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In the symmetric rendezvous search game played on n locations two players are initially placed at two distinct
locations. The game is played in discrete steps, at each of which each player can either stay where he is or move
to a different location. The players share no common labelling of the locations. We wish to find a strategy such
that, if both players follow it independently, then the expected number of steps until they are in the same location
is minimized. Informal versions of the rendezvous problem have received considerable attention in the popular
press. The problem was proposed by Steve Alpern in 1976 and it has proved notoriously difficult to analyse. In
this paper we prove a 20 year old conjecture that the following strategy is optimal for the game on three locations:
in each block of two steps, stay where you, or search the other two locations in random order, doing these with
probabilities 1/3 and 2/3 respectively. This is now the first nontrivial symmetric rendezvous search game to be
fully solved.
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1. Symmetric rendezvous search on three locations In the symmetric rendezvous search game
played on n locations two players are initially placed at two distinct locations. The game is played in
discrete steps, and at each step each player can either stay where he is or move to another location.
The players wish to meet as quickly as possible but must use the same strategy. Perhaps this strategy
is described in a handbook of which they both have copies. An optimal strategy must involve random-
izing moves, since if the players move deterministically they will simply ‘chase one another’s tails’ and
never meet. The players have no common labelling of the locations, so a given player must choose the
probabilities with which he moves to each of the locations at step k as a function only of where he has
been at previous steps 0, . . . , k − 1. One simple strategy would be for each player to move to each of the
n locations with equal probability at each step. Since under this strategy the probability of meeting at
each step is 1/n the expected number of steps required to meet is n. However, as we shortly see, this is
not optimal. Can the reader think of something better before reading further?

Let T denote the number of the step on which the players meet, and let ω denote the minimum
achievable value of ET . We call ω the ‘rendezvous value’ of the game. A long-standing conjecture of
Anderson and Weber (1990) [8] is that for symmetric rendezvous search on three locations the rendezvous
value is ω = 5/2. This rendezvous value is achieved by a type of strategy which is now usually called
the Anderson–Weber strategy (AW). It is motivated by the fact that if symmetry could be broken then
it would be optimal for one player to remain stationary while the other player tours all locations (the
‘wait-for-mommy’ strategy). For rendezvous search on n locations the AW strategy specifies that in
blocks of n − 1 consecutive steps the players should randomize between either staying at their current
location, or touring the other n− 1 locations in random order, doing these with some probabilities p and
1− p respectively. On three locations this means that in each successive block of two steps, each player
should, independently of the other, either stay at his initial location or tour the other two locations in
random order, doing these with respective probabilities 1/3 and 2/3. The expected meeting time ET for
the AW strategy is 5/2, so this is an upper bound on the rendezvous value, ω ≤ 5/2.

Rendezvous search problems have a long history. One finds an early version in the ‘Quo Vadis’ problem
of Mosteller (1965) [14], and recently in ‘Aisle Miles’, O’Hare (2006) [12]. In 2007 a letter writer to the
Guardian newspaper queried, “I lost my wife in the crowd at Glastonbury (a music festival). What is
the best strategy for finding her?” A reader replied, “Start talking to an attractive woman. Your wife
will reappear almost immediately.”

The first formal definition of the symmetric rendezvous search game on n locations is due to Steve
Alpern who stated it as a ‘telephone coordination problem’ in a seminar in 1976 [1] (see also [2] and [3]):
Imagine that in each of two rooms, there are n telephones randomly strewn about. They are connected in
a pairwise fashion by n wires. At discrete times t = 0, 1, . . . , players in each room pick up a phone and
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say ‘hello’. They wish to minimize the time t when they first pick up paired phones and can communicate.
Similarly, Alpern has also posed the ‘Mozart Café Problem’ (2010) [4]: Two friends agree to meet for
lunch at the Mozart Café in Vienna on the first of January, 2000. However on arriving at Vienna airport,
they are told there are three (or n) cafés with that name, no two close enough to visit in the same day.
So each day each can go to one of them, hoping to find his friend there.

[Note that in the above two problems the players make an initial choice, which might cause them
to meet. So the rendezvous value differs from that in which the players are intially placed at distinct
locations. For example, if the AW strategy is used in the Mozart Café problem, with n = 3 then the
expected time to rendezvous is 1 + (1/3)0 + (2/3)(5/2) = 8/3.]

While such idealized problems are remote from any real-life search-and-rescue problem, their study can
teach us about issues in coordination, distributed learning, and decentralized control that are important
in application areas, such as shared wireless communication (c.f. [13], [17]).

Anderson and Weber, proved (quite easily) that the AW strategy, with p = 1/2, is optimal for the
symmetric rendezvous search game on two locations. This is the same as ‘search at random’. This fact
was also shown in the same year by Crawford and Haller (1990) [9] for what they called a ‘coordination
game’, in which after each step the two occupied locations are revealed. When n = 2 this revelation is
automatic and so the problems are identical. The coordination game when n = 3 ends in one step, by
both players moving to the location at which neither is presently located. When n > 3 it is solved by
playing the n = 2 game on the two initially occupied locations. Anderson and Weber conjectured that
the AW strategy should be optimal for the symetric rendezvous game on three locations. Indeed, in [8]
they presented what they thought to be a proof of this, but it was later found to have an unrepairable
error. Subsequently, there have many attempts to prove the optimality of AW for three locations, and to
find what might be optimal for n locations, n > 2. It has been shown, for example, that AW is optimal
for three locations within restricted classes of Markovian strategies, such as those that must repeat in
successive blocks of k steps, where k is small. See Alpern and Pikounis (2000) [7] (for optimality of AW
amongst 2-Markovian strategies for rendezvous on three locations), and Fan (2009) [10] (for optimality
of AW amongst 4-Markovian strategies for rendezvous on three locations, and amongst 3-Markovian
strategies for rendezvous on four locations).

