math verbal IQ mathmo

score score factor factor

1 85 80 116.1 12.1

2 77 62 97.2 17.8

3 75 75 105.8 7.8

4 70 65 94.9 10.5

5 67 50 81.6 18.1

6 63 69 93.4 2.6

7 60 62 86.1 4.9

8 55 49 73.0 9.6


