
166 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 1, JANUARY 1993

for k-a sufficiently large negative integer. Thus, by choosing
the negative integer k that is arbitrarily large, we see from (51)
and (52) that h > 0 can be made sufficiently small and R > 0
can be made arbitrarily large, which proves the theorem.

Remark 3: If K in (42) is less than one, Theorem 2 does not
hold since if Re (1 AI) + 03 and h > 0, (43) is asymptotic to

1
(54) K

1 < - = lepAhl

which implies Re(h) < 0.

REFERENCES
G. Chen, S. G. Krantz, D. W. Ma, and C. E. Wayne, “The
Euler-Bernoulli beam equation with boundary energy dissipation,”
in Operator Methods for Optimal Control Problems, Sung J. Lee, Ed.
New York: Mace1 Dekker, 1987.
G. Chen and J. Zhou, “The wave propagation method for the
analysis of boundaIy stabilization in vibrating structures,” SLAM J .
Appl. Math., vol. 50, pp. 1254-1283, 1990.
R. Datko, J. Lagnese, and M. P. Polis, “An example of the effect
of time delays in boundary feedback stabilization of wave equa-
tions,” SLAM J. Contr. Optimiz., vol. 24, pp. 152-156, 1986.
R. Datko, “Not all feedback stabilized hyperbolic systems are
robust with respect to small time delays in their feedbacks,” SIAM
J. Contr. Optimiz., vol. 26, pp. 697-713, 1988.
-, “Two questions concerning the boundary control of certain
elastic systems,” J. Dig. Eq., vol. 92, pp. 27-44, 1991.
F. L. Huang, “Characteristic conditions for exponential stability of
linear dynamical systems in Hilbert spaces,” Ann. Dig. Eqs., vol. 1,

J.-L. Lions, “Exact controllability, stabilization and perturbations
for distributed parameter systems,” SIAM Reu., vol. 30, pp. 1-68,
1988.

pp. 43-53, 1985.

On a Conjecture About Assigning Jobs to
Processors of Differing Speeds

Richard Weber

Abstruct-A difficult queueing control problem concerns jobs that
arrive to a buffer in a Poisson process and are to be assigned to m
processors of different speeds. These processors operate in parallel, and
processing times are independent and exponentially distributed. Once a
job is assigned to a free processor, it occupies that processor until
completed and may not be reassigned to a faster processor if one
becomes free. A reasonable conjecture, that remains unproven for more
than two processors, is that the policy that minimizes the mean waiting
time is of threshold type-meaning that if it assigns a job to the
fastest-available free processor when the huffer has k jobs, then it also
does so if the processors are identically occupied and there are k + 1
jobs in the buffer. This note discusses the conjecture, and shows that
whether or not a job should be assigned to a processor can depend not
only on the number in the queue and the speed of the fastest-available
processor. but also on whether slower processors are busy or idle. A
strengthened form of the conjecture is proposed.

I. INTRODUCTION

A well-known, and still unsolved, queueing control problem
concerns the optimal assignment of job to processors of differing
speeds. Identical jobs enter a single buffer according to a Pois-

Manuscript received May 17, 1991; revised September 25, 1991. Paper
recommended by Associate Editor, A. Shwartz.

The author is with the University Engineering Department, Manage-
ment Studies Group, University of Cambridge, Cambridge CB2 lRX,
United Kingdom.

IEEE Log Number 9203142.

son process of rate A. There are m processors of different
speeds that are available to process the jobs. These operate in
parallel, and all processing times are independent and exponen-
tially distributed. Processor i is the ith fastest, it processes jobs
in times that are exponentially distributed with parameter pL,
where pI 2 ... 2 pm. The objective is to minimize the steady-
state mean time in the system, or mean delay of a job. Once a
job is assigned to a given free processor, it occupies that proces-
sor until its processing is complete and may not be reassigned to
a faster processor if one later becomes free. This means that
when there are a small number of jobs in the buffer, it can be
sensible to leave processors idle if they are of relatively slow
speed, and make no assignment until a faster processor becomes
available or further jobs arrive. Of course if an assignment is to
be made, then it should be made to the fastest available proces-
sor. This fact is proved in Section 11. A much more difficult, but
also reasonable, conjecture is that the optimal assignment rule is
of threshold type. The idea is formalized as Conjecture 1.