The principal result in this paper is Theorem 2.1, in which we establish that AW is optimal for the
symmetric rendezvous search game on three locations. This becomes the first nontrivial game of its
type to be fully solved. We hope readers will enjoy our analysis of this game. The proof of Theorem 2.1
draws on multiple tools in the kit of mathematics for operations research: probability, game theory, linear
algebra, linear programming and semidefinite programming. In particular, this paper provides another
example of the way that semidefinite programming can be used to obtain lower bounds for NP-hard
problems.

In Section 3 we discuss the thinking that led to discovery of this proof. Section 4 discusses a different
problem which can be solved by the same method. This is a problem due to John Howard and is about
minimizing the expected time until two players’ rendezvous on two locations when they are sure to over-
look one another at the first time they are in the same location. Section 5 discusses some generalizations
and intriguing open problems.

2. Optimality of the Anderson–Weber strategy Recall that we have defined T as the step on
which the two players meet. Let us begin by noting that ET =

∑∞
i=0 P (T > i). It would certainly

be helpful if AW were to minimize individually every term in this sum. But, contrary to what we had
conjectured for many years, this is not true. In particular, the AW strategy produces P (T > 4) = 1/9.
However, one can find a strategy such that P (T > 4) = 1/10. This is somewhat of a surprise and it
shows that ET =

∑∞
i=0 P (T > i) cannot be minimized simply by minimizing each term of the sum

simultaneously.

With Junjie Fan, we gained greater computational experience of the problem by solving semidefinite
programming problems that provide lower bounds. Such research would not have been computationally
feasible when the problem was first studied in the 1980s. Our solutions of semidefinite programs led us
to conjecture that AW minimizes E[min[T, k + 1] =

∑k
i=0 P (T > i). This is the expected rendezvous

time in a problem in which if the players have not met after kth steps, they are put together at time
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k + 1. We denote the infimal value of this quantity by ωk. We show that AW achieves ωk for all
k, i.e., that it minimizes the truncated sum

∑k
i=0 P (T > i) for all k. This is what we now show:

{ωk}∞k=0 = {1, 5
3 , 2,

20
9 ,

7
3 ,

65
27 , . . .} with ωk → 5/2.

Theorem 2.1 The Anderson–Weber strategy is optimal for the symmetric rendezvous search game on
three locations, minimizing E[min{T, k + 1}] to ωk for all k = 1, 2, . . . , where

ωk =


5
2 −

5
23−

k+1
2 , when k is odd,

5
2 −

3
23−

k
2 , when k is even.

(1)

Consequently, the minimal achievable value of ET is ω = 5/2.

Before proceeding to the guts of the proof, we prepare with some preliminary ideas and notation. We
begin by noting that the AW strategy is not uniquely optimal. There are infinitely many variations that
are just as good. For example, it would be just as good if, in each block of two steps, a player were to
either spend both steps at the location where he began at time 0, or visit in random order the other two
locations, again doing these with probabilities 1/3 and 2/3 respectively. We have simply replaced in the
definition of AW the role of ‘current location’ with that of ‘initial location’. In the proof that follows it
is the ‘initial location’ form that we show is optimal, i.e. during any block of two steps in which a player
stays in the same location he chooses this location to be that where he began at time 0.

Suppose that the three locations are arranged around a circle and that the players have a common
notion of clockwise. Such a common notion of clockwise might help. However, we shall prove that even
if the players have a common notion of clockwise the AW strategy cannot be bettered, and this strategy
makes no use of the clockwise information, the AW must also be optimal when the players do not have
a common notion of clockwise.

Throughout most of what follows a subscript k on a vector means that its length is 3k. A subscript k
on a matrix means that it is 3k × 3k. Let us define

Bk = B1 ⊗Bk−1 , where B1 =

1 1 0
0 1 1
1 0 1

 .

Here ‘⊗’ denotes the Kronecker product. It is convenient to label the rows and columns of B1 as 0, 1, 2
(rather than 1, 2, 3). Suppose player II is initially placed one position clockwise of player I. Then B1(i, j)
is an indicator for the event that the players do not meet when at the first step player I moves i positions
clockwise from his initial location, and player II moves j positions clockwise from his initial location. B>

contains the indicators for the same event, but when player II starts two positions clockwise of player I. Let
1k denote the length 3k column vector of 1s. Since the starting position of player II is randomly chosen,
the problem of minimizing the probability of not having met after the first step is that of minimizing

p>
(

1
2 (B1 +B>1 )

)
p ,

over p ∈ ∆1, where ∆k is the standard simplex of probability vectors: ∆k = {p : p ∈ R3k, p ≥
0 and 1>k p = 1}. Similarly, the 9 rows and 9 columns of B2 can be labelled as 0, . . . , 8 (base 10),
or 00, 01, 02, 10, 11, 12, 20, 21, 22 (base 3). The base 3 labelling is helpful, for we may understand
B2(i1i2, j1j2) as an indicator for the event that the players do not meet when at his first and second
steps player I moves to locations that are respectively i1 and i2 positions clockwise from his initial posi-
tion, and player II moves to locations that are respectively j1 and j2 positions clockwise from his initial
position. The problem of minimizing the probability that they have not met after k steps is that of
minimizing

p>
(

1
2 (Bk +B>k )

)
p = p>Bkp .

It is helpful to adopt the notation that a bar over a square matrix denotes the symmetric matrix that is
the average of that matrix and its transpose. That is, Ā = 1

2 (A+ A>). Let Jk be the 3k × 3k matrix of
all 1s. Let us try to choose p to minimize

E[min{T, k + 1}] =

k∑
i=0

P (T > i) = p>Mkp (2)
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where

M1 = J1 +B1

Mk = Jk +B1 ⊗Mk−1 = Jk +B1 ⊗ Jk−1 + · · ·+Bk−1 ⊗ J1 +Bk . (3)

So
ωk = min

p∈∆k

{
p>Mkp

}
= min

p∈∆k

{
p>M̄kp

}
.

