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ABSTRACT

We define some interesting incentive issues that arise in
the management of virtual infrastructures. We demonstrate
that participants’ decisions about the quantities of infras-
tructure that they will choose to contribute to a virtual or-
ganization can be greatly affected by the resource sharing
policy that they know will be deployed when the system
operates. Unless this policy is well-designed, agents will at-
tempt to free-ride by contributing less resource than is de-
sirable. Our novel contribution is the formulation of models
for designing optimal management policies, an analysis that
demonstrates the inadequacy of simple sharing policies, and
proposals for some better ones. We find an optimal policy
in a limit as the number of participants becomes large. We
learn that simple policies may be far from optimal and that
efficient policy design is not trivial; policy parameters play
important role in optimizing the efficiency of virtual facility
formation.

Categories and Subject Descriptors

K.6.4 [Management of Computing and Information
Systems]: Systems Management; C.2.4 [Computer Com-
munications Networks]: Distributed Systems; D.4.1 [Op-
erating Systems]: Process Management—scheduling;
D.4.7 [Operating Systems]: Organization and Design—
distributed systems; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and
Problems—sequencing and scheduling

General Terms

Algorithms, Design, Economics, Experimentation, Manage-
ment, Performance
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1. INTRODUCTION

Infrastructure virtualization is a powerful tool towards
the creation of a global computing and communication in-
frastructure. It allows organizations to cooperate and con-
tribute physical resources to the creation of a virtual slice
of a network or of a computing and storage facility like a
computational Grid. This virtual infrastructure is shared by
the participating organizations and supports specific services
and applications or scientific experiments. Although virtu-
alization technology has made significant progress in this di-
rection, there remain many interesting and unanswered eco-
nomic questions about the business models that can make
such virtual infrastructures viable. In particular, what are
the incentives for an organization to contribute (virtual-
ized) resources to the common slice? How should the costs
be shared? How should the new virtual facility be shared
among its contributors?

In this paper we make the fundamental assumption that
the virtual infrastructure is shared and generates economic
value to the participants that contribute to its formation.
We assume that each participant will make use of the shared
virtual facility by running experiments or applications, pos-
sibly for profit. We address the question of how to effi-
ciently form and share such a virtual infrastructure amongst
a number of participants, each of whom has some private in-
formation about the value it places upon being allocated a
quantity of resources. Each participant would like to obtain
for himself as much as possible of the shared infrastructure
(or service), while contributing minimally to the costs of its
formation and maintenance. The result is that the partic-
ipants’ individual aims are not aligned with overall system
efficiency. This is an important observation and suggests
that unless the appropriate incentives are in place, the eco-
nomic performance of the resulting system may be greatly
reduced. This raises the issue of infrastructure management.

How should a virtualized infrastructure be managed? Since
such an infrastructure is shared, there is unavoidable con-
flict between participants in respect of the sizes of shares of
it they obtain each time they need to use it. What policy
should one use to manage such conflicts? How does such a
policy affect the incentives that the participants have for re-
leasing resources to the common slice? Viewing this virtual-
ized infrastructure as a common resource pool, what should
be the rules for accessing it? It could be an egalitarian policy
that simply provides each participant with an equal share of



the resources of the common pool; or it could be a more
sophisticated policy that makes use of information that the
participants provide about the values they place on obtain-
ing resources. It should also provide a means of covering the
cost of the facility. One way to cover the cost of building a fa-
cility is to require participants to pay fees. Another way is to
add together actual resources that participants contribute;
this is a more practical model for virtualized infrastructures
in which participants decide on how many physical resources
to release on a virtual infrastructure slice, and the sum of
these contributions defines the size of the actual slice. In
this case we might operate a policy in which we ask each
participant to choose for himself a quantity of resource that
he will contribute to a shared pool of resources (the virtu-
alized infrastructure slice), and then say that at all future
instants the resource pool will be shared amongst any par-
ticipants who wish to draw on it in proportion to the sizes
of their contributions. A participant who contributes more
will receive more. But this begs a question: might the sys-
tem work even better if the resource is shared in some other
way, say in proportion to the squares of their contributions?
It is questions like this that we address.