Conjecture 1: An optimal policy has the property that when-
ever it assigns a job to an available processor it makes the
assignment to the fastest available processor. Moreover, there
exist thresholds, one for each state of the processors, such that
an optimal policy is to assign a job to an available processor if,
and only if, the number of jobs in the buffer exceeds the
relevant threshold for the present state of the processors.

Agrawala et al. [l] showed that Conjecture 1 is true when the
arrival rate is 0. The problem is to minimize the expected total
waiting time of n jobs that are initially in the buffer. In this
case, it is optimal to assign a job to processor i if, and only if, all
faster processors are busy and the number of jobs in the buffer k
satisfies

k + i - 1 1
> -. (1)

PI + ..’ Pr
Notice that the decision can be made independently of the states
of the slower processors. Perhaps this is not surprising, since
once processor i is allowed to become idle, it will not be used at
any later time. Interestingly, the optimal policy can also be
implemented by ordering the jobs in the buffer and offering the
fastest-available processor to each job in turn. Suppose proces-
sor i is the fastest available, and the job who is at the front of
the buffer chooses to be processed by processor i if, and only if,
i / (p I + ... + p r - l) exceeds l / p r . If it is declined, then proces-
sor i is offered to the second job in the buffer, who chooses it
only if (i + l)/(pl + ... +p ip ,) exceeds 1/p,. This continues
until processor i has been chosen by some job, or declined by
every job. This implements the policy described by [l]. However,
Kumar and Walrand [3] have also shown that these decisions are
optimal for each job individually: in that, each job minimizes its
own expected waiting time, subject to the fact that jobs in front
of it are given first refusal of any available processor. This
contrasts with the fact that in most queueing control problems,
socially and individually optimal policies do not coincide.

The problem with arrivals is much more difficult. Lin and
Kumar [4] have proved Conjecture 1 for two processors. Wal-
rand [lo] has also given a proof based on stochastic coupling.
However, the case of two processors is very special, and the
generalization to more than two processors seems very difficult.
Luh and Viniotis [SI have studied the problem using a novel
approach. The approach of forward induction, so commonly
used for this sort of problem, is not helpful and runs into
difficulty with just three processors.

0018-9286/93$03.00 0 1993 IEEE

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 15, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 1, JANUARY 1993 167

Since the problem with arrivals is so difficult, researchers have
looked at other variations of the problem without arrivals.
Righter [6] and Righter and Xu [7] have considered cost func-
tions such as expected weighted flow time, weighted discounted
flow time, and weighted number of tardy jobs. They have also [8]
considered a problem in which the distribution of processing
times at processor i has a nondecreasing hazard rate in the
range [h,,h,], where h, , , I h. The objective is to minimize
E[Zc,g(C,)] for some increasing concave g. The main conclusion
is that if the jobs are ordered in the queue by their weights, then
the individually optimal policy is also globally optimal. This
establishes a conjecture of Kumar and Walrand.

Mirchandani and Xu have considered a problem in which jobs
belong to a number of priority classes and are to be processed by
two processors. Jobs within class Cl have processing times that
are exponentially distributed with rates p l l 2 p2] for processors
1 and 2. They showed that if an optimal threshold policy is
applied to every higher priority class, then the expected flow
time of class C, jobs is also minimized by a threshold policy. Xu
et al. [l l] have considered the same problem, but under the
more general assumption that processing times have distribu-
tions with decreasing expected remaining processing times. The
problem of minimizing expected makespan when there are no
arrivals is also difficult. It is reasonable that Conjecture 1 holds,
but this has been shown for just two and three processors [2].

Conjecture 1 remains open for the originally stated problem
with arrivals, and the purpose of this note is to cast some light
on why it may be difficult to resolve. In Section 111, we show
that, unlike the cases in which there are no arrivals or just two
processors, the optimal assignment rule can depend on the
states of the processors that are slower than the fastest-available
processor. In Section IV, we suggest an explanation and con-
clude with a strengthened form of Conjecture 1 that might be
easier to prove or disprove.

11. OPTIMALITY OF ASSIGNMENT TO THE FASTEST
AVAILABLE PROCESSOR

There is, at least, one thing that can be proved for the model
with arrivals. It is the first part of Conjecture 1, as reasserted in
the following theorem.

meorem I: For heterogeneous processors, jobs arriving in a
Poisson process and an objective of minimizing mean waiting
time, an optimal policy has the property that whenever it assigns
a job to an available processor it makes the assignment to the
fastest-available processor.