It is difficult to find the minimizing p, because M̄k is not positive definite for k ≥ 2. The quadratic form
p>Mkp has many local minima that are not global minima. For example, the strategy which randomizes
equally over the three locations at each step, taking p = 1k/3

k = (1, 1 . . . , 1)>/3k, is a local minimum of
this quadratic form, but not the global minimum.

Let us consider in more detail the case k = 2. To show that ω2 = 2 we must show this is the minimum
of p>M̄2p. However, the eigenvalues of M̄2 are {19, 5

2 ,
5
2 , 1, 1, 1, 1,−

1
2 ,−

1
2}, so, as remarked above, this

matrix is not positive semidefinite. In general, the minimization over x of a quadratic form such as x>Ax
is NP-hard if Ā is not positive semidefinite. An alternative approach might be to try to show that
M̄2 − 2J2 is a copositive matrix. For general k, this requires showing that x>

(
M̄2 − ωkJk

)
x ≥ 0 for all

x ≥ 0, where {ωk}∞k=1 = { 5
3 , 2,

20
9 ,

7
3 ,

65
27 , . . .} are the values obtained by the Anderson–Weber strategy.

However, to check copositivity numerically is also NP-hard.

One line of attack is a numerical approach based on semidefinite programming which finds a lower
bound for ωk. Consider that

ωk = min
p∈∆k

{
p>Mkp

}
≥ min

p∈∆k

{
p>Xkp

}
for any matrix Xk such that Xk ≥ 0 and Mk ≥ Xk (since these imply p>Mkp ≥ p>Xkp for all p ≥ 0).
Suppose we further restrict Xk to be such that X̄k is a positive semidefinite matrix (written X̄k � 0),
and also require that p>X̄kp is minimized by the specific strategy p> = 1k/3

k (the random strategy).
That is, we have the Kuhn-Tucker conditions X̄k(1k/3

k) = ω1k, for some ω. This poses the problem of
finding a greatest lower bound:

maximize
ω,Xk

ω : Xk ≥ 0 , Mk ≥ Xk , X̄k � 0 , X̄k1k = (3kω)1k (4)

or equivalently

maximize
Xk

3−2k trace(JkXk) : Xk ≥ 0 , Mk ≥ Xk , X̄k � 0 , X̄k1k = 3−k trace(JkXk)1k (5)

The above is a semidefinite programming problem and it can be solved numerically. We have done
this with MATLAB and sedumi [16]. For k = 2, 3, 4, 5, we find that the greatest lower bound is indeed
equal to the conjectured value of ωk.

The key idea towards a proof for k > 5 is to replace all the above numerical work by algebra. Thus
our task is to exhibit a matrix Xk such that Mk ≥ Xk ≥ 0, X̄k is positive semidefinite, and p>Xkp is
minimized over p ∈ ∆k to ωk, by p> = 1k/3

k.

For example, for k = 3 we may take

M2 =



3 3 2 3 3 2 1 1 1

2 3 3 2 3 3 1 1 1

3 2 3 3 2 3 1 1 1

1 1 1 3 3 2 3 3 2

1 1 1 2 3 3 2 3 3

1 1 1 3 2 3 3 2 3

3 3 2 1 1 1 3 3 2

2 3 3 1 1 1 2 3 3

3 2 3 1 1 1 3 2 3


≥ X2 =



3 3 2 3 3 2 1 1 0

2 3 3 2 3 3 0 1 1

3 2 3 3 2 3 1 0 1

1 1 0 3 3 2 3 3 2

0 1 1 2 3 3 2 3 3

1 0 1 3 2 3 3 2 3

3 3 2 1 1 0 3 3 2

2 3 3 0 1 1 2 3 3

3 2 3 1 0 1 3 2 3


,

where X̄2 is positive semidefinite, with eigenvalues {18, 3, 3, 3
2 ,

3
2 , 0, 0, 0, 0}. It is not hard to show that

the minimum value of p>X̄2p is 2, which proves ωk = 2. It is interesting that the minimum is achieved



Richard Weber: Optimal Symmetric Rendezvous Search
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©2010 INFORMS 5

both by p> = (1/9)(1, 1, 1, 1, 1, 1, 1, 1, 1) (the random strategy), and by p> = (1/3)(1, 0, 0, 0, 0, 1, 0, 1, 0)
(the AW strategy). We are now ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. In the above preliminaries we have shown that, with Mk as defined by
(3), the theorem is proved if for each k we can find a matrix Xk such that

(i) Mk ≥ Xk ≥ 0,

(ii) X̄k is positive semidefinite, and

(iii) p>Xkp is minimized over p ∈ ∆k to ωk, by p> = 1k/3
k.

Guided by our experience with extensive numerical experimentation, we make a guess that we may
restrict our search for Xk to matrices of the following special form. For i = 0, . . . , 3k − 1 we write
ibase 3 = i1 · · · ik (always keeping k digits, including leading 0s when i ≤ 3k−1−1); so i1, . . . , ik ∈ {0, 1, 2}.
We define

Pi = Pi1··· ik = P i1
1 ⊗ · · · ⊗ P

ik
1 ,

where

P1 =

0 1 0
0 0 1
1 0 0

 .

Note that the subscript is now used for something other than the size of the matrix. It will always be
easy for the reader to know the k for which Pi is 3k × 3k by context. Observe that Mk =

∑
imk(i)Pi,

where m>k = (mk(0), . . . ,mk(3k − 1)) = (Mk(0, 0), . . . ,Mk(0, 3k − 1)) denotes the top row of Mk. This
motivates a search for an appropriate Xk amongst those of the form

Xk =

3k−1∑
i=0

xk(i)Pi.