The problem of policy design is certainly not trivial, as is
observed in [3], [5], [7]. As we see in what follows, the choice
of sharing policy will affect the way in which agents will
choose the sizes of their contributions to the shared resource
pool. Simple policies may perform very badly and induce a
great amount of free riding (i.e., they can incentivize agents
to attempt to obtain ‘something for nothing’). There is re-
cent work in [2], [11] regarding the definition of accounting
requirements for Grids, which in turn would influence the
types of policies that can be implemented. In this paper we
look at a number of models, making different assumptions
about the parameters that can be measured, and obtain op-
timal policies for each model. For instance, the frequency
with which a participant is active and requests resources
may be an important parameter. If this parameter can be
measured, then we can incentivize a participant to declare
it truthfully by threatening to fine him if measurements of
his parameter do not match up with what he had declared.
Other parameters may be known only to a participant and
cannot be measured. Then the form of the policy itself can
be designed to incentivize truthful revelation. This is done
indirectly, by offering each participant a choice of options
and then observing which of them he chooses.

Our contribution in this paper is to define some interesting
incentive issues that are related to the management of the
virtual infrastructures and to business modeling. Our novel
contribution is the formulation of the models for designing
optimal management policies and their connection with op-
timal auction design, a rigorous analysis that demonstrates
the inadequacy of simple sharing rules, and the proposition
of specific policies like extensions of proportional sharing and
minimum contribution schemes. We derive optimal policies
in a limit in which the number of participants, n, becomes
large, and compare the various approaches. The lessons to
be learnt are that simple policies may be far from optimal
and that efficient policy design should not be trivialized; pol-
icy parameters play important role in the final outcome of
virtual facility formation.

We must stress that the intricacy of the mathematics in-
volved in constructing optimal policies in the context of in-
complete information (i.e., when the participants may not
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be truthfull about their actual needs in using the infrastruc-
ture). There are rarely simple analytic solutions, even for
simple models with few parameters. For instance, we sup-
pose in what follows that the size of the virtual facility is
characterized by a one-dimensional parameter; this is a fairly
good model for computational facilities, but is less good for
virtualized networks. Hence our results are not intended to
be fully realistic. However, they demonstrate general fea-
tures that good policies should have. More work is needed
to translate these to something practical and directly imple-
mentable. This work should refine the results in this paper
and investigate their practical implementation, i.e, impact
on job scheduling policies, see [6] and [15], and the incor-
poration of other important parameters that were left out
in our modelling. In the rest of this paper we purposefully
focus our discussions upon computational grids. These are
simpler to treat than other infrastructures because compu-
tation and storage seem easier to commoditize. We continue
with a discussion of the virtues of virtualization and the re-
sulting economic issues we address in this work.

1.1 Virtual resource sharing

Grid technology is about ‘resource virtualization’ [13], i.e.,
about providing a layer of abstraction between the physical
computing resources and the applications that use them.
This commoditizes computation since it does not matter ei-
ther on what particular hardware an application runs, or
where that hardware is physically located. An application
requires only that it is run on a specific number and type of
virtual resource units, the virtual machines, irrespectively
on how these are implemented and where they are physi-
cally located. This aggregation of computing and software
resources offers linear scalability: adding a virtual resource
in some organization results in increasing the total resource
pool of the virtual infrastructure. It also allows for large
economies of scale and scope since few large data centers
can serve many individual organisations and reduce the cost
of IT per organization. Other positive aspects include the
flexible creation of shared infrastructures in short time scales
that can serve specific purposes like supporting large exper-
iments, solving specific computational problems, etc., and
security (although the last aspect of these is not a concern
here). This is the driving force behind cloud computing
and enables the new ‘Internet of Services’ vision in which
software services are offered by competitive providers that
charge per use and are run somewhere on the shared comput-
ing infrastructure formed by other infrastructure providers.

Since organizations have computational demands that fluc-
tuate over time and scope, there can be a great overall cost
reduction when organizations obtain resources from a cen-
tral shared facility (be it actual or virtual) as compared to
each organization building its own smaller facility. A shared
facility will have a size near the sum of the average resource
requirements of the participants, whereas if they individu-
ally install capacity the sum of the sizes of their installations
will be near the sum of their peak requirements. In addition
to the savings in hardware there can be savings in software
since the same programs can be reused by the participants
in this virtual organization. Note, however, that the savings
occurs because demand for computation fluctuates; if de-
mand were constant, then no statistical multiplexing would
take place and the advantage of using a shared facility would
be greatly reduced.