Proog The proof is by a simple coupling argument that
demonstrates that, if at some decision point, a policy assigns a
job to a processor that is not the fastest available, then there is
another policy that assigns the job to a faster processor, with the
result that, at all times, the number of jobs in the system is
stochastically no greater. The argument can be expressed in a
number of ways. Perhaps the simplest way is to consider a
uniformization of the system, in which we assume A + Xi pi = 1,
and so in which observation times occur as a Poisson process of
rate 1. At each observation time, exactly one of m + 1 possible
events occurs: namely, a job arrival or a potential job completion
at one of the processors. A potential job completion is an actual
job completion if the processor at which the potential comple-
tion occurs is busy.

By induction on n, we show that the number of jobs in the
system at the end of a time horizon that concludes just after the
nth observation time is stochastically minimized by restricting
attention to policies that only assign jobs to the fastest of any

available processors. The statement is clearly true for n = 1. If it
is true for all n, an application of Little’s formula completes the
proof. So, suppose as an inductive hypothesis that the statement
is true for a horizon of n - 1, and consider the problem of
stochastically minimizing the number of jobs that are in the
system just after n observation times. Let rr be a policy that, at
the start, assigns a job to processor j and leaves a faster
processor i idle. Let rr’ be an identical policy to rr, except that
it assigns a job to i but not to j . By the following comparisons
we see that 7 ~ ’ is better than rr. Note first that if the event that
occurs at the first observation time is an arrival or a potential
service completion at a processor other than i or j , then the
inductive hypothesis for n - 1 implies that the system is left in a
better state under d than under rr. If on the other hand, as
happens with probability pj, the event is a service completion at
processor j , then T leads to a state in which a job has completed
on processor j , while under rr‘ a job remains on processor i . In
this case, 7~ has turned out to be better than rr’. However, this
advantage for rr is more than offset by the fact that with greater
probability pi, 7r‘ leads to a state in which a job has completed
on processor i, while under rr a job remains on processor i . In
this case, T‘ has turned out to be better. Note that the inductive
hypothesis for n - 1 implies that, other things being equal, it is
better to have a job remaining on processor i than on processor
j . For both processors to be idle and the job to be completed is
clearly even better. These facts and the inductive hypothesis
imply that given that one of the above-two events occurs, the
number of jobs in the system after n observation times is

0 stochastically no greater under d than under T.

111. DEPENDENCE ON THE STATE OF SLOWER PROCESSORS

Let (k , a) denote a state in which there are k jobs in the
buffer. Here, a is a binary number of m bits, whose ith most
significant bit is 1 or 0 as processor i is, respectively, busy or
idle. Because of the memoryless nature of the exponential
processing times and the Poisson arrival process, it is sufficient
to restrict assignments of jobs to processors to decision times
immediately after job arrivals or service completions. Call a state
stable or unstable as it is, respectively, optimal or not optimal, to
make no further assignments before proceeding to the next
decision time. Of course, states for which a1 = 0 and k 2 1 are
always unstable.

We present two numerical examples. Both have the feature
that (k , 100) is unstable if, and only if, k 2 2, whereas (k , 101) is
unstable if, and only if, k 2 1. The point of this is to show that
whether or not a job should be assigned to processor 2 can
depend not only on the number of jobs in the buffer, but also on
the state of processor 3. In these examples, it is optimal to make
an assignment in state (1, 101), but not in state (1, 100).

Suppose, without loss of generality, that A + pl + p2 + p3 =

1. Using the technique of uniformization, we can restrict atten-
tion to times at which there is a potential change of state. These
observation times include the decision times above, and occur as
a Poisson process of rate 1. At each such time, exactly one of
four possible events can take place: an arrival, or a potential
service completion at processor 1, 2, or 3. By a potential service
completion at processor i , we mean that a job completes pro-
cessing at that processor if the processor is busy. The probabili-
ties with which these events occur are A, p,, p2, and p3,
respectively.