Let xk be the column vector (xk(0), . . . , xk(3k − 1))>. We claim that (i), (ii) and (iii) are equivalent,
respectively, to conditions (i)′, (ii)′ and (iii)′, that we now present below.

(i)′ mk ≥ xk ≥ 0.

The equivalence of (i) and (i)′ is trivial. In the example above, X2 =
∑

i x2(i)Pi, where x>2 =
(3, 3, 2, 3, 3, 2, 1, 1, 0), the first row of X2.

To express (ii) in terms of xk requires something more subtle. We start with the important observation
that the matrices P0, . . . , P3k−1 commute with one another and so have a common set of eigenvectors.
Also, P>i = Pi′ , where i′base 3 = i′1 · · · i′k is obtained from ibase 3 = i1 · · · ik by letting i′j be 0, 2, 1 as ij is
0, 1, 2, respectively.

Let the columns of the matrices Uk and Wk contain the common eigenvectors of the Pi. Since M̄k is a
linear combination of the Pi these are also the eigenvectors of M̄k. The columns of Wk are eigenvectors
with eigenvalues of 0.

The eigenvalues of X̄k are the same as the real parts of the eigenvalues of Xk. The eigenvectors and
eigenvalues of Xk can be computed as follows. Let ω be the cube root of 1 that is ω = − 1

2 + i 1
2

√
3. Then

Vk = V1 ⊗ Vk−1 , where V1 =

1 1 1
1 ω ω2

1 ω2 ω

 .

We write Vk = Uk + iWk, and make use of the facts that Uk = U1 ⊗ Uk−1 −W1 ⊗Wk−1 and Wk =
U1 ⊗Wk−1 + W1 ⊗ Uk−1. It is easily checked that the eigenvectors of Pi are the columns (and rows) of
the symmetric matrix Vk and that the first row of Vk is (1, 1, . . . , 1). The eigenvalues are also supplied
in Vk, because if Vk(j) denotes the jth column of Vk (an eigenvector), we have PiVk(j) = Vk(i, j)Vk(j).
Thus the corresponding eigenvalue is Vk(i, j). Since Xk is a sum of the Pi, we also have XkVk(j) =∑

i xk(i)Vk(i, j)Vk(j), so the eigenvalue is
∑

i xk(i)Vk(i, j), or
∑

i Vk(j, i)xk(i) since Vk is symmetric.
Thus the real parts of the eigenvalues of Xk are the elements of the vector Ukxk. This is nonnegative if
and only if the symmetric matrix X̄k is positive semidefinite. Thus the condition X̄k � 0 is equivalent to

(ii)′ Ukxk ≥ 0.
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Finally, we turn to (iii). It is equivalent to

(iii)′ x>k (1k/3
k) = ωk.

This is because p>Xkp is minimized to ωk, by p> = 1k/3
k if we have the Kuhn-Tucker condition

Xk1k/3
k = ωk1k. Recall that 1k denotes the length 3k column vector of 1s. Since Pi1k = 1, the

Kuhn-Tucker condition is x>k (1k/3
k) = ωk. That is, the sum of the components of xk should be 3kωk.

Having determined that the theorem will be proved once we find xk satisfying (i)′, (ii)′, and (iii)′, we
are now ready to state an xk that will prove the theorem. In Section 3 we will say something about how
that following recursion was discovered.

x1 = (2, 2, 1)>

x2 = (3, 3, 2, 3, 3, 2, 1, 1, 0)>

xk = 1k + (1, 0, 0)> ⊗ xk−1 + (0, 1, 0)> ⊗ (αk, αk, 2, 2, αk, 2, 1, 1, 1)> ⊗ 1k−3 , k ≥ 3. (6)

The parameter αk is chosen so that (iii)′ is satisfied, i.e. x>k (1k/3
k) = ωk, for ωk specified by (1). Since

the sum of the components of xk is

x>k 1k = 3k + x>k−11k−1 + 3k−2(3 + αk)

we find that we need the αk to be:

αk =


3− 1

3(k−3)/2
, when k is odd,

3− 2

3(k−2)/2
, when k is even.

(7)

So

{α3, α4, . . . , α11, . . .} = {2, 7
3 ,

8
3 ,

25
9 ,

26
9 ,

79
27 ,

80
27 ,

241
81 ,

242
81 , . . .} .

Alternatively, the values of 3− αk are 1, 2
3 ,

1
3 ,

2
9 ,

1
9 ,

2
27 , . . . . For example, with α3 = 2 we have

m3 = (4, 4, 3, 4, 4, 3, 2, 2, 2, 4, 4, 3, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1)> ,

x3 = (4, 4, 3, 4, 4, 3, 2, 2, 1, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1)> .

Note that αk increases monotonically in k, from 2 towards 3. As k →∞ we find αk → 3 and x>k (1k/3
k)→

5/2. By construction we have now ensured (iii)′ and (iii). It remains to prove that with αk defined in (7)
we also have (i)′ and (ii)′. These are equivalent to (i) Mk ≥ Xk ≥ 0 and (ii) Xk � 0, which are sufficient
for the theorem to be true.

Checking (i) ′. To prove mk ≥ xk is easy; we use induction. The base of the induction is
m2 = (3, 3, 2, 3, 3, 2, 1, 1, 1)> ≥ x2 = (3, 3, 2, 3, 3, 2, 1, 1, 0)>. Assuming mk−1 ≥ xk−1, we then have

mk = 1k + (1, 1, 0)> ⊗mk−1

≥ 1k + (1, 0, 0)> ⊗mk−1

+ (0, 1, 0)> ⊗
(
1k−1 + (1, 1, 0)> ⊗ 1k−2 + (1, 1, 0, 1, 1, 0, 0, 0, 0)> ⊗ 1k−3

)
= 1k + (1, 0, 0)> ⊗mk−1 + (0, 1, 0)> ⊗ (3, 3, 2, 3, 3, 2, 1, 1, 1)> ⊗ 1k−3

≥ 1k + (1, 0, 0)> ⊗ xk−1 + (0, 1, 0)> ⊗ (αk, αk, 2, 2, αk, 2, 1, 1, 1)> ⊗ 1k−3

= xk .