1.2 Economic issues

Suppose that n organizations are considering their partic-
ipation in a virtual facility which provides a pool of shared
resource. Our model allows each organization to value re-
sources usage differently. Specifically, we suppose that if
organization i obtains a quantity of resource x it obtains
benefit §;u(z). The utility function u(x) is the same for all
participating organizations; we suppose it is increasing and
concave. However, the value of the parameter 6; is known
only by organization i; we say that it is this organization’s
private information. The parameter 6; captures the impor-
tance that organization ¢ places on obtaining resource. The
economic problem for the facility designer is to efficiently
share the virtual resources in a context that each organiza-
tion is behaving strategically in order to maximize its own
net benefit. Key decisions must be taken about (a) how to
incentivize organizations to participate and contribute vir-
tual resources, (b) what fees, or actual amounts of resource,
the participants should be required to contribute, (c) how
resources should be allocated when more than a single orga-
nization wants to draw on the shared pool simultaneously,
and (d) how the cost of running the facility should be shared.
In this work we address the above issues in the context of
the business model of collaborative grids. These are shared
facilities that are managed with the objective of maximizing
the sum of the total benefit obtained by the participants who
share the facility; this is in contrast to maximizing profit of
individuals or of the facility manager.

One possible approach to sharing computational resources
is to form an open market for computation, see [14], [16]. In
this market providers (sellers) and consumers (buyers) of
computing resources go to trade. The market may operate
similarly to the stock market, except that commodities are
perishable. For instance, an organization might go to the
market and say that it needs 10 virtual machines of a cer-
tain type for 8 hours and state that the maximum price it is
willing to pay is 100 euros. This corresponds to a ‘bid’ in this
market. Similarly, an organization can post in the market
its excess computing resources with an ‘ask’ of the minimum
price at which it is willing to sell. The market matches the
asks and bids, just as in the stock market, and allocates re-
sources accordingly. If this market is relatively competitive,
then it will also result in efficient allocation of resources,
see [18], [19]. Organizations will base their decision on how
much infrastructure to self-procure and how much to get
from the market based on the equilibrium market price and
on the statistics of their demand for computation. Alter-
natively, large sellers/buyers of capacity might participate
in specialized auctions (like in e-Bay) to sell/buy resource
contracts for immediate or future use.

Our approach differs from the above, but is complemen-
tary. It is not based on a competitive market; rather it
regulates the system by setting rules to which participants
must abide and a policy for sharing the resource pool. It
is appropriate when a given set of organizations decide to
collaborate over a long period of time, to do one of the fol-
lowing.

(i) share the cost of running a given facility;

(ii) create a new shared virtual facility, by each contribut-
ing actual computing resources (or by providing finance for
purchasing and maintaining those resources).

Case (ii) is common in large e-science projects, e.g., [1],
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[4], [9], [12], and in other virtual facility building projects
like OneLab [8] and PlanetLab [10]. This approach may be
preferred to the free market approach when organizations
prefer long-run predictable contracts and to make contribu-
tions in kind (infrastructure), rather than to participate in
dynamic markets in which prices fluctuate and yearly ex-
penses are not predictable.

Our approach for problems of types (i) and (ii) is based on
theory for optimal auctions [20]. We design schemes in which
agents’ bids determine resource-sharing contracts. These
contracts specify what quantities of resource each agent will
obtain in each possible circumstance that some subset of
agents wish to draw on the resource pool simultaneously.
The parameters of the contracts become finalized only after
all agents have made their bids. The auction is engineered
so that each participant is incentivized to bid truthfully,
i.e., to reveal the true values of his personal parameter ;.
The resulting contracts provide optimal resource sharing,
subject to a constraint that the fees paid by the agents will
cover the cost of the system. In this model the rules of
running the system are defined as functions of the bids of of
the participants. Thus we are engaged in what is known as
‘mechanism design’ [21]. We are effectively seeking to design
rules for a game (in which the agents are invited to play
strategically) such that at the resulting Nash equilibrium
of this game the economic efficiency is maximized, subject
to covering the cost of running the facility. Mathematical
details omitted here can be found in the full paper, [17].