Consider a finite horizon problem, in which the objective is to
minimize the expected holding cost accrued by the nth observa-
tion time. Clearly, this is the same problem as minimizing the

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 15, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 1, JANUARY 1993

TABLE I
FINITE HORIZON EXAMPLE

0,000
0,100
0,010
0,001
1,100
0,110
0,101
0,011
2, 100
1,110
1,101
0,111
3,100
2,110
2,101
1,111
4,100
3,110
3,101
2,111
5,100
4,110
4,101
3,111

0
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6

0.270
1.765
2.125
2.190
3.765
3.620
3.685
4.045
5.765
5.620
5.685
5.540
7.765
7.620
7.685
7.540
9.765
9.620
9.685
9.540

~

0.270
1.765
2.125
2.190
3.620
3.620
3.685
4.045
5.540
5.540
5.540
5.540
7.540
7.540
7.540
7.540
9.540
9.540
9.540
9.540

~~

0.6737
2.5109
3.2597
3.4400
5.2016
5.1145
5.2773
6.0261
8.1104
7.8320
7.9896
7.9024

11.0700
10.7800
10.9100
10.6200

~

0.6737
2.5109
3.2597
3.4400
5.1145
5.1145
5.2773
6.0261
7.8320
7.8320
7.9025
7.9025

10.6200
10.6200
10.6200
10.6200

~

1.1697
3.2860
4.3855
4.7148
6.5334
6.5340 -
6.8370
7.9364

10.2124
9.8184

10.0874
10.0849

~

1.1697
3.2860
4.3855
4.7148
6.5334
6.5340
6.8370
7.9364
9.8184
9.8184

10.0849

__
-

10.0849

expected total delay accrued by the nth decision time. For a
starting state (k , a) , denote this cost as V,(k, a). Let la1 be the
number of bits of a that are set, i.e., the number of busy
processors. Let Aja be the number obtained from a by setting
to 1 those j most significant bits of a that are equal to 0. Thus,
(k , a) + (k - j , A,a) corresponds to assigning j jobs from the
buffer to the j fastest available processors. Similarly, let D,a be
obtained from a by setting ai = 0; so (k , a) + (k , Dial corre-
sponds to a potential service completion at processor i .

The dynamic programming equations can be written as

where

V , + l (k , a) = k + la1 + AV,(k + 1, a) + c p , V , (k , D ; a) (3)

and V J k , a) = 0. For example

1

K + ~ (~ , I o o > = min{V,+,(2, IOO) ,<+~(I , IIO),F,+~(O, 111))

where

v,+ 1(2, 100) = 3 + AK(3,lOO) + plK(2, 000)

+ p2Vn(2, 100) + p3Vn(2,100)

+ p2Vn(1, 100) + p3Ig1, 110)

+ p&(O, 101) + /+V,(O, 110).

<+ ,(I, 110) = 3 + AV,(2,110) + p l<(l , 010)

Vn+l(O,lll) = 3 + AV,(l, 111) + plVn(O,O1l)

Here, K + , (k , a) denotes the minimal cost over n + 1 further
observation periods, given that no further jobs are assigned from
the buffer until the first observation time. For the data

(A , p l , p2, p3) = (0.270,0.505,0.145,0.080)

we can easily calculate the values in Table I.

These numbers were computed using a spreadsheet, and are
shown to four decimal places of accuracy in this table. We have
also computed these numbers using exact arithmetic; every
number is a terminating decimal of no more than nine decimal
places, so Table I does indeed reveal the form of the optimal
policy. The underlined numbers for states (1, 100) and (1, 101)
illustrate that for a time horizon of four, whether or not a job
should be assigned to processor 2 depends upon whether proces-
sor 3 is busy or idle.

Is this behavior because of the small finite horizon scenario?
The answer is no. A second example shows the same behavior
for the criteria of minimizing the mean number in the system.
The time-average optimality equation can be written as

f (k , a) = min {f(k - j , A , a) } (4)
ji k A (m - lal)

where

Here p is the average number of jobs in the system under an
optimal policy; and the f's are the relative costs (see, for exam-
ple, [9]). We have solved these for the following data.

(A , p l , p2, p3) = (0.445,0.376,0.109,0.070).

In Table 11, the unstable states have been underlined. The
entries in the last four rows apply for k 2 4.

The numbers in Table I1 were computed by hypothesizing that
the optimal policy is one whose unstable states are those under-
lined in the table. The relevant linear equations were solved
using PC-MATLAB, and the solution then verified to satisfy the
optimality equations (4) and (5). Note that the equations lead to
a singular system, and one must choose the value of one of the
relative costs before obtaining a solution. This always happens
with time-average cost equations, since only the differences

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 15, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 1, JANUARY 1993 169

TABLE I1
INFINITE HORIZON EXAMPLE

5.07192
P

k, a f f
0,000 0 0
0,100 11.398 11.398
0,010 16.914 16.914
0,001 21.929 21.929
1,100 30.178 30.178
0,110 30.207 30.207
0,101 34.529 34.529
0,011 40.539 40.539
2,100 55.960 52.950
1,110 52.950 52.950