Checking (ii) ′. To prove Ukxk ≥ 0 is much harder. Indeed, Ukxk is barely nonnegative, in the sense that
as k →∞, 5/9 of its components are 0, and 2/9 of them are equal to 3/2. Thus most of the eigenvalues
of X̄k are 0. We do not need this fact, but it is interesting that 2Ukxk is a vector only of integers. The
calculations throughout the remainder of proof are straightforward in principle. However, the reader
may find that formula involving Kronecker and outer products require careful inspection if one is fully to
understand. One way we have checked that the identities below are correct is by doing everything with
numbers and verifying that the formula give the right answers for k = 2, 3, 4, 5.

Let fk be a column vector of length 3k in which the first component is 1 and all other components are
0. Using the facts that Uk = U1 ⊗ Uk−1 −W1 ⊗Wk−1 = U3 ⊗ Uk−3 −W3 ⊗Wk−3 and Wk1k = 0 and
Uk1k = 3kfk, we have

U2x2 = (18, 3
2 ,

3
2 , 3, 0, 0, 3, 0, 0)> ,
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and for k ≥ 3,

Ukxk = 3kfk + (1, 1, 1)> ⊗ Uk−1xk−1

+
(
U3

(
(0, 1, 0)> ⊗ (αk, αk, 2, 2, αk, 2, 1, 1, 1)>

))
⊗ Uk−31k−3

= 3kfk + (1, 1, 1)> ⊗ Uk−1xk−1 + 3k−3rk ⊗ fk−3 , (8)

where rk is

rk = U3

(
(0, 1, 0)> ⊗ (αk, αk, 2, 2, αk, 2, 1, 1, 1)>

)
= 3

2

(
6 + 2αk, 0, 0, αk − 1, 0, αk − 2, αk − 1, αk − 2, 0, (9)

− 3− αk, 2− αk, αk − 2,−αk, 0, 0, 1, 2− αk, 0, (10)

− 3− αk, αk − 2, 2− αk, 1, 0, 2− αk,−αk, 0, 0
)>
. (11)

Note that we make a small departure from our subscripting convention, since rk is not of length 3k, but
of length 27. We use the subscript k to denote that rk is a function of αk.

Using (8)–(11) it easy to compute the values Ukxk, for k = 2, 3, . . . . Notice that there is no need to
calculate the 3k × 3k matrix Uk. Computing Ukxk as far as k = 15, we find that for the values of αk

conjectured in (7) we do indeed always have Ukxk ≥ 0. This gives a lower bound on the rendezvous value
of w ≥ ω15 = 16400/6561 ≈ 2.49962. It would not be hard to continue to even larger k (although U15x15

is already a vector of length 315 = 14, 348, 907). Clearly the method is working. It now remains to prove
that Ukxk ≥ 0 for all k.

Consider the first third of Ukxk. This is found from (6) and (9) to be

3kfk−1 + Uk−1xk−1 + 3k−3 3
2

(
6 + 2αk, 0, 0, αk − 1, 0, αk − 2, αk − 1, αk − 2, 0

)> ⊗ fk−3 .

Assuming Uk−1xk−1 ≥ 0 as an inductive hypothesis, and using the fact that αk ≥ 2, this vector is
nonnegative. So this part of Ukxk is nonnegative.

As for the rest of Ukxk (the part that can be found from (6) and (10)–(11)), notice that rk is symmetric,
in the sense that S3rk = rk, where

S1 =

1 0 0
0 0 1
0 1 0


and S3 = S1 ⊗ S1 ⊗ S1. The matrix Sk transposes 1s and 2s. Indeed SkPi = P>i . Thus the proof is
complete if we can show that just the middle third of Ukx

>
k is nonnegative. Assuming that Uk−1xk−1 ≥ 0

and αk ≥ 2, there are just 4 components of this middle third that depend on αk and which might be
negative. Let Ik denote a 3k × 3k identity matrix. This middle third is found from (6) and (10) and is as
follows, where we indicate in bold face terms that might be negative,(

(0, 1, 0)⊗Ik−1

)
Ukxk

= Uk−1xk−1 + 3
23k−3

(
−3−αk,2−αk, αk − 2,−αk, 0, 0, 1,2−αk, 0

)> ⊗ fk−3 .

The four possibly negative components of the middle third are shown above in bold and are

tk1 = (0, 1, 0)⊗ (1, 0, 0, 0, 0, 0, 0, 0, 0)⊗ f>k−3 Ukxk

= (Uk−1xk−1)1 + 3
23k−3 (−3− αk) (12)

tk2 = (0, 1, 0)⊗ (0, 1, 0, 0, 0, 0, 0, 0, 0)⊗ f>k−3 Ukxk

= (Uk−1xk−1)3k−3+1 + 3
23k−3 (2− αk) (13)

tk3 = (0, 1, 0)⊗ (0, 0, 0, 1, 0, 0, 0, 0, 0)⊗ f>k−3 Ukxk

= (Uk−1xk−1)3 3k−3+1 + 3
23k−3(−αk) (14)

tk4 = (0, 1, 0)⊗ (0, 0, 0, 0, 0, 0, 0, 1, 0)⊗ f>k−3 Ukxk

= (Uk−1xk−1)7 3k−3+1 + 3
23k−3 (2− αk) (15)



8 Richard Weber: Optimal Symmetric Rendezvous Search
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©2010 INFORMS

The remainder of the proof is devoted to proving that all these are nonnegative. Consider tk1. It is easy
to work out a formula for tk1, since

(Ukxk)1 = f>k Ukxk

= 3k + f>k−1Uk−1xk−1 + 3k−3 3
2 (6 + 2αk)

= (Uk−1xk−1)1 + 4 3k−1 + 3k−2αk

Thus

(Ukxk)1 = 2 3k +

k∑
i=3

3i−2αi , (16)

and

tk1 = 1
2 3k +

k−1∑
i=3

3i−2αi − 1
23k−2αk (17)

This is nonnegative since αk ≤ 3.