2. THE FULL INFORMATION CASE

We begin with a problem of efficiently sharing a fixed
quantity of computing resource ) amongst a set of n agents.
Here @) corresponds to the total size of the shared infrastruc-
ture.

Suppose that the daily cost of operating the system is
c(@), a known function of its size, and for simplicity let
¢(@) = Q. Time proceeds in discrete epochs, 1,2, ..., which
for convenience we will call days. If on day ¢ an agent 7 is
allocated resource z; then he obtains utility (or can generate
revenue) of 0; su(x;). On day ¢, the value of 0; ; is realized as
follows. With known probability «; agent i contends for re-
sources (is active) and then 6; + = 0;, else 0; + = 0. The value
of 0; captures the actual value of computation for agent ¢ and
is chosen once at the start from a probability distribution F;.
The types of the agents, as specified by their a1, ..., a, and
distributions Fi, ..., F,, are public knowledge, i.e., they are
known to all agents and the system designer. For instance
(a1, F1) might be parameters that are typically associated
with a certain size of the participating organization. The
actual value of 0; that characterizes a given agent is known
only to agent i, as his private information. This is in con-
trast to the value of a; which is assumed known since it
can be monitored objectively by the system. Note that the
‘system designer’ of our business model may be a fictitious
entity. Its function is to represent the incentives of the con-
sortium of the participants as a whole. In practice it could
be some common authority that is responsible for managing
the shared infrastructure (perhaps a piece of software) once
the participants agree on a set of policies.

In the ‘full information’ scenario we suppose that the vec-
tor @ = (61, ...,0,) and so the vector (01¢,...,0n¢) is fully
known to the system designer at each ¢. Knowing it, he
can then maximize the social welfare (total system benefit),



defined as
doi (i),

by simply computing the optimal allocation vector

z(0) = (x1(0),...,2.(0))

—arg  max {zg;l ei,tu(xi)} : (2)
L1003 Tm
st 30 2<Q
That is, 1, . .., 2, maximizes (1) under the constraint ), ; <
Q. It generates benefit 0; ;u(x;) for participant ¢. If the

facility is shared for a single epoch ¢, then assuming that
> Oicu(zi) > ¢(Q) = Q, the system designer can ask for
payments g; such that ¢; < 0;u(z:) and >, ¢i = Q. If the
same set of agents share the facility continuously, then we
compute the optimal allocation at each time ¢ from (2) but
ask agents to make constant payments at each t. We simply
require that these satisfy, for each 1,
Ef:u(zi(0))] —a: 20, 3)
and cover the cost, i.e., >, ¢ = Q. In (3) the expected net
benefit of participant ¢ is his long run average benefit when
for each ¢t we use the allocation computed in (2). If (3)
cannot be satisfied, then there is simply no solution to our
problem that can cover the specific cost Q. Observe that
since payments are constant over time, they can be made
‘in kind’, i.e., by agent i contributing a quantity g; of the
virtual resources that comprise the shared infrastructure Q.
The system designer chooses () to maximize the social
welfare, taking into account that the size of the system is
not fixed and comes at a cost, i.e., he finds

Q" = arg rnQaX{E[Z:Z Gztu(xl)} — C(Q)} , (4)

where the allocations are computed using (2) and hence are
also functions of Q.

The above is called the first-best solution since it achieves
the highest possible economic efficiency. Unfortunately, in
practice the 0; are private information of the agents, who
will act strategically when asked to reveal them. An agent
might choose to declare a value of 6; that is greater than
its true value in order to obtain a larger resource share. So
in practice a game takes place amongst the agents. Agent
i declares 6; and his payoff is his expected net benefit. As
the designer of the rules of the game we wish to arrange
that the Nash Equilibrium of this game is a point that
is as economically efficient as possible. This amounts to
finding appropriate functions by which to decide payments
q(0) = (q1(0),...,qn(0)), and resource allocations x(6)
(z1(0),...,2,(0)). Note that q(f) depends on the values of
0 = (61,...,0,) declared at the start, and the resource al-
locations for day t, of x((01,t,...,0n,)), depend on 6 and
the set of active agents at day ¢t. These define the rules of
the game as regards how payments and resource allocations
depend upon participants’ declarations. At the equilibrium,
these should satisfy the following properties.

