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SCHEDULING STOCHASTIC JOIlS ON PARALLEL MACHINES
 
TO HINHIIZE HAKESPi\N OR FLOWTIME
 

Richard R. Weber
 

Abstract 

A number of identical machines operating in parallel are to be used 

to complete the processing of a collection of jobs so as to minimize the 

jobs' makespan or flowtime. 111e amount of processing required to 

complete the jobs have known probability distributions. It has been 

established by several researchers that when the required amounts of 

processing are all distributed as exponential random variables, then tile 

strategy (LEPT) of always processing jobs with the longest expected1. 

, 
\	 strategy (SEPT) of always processing jobs with the shortest expected 

processing times minimizes the expected value of the flowtime. We prove 

f
l

processing times minimizes the expected value of the makespan, and the 

i
l
i 

these results and describe a more general instance in which they are 

also true: when the jobs have received differing amounts of processing 

prior to the start, their total processing requirements are identically 

t: 
distributed, and the common distribution of total processing 

requirements has a monotone hazard rate. Under the stronger assumption 

1
I 

that the distribution of the total processing requirements has a density 

f. whose logari thm is concave or convex, LEPT and SEPT minimize the 

t 

I
i
j
 

makespan and flowtime in distribution. 
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1. Scheduling to Minimize Makespan or Flowtime 

A number of identical machines operating in parallel are to be used 

to complete the processing of a collection of jobs so as to minimize the 

jobs' makespan or flowtime. Makespan and flowtime are two criteria 

commonly used to evaluate scheduling strategies. Suppose that there 

are n jobs and they they are completed at times C ,·· .,C . The
l n 

makespan max{C } is the time at which the last job is completed. The
i 

flowtime ~Ci is the sum of all the times at which jobs are completed. 

We suppose that preemptive scheduling is permitted, so that any job may 

be instantaneously removed from a machine and another jo~ processed 

instead. A job's processing requirement is the length of time for which 

it must to be processed by a single machine in order to be completed. 

We show that when the jobs have processing requirements that are 

distributed as exponential random variables, then the optimal 

strategies have simple forms. The expected value of the makespan is 

minimize by a strategy (LEPT) of always processing jobs with the 

longest expected ~rocessing times. TIle expected value 0 f the flowtime 

is minimized by a strategy (SEPT) of always processing jobs with the 

shortest expected processin~imes. We prove these results and describe 

a more general instance in which they are also true: when the jobs are 

identical but have received differing amounts of processing prior to the 

start and the distribution of the jobs' total processing requirements 

has a monotone hazard rate. 

It is well known that the LEPT and SEPT strategies are optimal when 

jobs have known processing requirements. McNaughton (1959) has shown 

that amongst preemptive scheduling strategies the makespan 1s minimized 

by always processing those jobs with the greatest amounts of remaining 

processing, (so that either all jobs finish together, or the makespan 
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f10wtime is minimized by always processing those jobs with the least
 

amounts of remaining processing (see Conway, Maxwell and Hiller (1967)
 

and Schrage (1968».
 

In certain circumstances these results are true when the processing 

requirements are unknown. Several authors have investigated the case in 

which processing requirements are distributed as exponential random 

variables with differing means. Glazebrook (1976 and 1979) has shown 

that SEPT minimizes the expected value of the f10wtime. Bruno (1976) 

has proved this for just two machines, and Weiss and Pinedo (1979) for 

any number. Bruno and Downey (1977) have shown that LEPT minimizes the 

expected value of the makespan for two machines. Bruno, Downey and 

Frederickson (1981) have shown that LEPT and SEPT are optimal for any 

number of machines, as has Van der Heyden (1981) for LEPT. 

These authors have proved their results by using dynamic program

ming equations to examine the difference in the expected values of the 

makespan and flowtime resulting from two strategies which differ only 

in the jobs scheduled at the start. Complicated notations make the 

proofs difficult to follow and none can be generalized to processing 

requirements which are not exponentially distributed. In the following 

section we present a new proof of the optimalities of LEPT and SEPT in 

the case of exponentially distributed processing requirements in order 

to illustrate the method of proof which is used in Weber (1982) to 

generalize these results to other distributions of processing 

requirements. Restricting attention to exponentially distributed 

processing requirements is the best way to put across the flavour of the 

method. It should become clear that the results may be generalized in 

several directions. These are discussed in the final section. 

is equal to the processing requirement of the longest job). The 
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2. Proofs When Processing Requirements have Exponential Distributions 

Suppose that n jobs are to be completed on m identical machines 

operating in parallel. All jobs are available for processing from the 

start. They have processing requirements which are distributed as 

exponential random variables with means l/Al,l/AZ, •.. ,l/A . 
n 

'nleorem lao LEPT minimizes the expected value of the makespan. 