Amongst the remaining terms, we observe from numerical work that tk2 ≥ tk4 ≥ tk3. This suggests
that tk3 is the least of the four terms, and it constrains the size of αk. Let us begin therefore by finding
a formula for tk3. We have

tk3 = (0, 1, 0)⊗ (0, 0, 0, 1, 0, 0, 0, 0, 0)⊗ f>k−3 Ukxk

= (0, 0, 0, 1, 0, 0, 0, 0, 0)⊗ f>k−3Uk−1xk−1 − 3k−2 1
2αk

= (0, 1, 0)⊗ f>1 ⊗ f>k−3

(
3k−1fk−1 + (1, 1, 1)> ⊗ Uk−2xk−2 + 3k−4rk−1 ⊗ fk−4

)
− 3k−2 1

2αk

= (1, 0, 0, 0, 0, 0, 0, 0, 0)⊗ f>k−4Uk−2xk−2 + 3k−4(0, 1, 0)⊗ f2)rk−1 − 3k−2 1
2αk

= (Uk−2xk−2)1 − 3k−4 3
2 (3 + αk−1)− 3k−2 1

2αk

= (Uk−2xk−2)1 − 3k−3 1
2 (3 + αk−1)− 3k−2 1

2αk

This means that tk3 can be computed from the first component of Uk−2xk−2, which we have already
found in (16). So

tk3 = 2 3k−2 +

k−2∑
i=3

3i−2αi − 3k−3 1
2 (3 + αk−1)− 3k−2 1

2αk

= 1
23k−1 +

k−2∑
i=3

3i−2αi − 1
23k−3αk−1 − 1

23k−2αk . (18)

We now put the αk to the values specified in (7). It is easy to check with (7) and (18) that tk3 = 0 for
all k.

It remains only to check that also tk2 ≥ 0 and tk4 ≥ 0. We have

tk2 = (0, 1, 0)⊗ (0, 1, 0, 0, 0, 0, 0, 0, 0)⊗ f>k−3 Ukxk

= (0, 1, 0, 0, 0, 0, 0, 0, 0)⊗ f>k−3Uk−1xk−1 + 3k−2(1− 1
2αk)

= (1, 0, 0)⊗ (0, 1, 0)⊗ f>k−3

(
3k−1fk−1 + (1, 1, 1)> ⊗ Uk−2xk−2 + 3k−4rk−1 ⊗ fk−4

)
+ 3k−2(1− 1

2αk)

= (0, 1, 0)⊗ f>k−3Uk−2xk−2 − 3k−4 3
2 (1− αk−1) + 3k−2(1− 1

2αk) .

We recognize (0, 1, 0) ⊗ f>k−3Uk−2xk−2 to be the first component of the middle third of Uk−2xk−2. The
recurrence relation for this is

(0, 1, 0)⊗ f>k−1Ukxk = (0, 1, 0)⊗ f>k−1

(
3kfk + (1, 1, 1)> ⊗ Uk−1xk−1 + 3k−3rk ⊗ fk−3

)
= f>k−1Uk−1xk−1 − 3k−2 1

2 (3 + αk) .

The right hand side can be computed from (16). So we now have,

tk2 = 2 3k−3 +

k−3∑
i=3

3i−2αi − 3k−4 1
2 (3 + αk−2)− 3k−3 1

2 (1− αk−1) + 3k−2(1− 1
2αk)

= 4 3k−3 +

k−3∑
i=3

3i−2αi − 1
23k−4αk−2 + 1

23k−3αk−1 − 1
23k−2αk . (19)
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Finally, we establish a formula for tk4.

tk4 = (0, 1, 0)⊗ (0, 0, 0, 0, 0, 0, 0, 1, 0)⊗ f>k−3 Ukxk

= (0, 0, 0, 0, 0, 0, 0, 1, 0)⊗ f>k−3Uk−1xk−1 + 3k−2(1− 1
2αk)

= (0, 0, 1)⊗ (0, 1, 0)⊗ f>k−3

(
3k−1fk−1 + (1, 1, 1)> ⊗ Uk−2xk−2 + 3k−4rk−1 ⊗ fk−4

)
(20)

+ 3k−2(1− 1
2αk)

= (0, 1, 0)⊗ f>k−3Uk−2xk−2 + 3k−4 3
2 + 3k−2(1− 1

2αk)

= 5 3k−3 +

k−3∑
i=3

3i−2αi − 1
23k−4αk−2 − 1

23k−2αk . (21)

Now we can check the truth of the fact that we observed empirically, that tk2 ≥ tk4 ≥ tk3. We find

tk2 − tk4 = 1
23k−3(αk−1 − 2) ,

tk4 − tk3 = 1
23k−3(1− αk−2 + αk−1) .