1. Agents should find it in their interest to be truthful in
declaring their 6;.

2. Agents should see positive expected net benefit from
participation.

3. Expected total payments should cover the cost ¢(Q).
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4. Expected social welfare (total net benefit) should be
maximized among over all possible choices of @, z(0) and
q(0) that satisfy 1-3 above.

3. SHARING POLICIES

Each agent’s decision about the amount of resource that
he is willing to contribute to a resource pool depends cru-
cially on the policy that decides how resource will be shared
amongst agents who are active on a given day. Unless one
designs this policy cleverly, the total system size will not be
optimal. This is because agents will attempt to free-ride by
contributing less resource than is socially desirable. In this
section we demonstrate how this can occur, even when we
have full information regarding the agents’ 0;. It is rather
subtle to design rules that incentivize agents to make appro-
priate contributions. However, things are relatively simple
for systems with a large number of participants, where the
law of large numbers makes the analysis tractable. We ex-
plain this in Section 4 for a case in which the 6; are private
information. These results are useful for designing approxi-
mately optimal policies for systems of practical sizes.

Consider the model of the previous section and for simplic-
ity assume that 6; = 1 for all i. Hence agents differ only in
respect of their activity frequencies «;, assumed known. Let
the set of active agents at day t be S. Suppose Q = Zj qj-
Since all contending agents have the same concave utility
function u(z), it would seem sensible to take z;(S) = Q/|S]|.
But is this correct? Or should the sharing policy depend
on the a; and on the agents’ contributions, ¢;? If partici-
pants know that this policy will be followed, what quantity of
resources will they contribute to the common pool?

We need to evaluate the combined effect of a sharing pol-
icy, both on the efficiency with which resource is shared,
and on the initial resource contributions that agents will
make. Then we can compare different policies and possibly
choose the optimal one. One might expect, for example,
that sharing resource amongst agents in proportion to their
initial contributions provides better incentives and greater
efficiency than sharing resource equally amongst agents.

In the next sections we analyze the effects of different
policies for 2 agents, an equal sharing policy for n agents and
subscription pricing, in which all participants are charged
the same fixed fee.

3.1 Sharing a resource between two agents

Suppose there are just two agents. If agent ¢ is active and
is allocated resource z; then he obtains revenue of wu(z;).
Suppose the cost of buying resource is ¢(Q) = @ and that
agents contribute g1, g2. Let x;(S) be the share of resource
given to agent ¢ when the set of active agents is S. The
average net benefit of agent 1 per period is

a1 (1 — az)u(z1({1})) + arazu(z1 ({1, 2})) — q1.

If we take z;({i}) = x:({1,2}) = ¢1 then we model agents
acting alone, i.e., each building his own facility. Suppose
u(z) = r — 1/z. Acting alone, agent ¢ maximizes

()

For data » = 10 and a1 = a2 = 0.8 he obtains expected net
benefit of 6.2112, for ¢ = 0.8944.

Equal sharing. If a1 = a2 = «a, then we would expect
that under any reasonable mechanism the agents should be

al(r_l/Q)_Q7



incentivized to contribute equally and that resource should
be shared equally when S = {1,2}. However, it matters
what the mechanism is. Consider an ‘equal shares’ policy of
z;({i}) = ¢1 + ¢2 and z;({1,2}) = 2(q1 + ¢2). Agent i has
net benefit of

nb; ( )=« (r l—a a > ;

A q1 + g2 %((h-l-(p) -

The social optimum is achieved by a planner choosing ¢1 =
g2 = q to maximize nbi(qi, g2)+nb2(q1, q2). This is achieved
by ¢ = go := y/a(l +«). The net benefit per agent is
w(qgo) = 6.3029, for go = 0.8485. Suppose agents have full
information. Sharing resource with the equal shares policy,
agent ¢ maximizes nb; (g1, g2) with respect to ¢;. If we require
q1 = g2 then the equilibrium is g1 = ¢2 = 0.6, and each agent
has net benefit 6.2. This is less than the 6.2112 they obtain
acting alone. In fact, when n = 2, two identical agents will
prefer to act alone for all a1 = az > 7/9.