0,111 55.717 55.717
3,100 86.330 82.400
2,110 83.120 82.400
2,101 84.268 82.400
1,111 82.400 82.400
k, 100

k -10
k - 1,101
k - 2,111

-

1,101 55.771 55.717 -

-
-

4.5455k2 + 5.9321k + 28.5335
4.5455k2 + 4.9412k + 28.5597
4.5455k2 + 5.2958k + 28.5503
4.5455k2 + 4.3049k + 28.5766

4.5455k2 + 4.3049k + 28.5766
4.5455k2 + 4.3049k + 28.5766
4.5455k2 + 4.3049k + 28.5766
4.5455k2 + 4.3049k + 28.5766

between relative costs are germane. The value chosen can be
arbitrary: we took f(0,OOO) = 0. Terms like f (k - 2,111) were
computed by considering an M/M/1 queue, with arrival rate A
and service rate p = pI + p 2 + p 3 . The mean length of a busy
period is B = 1 (p - A) and the total holding cost incurred
during a busy period is

1 A

EL CL
H = -(1 + AB) + - H .

To see this, imagine the queue has a preemptive-resume service
discipline. The first term on the right-hand side is the expected
time in the system for the job that initiates the busy period, and
the second term is the holding cost due to other sorts of busy
periods that start when that job is the only one in the system and
its service is preempted by the arrival of another job before it is
complete. The expected number of such preemptions is A / p .
Then

H = -[A A + -1. 1
p - A A p - A

Assuming that it is optimal to keep all processors busy whenever
the number of jobs in the system is four or more, then for k 2 4

f (k - 2,111) = -PB + kB + H +f(k - 3,111)

(k - 3)[(k + 4)B /2 - PB + HI + f (l , 111).

Also, for k 2 4

f(k, 100) = - P + k + 1 + A f (k - 1,111)

+ p , f (k - 3,111) + (pz + p 3) f (k - 2,111)

+(p] + pz)f(k - 3,111) + p 3 f (k - 2,111)

+(PI + &) f (k - 3,1111 + pzf(k - 2,111)

+(p] + p2 + p 3) f (k - 3,111)

f (k - 1,110) = - P + k + 1 + A f (k - 1,111)

f(k - 1,101) = - P + k + 1 + A f (k - 1,111)

f(k - 2,111) = - P + k + 1 + Af(k - 1,111)

IV. DISCUSSION

The examples of the previous section are by no means easy to
discover. For most parameter values, the optimal policy does not
depend on the states of slower processors. However, it is inter-
esting to consider why it can sometimes occur. It is intuitive that
in the problem setting with arrivals, the optimal policy assigns a
job to the fastest free processor in states for which this would
not be optimal if there were no arrivals. This is because there is
a need to “prepare” for possible arrivals, which, if they occur,
will wish to see a less congested system. Consider the states
(1,100) and (0,110). Suppose the realization of the process, say
U , is such that there is one potential service completion at the
second processor, followed by a large number of successive
arrivals, say k in a row. Because for large k it will be optimal to
have all processors busy, these states become (k - 1,111) and
(k - 2, I l l) , respectively. So f (k - 1,111) - f (k - 2,111) mea-
sures the advantage that will be obtained in the case that w
occurs by having chosen to make the assignment to the second
processor of (1,100) + (0,110). Intuitively, it is events like w
that provide the incentive to make an assignment to the second
processor. But, if the two initial states are (1,101) and (0,111),
the measure of advantage if w occurs is f (k , 111) - f(k -
1,111). In the example given, and more generally, we expect
f(k,l11), and also Vn(k,lll) to be convex in k . Thus, it is
plausible that the incentive to make an assignment to the second
processor is greater in state (1,101) than in (1,100). Numerical
evidence and the above reasoning suggests the following
strengthened version of Conjecture 1.

Conjecture 2: An optimal policy has the property that when-
ever it assigns a job to an available processor, it makes the
assignment to the fastest available processor. Moreover, there
exist thresholds, one for each state of the processors and de-
creasing in the state (seen as a boolean vector, in which busy
and idle processors are indicated by 1 and 0, respectively), such
that an optimal policy is to assign a job to an available processor
if, and only if, the number of jobs in the buffer exceeds the
relevant threshold for the present state of the processors.

The conjecture states that the thresholds depend on the state

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 15, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 15, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