Since αk is at least 2 and αk is increasing in k, both of the above are nonnegative. So tk2 and tk4 are
both at least as great as tk3, which we have already shown to be 0. This establishes Ukxk ≥ 0 and so the
proof is now complete. �

3. On discovery of the proof A careful reader of the above proof will surely feel that (6) begs a
question. Where did this recursion for xk come from? It seems to have been plucked out of the air. Let
us restate it here for convenience. With αk given by (7), the recursion of (6) is

xk = 1k + (1, 0, 0)> ⊗ xk−1 + (0, 1, 0)> ⊗ (αk, αk, 2, 2, αk, 2, 1, 1, 1)> ⊗ 1k−3 . (22)

It is interesting that there are many choices of x2 that will work. We could have taken x>2 =
(3, 3, 2, 2, 3, 2, 1, 1, 1) or x>2 = (3, 3, 2, 3, 2, 2, 1, 1, 1). Let us briefly describe the steps and ideas in re-
search that led to (22).

As mentioned above, we began our investigations by computing lower bounds on ωk by solving (5).
These turn out to be achieved by the AW strategy and so are useful in proving the Fan–Weber conjecture
(that AW minimizes E[min{T, k+1}]) up to k = 5. However, these lower bounds only produce numerical
answers, with little guide as to a general form of solution. In fact, since one can only solve the SDPs up
to the numerical accuracy of a SDP solver (which, like sedumi [16], uses interior point methods), such
proofs are only approximate. For example, by this method one can only prove that ω5 ≥ 2.40740740, but
not ω5 = 65/27 = 2.4074074 . . . .

One would like to find rational solutions so the proofs can be exact. A major breakthrough was to
realise that we could compute a common eigenvector set for P1, . . . , P3k−1 and write Mk =

∑
imk(i)Pi.

We discovered this as we noticed and tried to explain the fact that the real parts of all the eigenvalues
of 2Mk are integers. (In fact, this follows from the so-called rational roots theorem, which states that if
a polynomial anx

n + an−1x
n−1 + · · ·+ a0 has integer coefficients, and p/q is a rational root expressed in

integers p and q that have no common divisor, then p|a0 and q|an (see [15]). So if A is a n× n matrix of
integers then det(xI −A) is a polynomial with integer coefficients and an = 1, so all rational eigenvalues
of A must be integers.) This allowed us to recast (5) as the linear program

maximize
xk=(xk(0),...,xk(3k−1))

3k−1∑
i=0

xk(i) : xk ≥ 0 , xk ≤ mk , Ukxk ≥ 0 . (23)

Now we can find exact proofs of the Fan–Weber conjecture as far as k = 8, where U8 is a matrix of size
6561×6561. These solutions were found using Mathematica and were in rational numbers, thus providing
us with proofs that AW minimizes E[min{T, k + 1}], up to k = 8. This is better than we would do with
semindefinite programming because the number of decision variables in the linear program (23) grows as
3k, whereas in the semidefinite program (5) grows as 32k.

It seems very difficult to find a general solution to (23) that holds for all k. The LP is highly degenerate
with many optimal solutions. There are indeed 12 different extreme point solutions even when k is only
2. No general pattern to the solution emerges as it is solved for progressively larger k. For k = 4 there are
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many different X4 that can be used to prove ωk = 7/3. So we searched amongst the many such solutions,
looking for ones with some pattern that might be generalized. This proved very difficult. We tried forcing
lots of components of the solution vector to be integers, or identical, and looked for solutions in which
the solution vector for k − 1 was embedded within the solution vector for k. We looked at adding other
constraints, and constructed some solutions by augmenting the objective function and choosing amongst
possible solution by a minimizing a sum of squares penalty.

Another approach to the problem of minimizing p>Mkp over p ∈ ∆k is to make the identification
Y = pp>. With this identification, Y is positive semidefinite, trace(JkY ) = 1, and trace(MkY ) =
trace(Mkpp

>) = p>Mkp. This motivates a semidefinite programming relaxation of our problem: minimize
trace(MkY ), subject to trace(JkY ) = 1 and Y � 0. This can be recast as the linear program:

minimize mky : y>Uk ≥ 0 , 1>k y = 1 , y ≥ 0 . (24)

This is nearly the dual of (23).

With (24) in mind, we imagined taking y to the the AW strategy and worked at trying to guess a full
basis in the columns of Uk that is complementary slack to y and from which one can then compute a
solution to (23). We also explored a number of further linear programming formulations. All of this was
helpful in building up intuition as to how a general solution might possibly be constructed.

Another major breakthrough was to choose to work with the constraint x ≤ mk in which mk is the
first row of the nonsymmetric matrix Mk, rather than to use the first row of the symmetric matrix
M̄k = 1

2 (Mk + M>k ). Doing this, we were able to find solutions with a simpler form, and felt that there
was more hope in being able to write the solution vector xk in a Kronecker product calculation with the
solution vector xk−1. Noticing that all the entries in Mk are integers, we found that it was possible to
find a solution for Xk in which all the entries in Xk are integers, as far as k = 5. It is not known whether
this might be possible for even greater k. The Xk constructed in the proof above have entries that are
not integers, although they are rational.

Since Mk is computed by Kronecker products it is natural to look for a solution vector of a form in
which xk is expressed in terms of xk−1 in some sort formula that also uses Kronecker products. The final
breakthrough came in discovering the length 27 vector (0, 1, 0)⊗(ak, ak, 2, 2, ak, 2, 1, 1, 1). This was found
only after despairing of something simpler. We had hoped that if it were possible to find a Kronecker
product form solution similar to (22), then this would use a vector like the above, but of length only 3
or 9. However, it was only when we tried something of length 27 that the final pieces fell in place. The
final trick was to make the formula for obtaining xk from xk−1 not be constant, but depending on k, as
we have done with our ak. We were lucky at the end that we could solve the recurrence relations for
tk1, tk2, tk3, tk4 and prove Ukxk ≥ 0. It all looks so easy with hindsight!

4. Ongoing research It is as easy consequence of Theorem 1 that AW maximizes E[γT ] for all

γ ∈ (0, 1). This follows from the fact that AW minimizes
∑k

i=0 P (T > i) for all k.