The problem becomes worse as the number of agents in-
creases. With n = 10 identical agents each contributes
q¢i = 0.2561 and the net benefit per agent is 5.1826. Once
n is as large as 98 then the equilibrium is driven to a point
where agents no longer have positive net benefit. They will
start deserting the system.

We have made a surprising observation: two identical
agents can obtain greater net benefit by acting on their
own than by participating in a shared system in which their
contributions are determined as the Nash equilibrium of a
nonzero-sum game. As we have seen above, the social wel-
fare obtained by ‘equal shares division’ can be less than
stand alone for @ > 7/9. With o = 0.8 the stand alone
welfare is 6.2112 and the grid welfare is only 6.2. This is
because the incentives are wrong and each agent tries to be
a partial free-rider. How might we improve things? One way
is with proportional sharing.

Proportional sharing. The proportional sharing policy
divides the resource between agents in proportion to their
contributions. This gives z;({i}) = ¢1 + ¢2 and z;({1,2}) =
¢i- The equilibrium is at ¢1 = g2 = 0.8246 and the social
welfare is 6.30225, which is better than the stand alone wel-
fare. The only change is that we have replaced z;({1,2}) =
1(q1 + q2) with x;({1,2}) = g:. This is just a bit less than
the 6.30294 that a social planner could achieve.

Consider now a scheme that shares resource proportion-
ally to sth powers of the contributions. That is,

(i) =a+ae, w({12) = Fx+ae).

Equal division is s = 0. Proportional division is s = 1. What
about other values of s? It turns out that the equilibrium
point is increasing in s. At s = 9/8 = 1.125 the equilibrium
is exactly the same as that of the social optimum. In fact,
this works for any a when we take s = (1 + 1/a). Note
that this means taking s > 1. The results are summarised
in Table 1.

Other schemes can also be good. For example, recall that
G =q=q = \/a(l + a)/2 achieves the first-best welfare.
Let

z1({1}) = @1 + @21{4;>q0}
z2({2}) = @2 + 1145340}
ri({1,2) = 0
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That is, when agent 1 is the one only who is active then
he is allowed to use agent 2’s contribution, but only if he
contributes at least go. This scheme achieves the same social
welfare as does a central planner. However, to compute qo
we need to know the parameters a1, a2 (as when choosing
s = 1.25 above). Is there a scheme we could invent that does
not need this information?

scheme social welfare values of ¢1, g2
stand alone ra—2y/a Va
6.2112 0.8944
central planner ra—/2a(l+a) a(l+a)/2
s=2(14+1/a) 6.3029 0.8485
proportional roa— ‘/25(5’7\/1—22) %\/m
sharing s = 1 6.3023 0.8246
equal division  ra—2\/a(l+a) iya(l+a)
s=0 6.2 0.6

Table 1: Social welfare per agent under different
sharing policies, when u(z) = 10 — 1/z, r = 10, a =
0.8. By optimally choosing s the system designer
can achieve the first-best social welfare.

3.2 Equal sharing provides wrong incentives

The inadequacy of equal sharing is true more generally.
Suppose that there are n agents and ¢(Q) = Q. Again sup-
pose 1 = --- =6, =1 and a1 > --- > ay. Consider the
policy of sharing resource equally. It turns out that this pol-
icy does not work well, because most agents are free-riders.
Only agent 1 will have any incentive to contribute resources
to the grid. To see this, note that agents 1 wishes to maxi-
mize

. R
nbi(q) = a1 [agEu <—M ) )

g1+ g2+ -+ @gn ]
1—ap)Bu (L TRT T
+ (1 — a2) u( T ) a1

with respect to ¢q1, and agent 2 maximizes a similar expres-
sion mbz(q) with respect to g2, where M is a random vari-
able denoting the number of agents 3, ..., n that are present.
Since a1 (1 — az2) > az(1 — 1) it follows that

onbi(q)/0q1 =0 = 9nbz(q)/dq2 < 0.

So the only possible Nash equilibrium is where agents 2, ..., n
choose to contribute g2 = --- = ¢, = 0.

Now let M’ be the number of the agents 2,...,n who
are present. For an equilibrium to exist with ¢1 > 0 and
q2 = -+ = gn = 0 it would have to be that

a10E[u(q1/(M' +1))]/0g1 —1=0
for some ¢ > 0. This can happen if and only if
o/ (0)E [1/(M' +1)] —1>0.

Clearly, E[1/(M' +1)] — 0 as n — oo. Soif v'(0) < oo and
n is sufficiently large then no agent will wish to make any
contribution.



3.3 Equal sharing with subscription pricing

One possible scheme is to charge a flat subscription fee to
any agent who wishes to participate in the system. We pur-
chase the greatest amount of resource that the collected fees
allow, and in each epoch share it equally amongst any agents
who are active. This is the same as requiring an equal size
of resource contribution from all participants. Such schemes
are very commonly used in practice due to their simplicity.
Let us investigate how well one can do with such a scheme.

Suppose that 6, = --- =0, = 1, but «; differ, and that a
priori these are uniformly distributed on [0, 1]. We ask every
agent to make a fixed subscription g. There is a minimum
«, say aq, for which it is advantageous for an agent to par-
ticipate. By considering the fact that the marginal agent’s
net benefit is 0, we have

L (M) N
(N 1 1)q } 1
=aq (r—[1—ag + (1 +aq)n]/(2nq)) —q¢=0,

agEn |7 —

where N is the number of the other n — 1 agents who have
their a; greater than ay. So N ~ B(n — 1,1 — ). The
expected net benefit of all the agents is
1—ag+1Q+aq)n
1 2 q q
1] _
5( ag)n (r 5

) - (= auma.

For r = 10 we find optimal ¢ and «4 as follows. For com-
parison, the final column shows the first-best that could be
obtained in the full information case. ~We can also calcu-
late that under proportional sharing, as n — oo, agents of
activity a are incentivized to contribute /0.6, and the net
benefit per agent is 3.967. Stand-alone it would be 3.667.

n q Qg net benefit/agent
subscription first-best
2 0.6367 0.0726 3.770 3.827
10 0.5418 0.0697 3.939 3.966
oo 0.5158 0.0575 3.987 4.000

Of course it would be even better to ask for a subscription
fee that depends on «, which could then be policed. For
example, this might be aq. For n large it is optimal to take
q =1, ag = 0 and the expected net benefit is &~ 4n, which is
almost the same as the scheme that charges a subscription
q = 0.5158 to all agents.

4. LARGE SYSTEMS

Now we look at Grids with a large number of participants
and obtain a solution that is simple and intuitive. We take
the model of Section 3, in which each agent i is characterized
by known («s, F;). He is active on day ¢ with probability
o; and when active and allocated resources x; his benefit
is O;u(x;). The parameter 0; is private to agent ¢ which he
must be incentivized to reveal truthfully at the start through
his choice from a set of available contracts.

For any n (not small) the optimal mechanism is like this:
a system is built of size Q(6). Agents are charged pay-
ments p1(0),...,pn(0), and the sum of these covers the cost
c(Q(6)). When agent 7 is contending for the resource amongst
a group of active agents S he receives z;(6,S). For lack
of space, the proof of optimality is omitted here, but us-
ing optimal auction theory it turns out that the optimal

mechanism can be characterized as follows. Define ¢;(6;) =
0; — (1 — Fi(0:))/fi(0:). There is a A > 0, such that for all
S the optimal way to share resource amongst a set of active
agents S is to maximize

2ies(0i + Ag(0:))u(zi(0,5)) (6)

over y. x:(6,5) < Q(0). Here A is a Lagrange multiplier for
a constraint

E[¥,p:(0)] = E[(Q(©))]

This has an interesting limit when n is large, and it allows
payments to made in kind. We note that when agent ¢ is
active the rest of the system will be in its typical average
state. So it is reasonable to look for an approximate solution
in which z;(6,5) is independent of S and we only need to
satisfy the constraint

2 cimi(0) < Q). (7

The problem reduces to one in which constraint (7) can be
satisfied by taking A = 0 and has a solution in which

zi(0) = xi(0;) := arg max,, {0:u(x}) — =i}, (8)