We conjecture that AW is optimal in a rendezvous game played on three locations in which players
may overlook one another with probability ε, (that is, they can fail to meet even when they are in the
same location). This is easily shown to be true for the game on two locations. The random strategy is
optimal, with ET = 2/(1− ε). To analyse this game on three locations we redefine

B1 =

1 1 ε
ε 1 1
1 ε 1

 ,

where 0 < ε < 1. Now AW (with p = 1/3) gives ET = 1 + (3/2)(1 + ε)/(1 − ε). We can generalize all
the ideas in the present paper, except that we have not been able to guess a construction for the matrix
Xk. Fan (2009) [10] has observed that not only does AW appear to be optimal, but also that the optimal
probability of ‘staying’ is the same for all ε, i.e., p = 1/3. However, for games on K4,K5, . . . , the optimal
value of p is decreasing in ε.

Of course one would very much like to have a direct proof that ω = 5/2, without needing to also find
the ωk. Perhaps an idea for such a proof is hidden within the proof above. Or it may be found by further
research on the open problem of rendezvous with overlooking, described above.
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While for many graphs it is possible to use the solution of a semidefinite programming problem to obtain
a lower bound on the rendezvous value, it is not usually possible to recast the semidefinite programming
problem as a linear program. A very important feature of our three locations problem is that it is so
strongly captured within the algebra of a group of rotational symmetry, whose permutation matrices are
the Pi. This continues to be true for rendezvous search on Cn, in which n locations are arranged around
a circle and players have a common notion of clockwise. The method in this paper is also effective in
proving the optimality of a strategy for a simple but nontrivial rendezvous game that has been posed
by John Howard. Two players are initially placed in two distinct locations. At each step a player can
either stay where she is or move to the other location. When players are in the same location for the first
time they do not know this and do not meet, but when they are in the same location for a second time
then they meet. It is desired to minimized the time at which this occurs. We can show that the optimal
strategy is this: that is each block of three steps a player should with equal probability do SSS, SMS,
MMM, MSM, where ‘M’ means move and ‘S’ means stay, (see Weber [20]).

It will be interesting to explore whether our methods are helpful for rendezvous problems on other
graphs. It is not hard to compute the optimal AW strategy for n locations. See Anderson and Weber
(1990) [8]. For example, for n = 4, the AW strategy achieves ET = (1/12)(15 +

√
681) ≈ 3.4247, using

optimal probabilities of staying and touring of p = (1/4)(3
√

681 − 77) ≈ 0.32198 and 1 − p ≈ 0.6780,
respectively. As n → ∞, an AW strategy achieves ET ≈ .8289n with p ≈ 0.2475. Interestingly, Fan
(2009) [10] has shown that if the rendezvous game is played on four locations and locations are imagined
to be placed around a circle, and players are provided with a common notion of clockwise, then there
exists a 3-Markovian strategy that is better than AW. Recently, we have shown that even in the problem
without common clockwise information the AW strategy is not optimal. The key idea is this: under the
AW strategy on four locations a player is supposed to randomly tour his three ‘non-home’ locations or
stay at home during each successive block of three steps. In fact, the expected rendezvous time can be
reduced if players slightly modify AW so that that the tours that they make of their non-home locations
are not just chosen at random amongst the six possible tours. By carefully making the choices of tours
dependent one can find a strategy that has an expected rendezvous time that is about 0.000147 less than
under AW. The better strategy is 12–Markovian (repeating over every four blocks of three steps). See
Weber (2009) [19] for more details.

Another very interesting rendezvous search game is the one played on a line. The players start
2 units apart and can move 1 unit left or right at each step. In the asymmetric version (in which
players I and II can adopt different strategies) the rendezvous value is known to be 3.25 (see Alpern
and Gal, 1995 [5]). In the symmetric game work with semidefinite programming bounds has found that
4.1820 ≤ ω ≤ 4.2574 (see Han, et al. (2006) [11] and Alpern (2009) [4]). Alpern and Du have recently
reported an improvement of the lower bound to 4.2326. At present, there are only numerical results
for this problem. Han, et al. [11] have conjectured w = 4.25. If this is correct then the difference
in rendezvous values between the asymmetric and symmetric games is exactly 1. This would make
a surprising coincidence with what happens in the rendezvous search games on two locations and three
locations, where the asymmetric rendezvous values for the games are 1 and 1.5 respectively (and achieved
by the ‘wait-for-mommy’ strategy). These are also 1 less than the rendezvous values of 2 and 2.5 that
pertain in the symmetric games (and are achieved by the AW strategy). However, we suspect that the
rendezvous value of the symmetric game on the line is not 4.25. Indeed, an interesting line of research
might be to try to prove that the rendezvous value of this game is neither irrational nor achieved by any
k–Markovian strategy. Indeed it would be interesting to know of any symmetric rendezvous problem in
which the optimal strategy is not Markovian. Another open question is whether an optimal strategy even
exists.

A different conjecture about the games on three locations and on the line seems more likely. It is
interesting that in the symmetric rendezvous search game on three locations it is of no help to the
players to be provided with a common notion of clockwise. This has been called the Common Clockwise
Conjecture. Indeed, Alpern and Gal (2006) [6] showed that if AW is optimal for three locations then this
conjecture is true. Similarly, research on the symmetric rendezvous search game on the line suggests that
it is no help to the players to be provided with a common notion of left and right. Of course rendezvous
on the line can be viewed as rendezvous on Cn as n tends to infinity.

There are many interesting questions that remain open. A good source is Alpern [4]. Some unsolved
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problems are very simple. For instance, no one has yet proved the obvious conjecture that the rendezvous
value for the symmetric rendezvous search game on n locations is an increasing function of n.
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