Moreover, this achieves the first-best optimum. Agent ¢ pays
a;x;(0;) and this exactly pays for his average resource usage.
It is interesting that the optimal contract chosen by agent
i secures the same amount of resources from the shared re-
source pool as he would optimally choose to self-procure if
no shared infrastructure was available and he was always
active. But he needs only pay for his average usage, namely
for a; ;. By construction, this scheme is incentive compati-
ble, i.e., he will choose the tariff parameterized by his actual
value of 0. Note that z;(0;) exceeds the size of the facility
he would form if he were to stand-alone, which would be

z9(6;) == arg max, {fiau(a;) — i} (9)

Thus an agent benefits from the existence of the other agents
which are not always claiming resources; he uses the optimal
amount when he is active but pays only when he uses it, since
others pay for it when he is not.

Let z; = xi(6;), as defined above in (8). In practice, we
need Y. x:(6,5) < Q(0) for all S. This is not possible if we
try to take x;(0,5) = xz; for all S. However, we can modify
things slightly. With agent ¢ contributing ¢;, we let y; =
qi/a; and (0, S) = yiQ/ > e yj, where Q = >, g;. Let
us illustrate with u(z) = r — 1/z. Let I; have the Bernoulli
distribution B(1, ;). Agent ¢ has expected net benefit of

il [7’ — (v + X, ijj)/(yiQ)] — iy

=i (0i(r—1/y:) — i) — (1 — ) /Q.

The term o;(1 — ;) /@ is small and varies little with y;, and
ai(0;(r — 1/y;) — y;) is maximized by y; = z;(6;). So agent
i is incentivized to contribute = «;x; and the total welfare,
which is O(n), will differ from its first-best value by just
O(1). Note that the designer need know nothing about the
6;. He constructs the resource curve z(6) by solving (8) for
all values of 6, and the family of payment curves az(0), for
all potential values of activity frequencies. Operation be-
comes very simple and efficiency is near the full information
first-best solution.



5. LESSONS FOR PRACTICE

We have investigated policies for running shared comput-
ing resource infrastructures. We have assumed that par-
ticipants will be strategic in disclosing private information
about their actual resource needs and we have considered
how best to share resources and take payments from the
participants so as to maximize the overall efficiency of the
system and while covering its costs. The chief lessons from
this study are as follows.

1. A participant’s decision about the quantity of resources
that he will choose to contribute to the resource pool of a
virtual organization can be greatly affected by the resource
sharing policy that he expects will be deployed when the
system operates. Thus, a sharing policy which simply op-
timizes the efficiency of the system for a given quantity of
resources may not be optimal. For example, if the resource
will be shared equally amongst active participants then an
agent may choose to contribute nothing to the resource pool.

2. One way to incentivize potential participants to make
significant contributions to the resource pool is to impose a
rule that a participant will only be permitted to draw on the
pool if he makes a minimum contribution to it at the point
that it is formed, i.e., by contributing a minimum quantity
of computing resources. We can further impose a sharing
policy that ensures that an agent who contributes more re-
source will have greater priority for obtaining resource than
an agent who has contributed less. Such rules will incentivize
agents to make contributions that reflect their privately held
beliefs about the benefits they expect to obtain. The result
is a facility with an appropriately large quantity of resource,
which is efficiently shared. Since contribution are made in
kind there is no need for any internal money transfers.

3. In a facility that is already built and so has a fixed size
(such as NRNs, National Grid Infrastructures), the running
cost must be shared by charging the participants. In general,
if the identities of the participants change over time, then
it is optimal to operate a specialized market in which par-
ticipants bid for resource shares according to their needs at
each time, while generating enough payments to cover run-
ning cost. If the set of participants is constant, then simpler
policies exist. We have proposed some, but at the added
cost of implementing some accounting, such as policing the
(67

We have obtained results for simple models under eco-
nomic assumptions that may not always hold. For instance,
there are national infrastructures which cannot charge fees
to participants and so services must be offered for free. It
may be that participants cannot make payments in the form
proposed in this paper simply because of internal account-
ing restrictions. Often the cost of the shared facility ¢(Q) is
not precisely known, and would require non-trivial effort to
define.
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