Proof. Notation will be simplified, but the proof sufficiently 

illustrated, if we carry it through for the case of just two machines. 

The proof is essentially the same when there are more than two machines, 

but the notation is more complicated. The proof is by induction on the 

number of jobs to be processed. Suppose that the theorem is true 

whenever there are less than n jobs to process. We will show that it is 

true when the number of jobs to be processed is n. It is clear that the 

optimal strategy is non-preemptive, and that if it is optimal to process 

jobs i and j at time t then it is optimal to continue to process them 

I
until one of them is completed. Suppose Al<AZ<···<A . Let U denote 

n 

the expected value of the remaining time needed to ensure that all n 

jobs are completed, given that an optimal strategy is employed and that 

the jobs in the list I == i , ... , i , have already been completed. Let VI 
l 9

denote the same quantity when the strategy used to complete the jobs is 

LEPT. By the inductive hypothesis LEPT is optimal once one job has 

been completed and so VI = VI ~len I is a list of at least one job. By 

conditioning on the event that occurs at the first job completion we 

obtain 

i
U = min{(l + A.V + A.Vj)/(A. + A.)}. (1)

i/j 1 J 1 J 

It is simple to check that (1) is equivalent to 

° min{l + A. (Vi_V) + A.(Vj-V) + (A.+A.)(V-U)}. (2)
if j 1 J 1 J 

In (1) and (2) the minimwns are at tained by the same pair {i, j }. Since 

Al and AZ are the two smallest values of Al and V ~ U, the fourth term 

on the right hand side of (2) is minimized by {i,j} = {1,2}. Hence to 

show that LEPT is optimal it is sufficient to show that {i,j} = {1,2} 

also minimizes the sum of the second and third terms. We define 

i 
Vi = Ai(V -V) and D.. == V.-V .. 

lJ 1 J 

It is interesting to note that <SVi+o(o) may be interpreted as th{:.~ 

amount by which the expected value of the makespan would change from V 

if when employing LEPT we were to give job i an extra amount c5 of 

processing just before the start. It is the result of theorem lb that 

if Ai < Aj then is less than or equal to zero. Hence the sum of theDij 

second and third terms on the right hand side 0 f (2), V. + V., is 
1 J 

minimized by {i,j} = {1,2} and the induction is complete. 

Throughout the rest of this section we shall consider V, Vi and 

D•. as functions of the variables AI' ... ,A. V: and D~. are defined 
1J n 1 ] J
 

similarly to Vi and D.. when i,j ~ I. For example, V~ is A. (VIi _ VI),
 
lJ 1 1 

where Ii denotes the list I with job i appended. 

Theorem lb. Suppose A. < A., A <··· <A. Then 
1 J l n 

D < 0,
ij ( 3) 

and 

dD12 /dA ~ o. (4)1 

Proof. The proof is by induction on n, the number of jobs to be 

processed. When n = 2, D (A./A.) - (A./A.) and the theorem is trueij 1 J J 1 

trivially. If i and j are the two smallest indices not in the list I 

then jobs i and j will be processed first. Conditioning on the event 

that occurs at the first job completion we have 

(A.+>...)VI=l+A.Vli+A.Vlj. By using this fact, and the definition of v~,1 J 1 J 1 
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we can derive the 

(A
l 

+A
Z

+A 
3

)V 
l 

folluwing identities. 

1A
l 

(A
l 

+A 
Z

+A 
3

)V - A
l 

(A 
l 

+A 
Z

+A
3

)V 

1 lZ 13
Al(l+AlV +AZV +A)V ) 

1 Z 
- Al(i+AlV +AZV +A 3V) 

13 1
Al (A 3V -A 3V) 

lZ Z 
+ AZ(A1V -AlV) + A3Vl 

(Al+AZ)V l = 
1

Al V3 + 
Z

AZVl · 

We can establish the following similarly. 

(\+AZ)VZ AlV~ + AZV;. 

(Al+AZ)V i = 
1

AlV i 
Z 

+ AZVi , 
i 3, ... ,no 

Combining these we have, 

DlZ 
\ 1 

A~ D3Z
1 Z 

AZ 
+ ~ 

1+ Z 

Z 
Dll , 

(5) 

and 

D
Zi 

A
_1_ 01 

Al+A Z Zi 
+ 

A 
__Z_ oZ 
Al+A Z 3i' 

i 3, ... ,no (6) 

are less than n jobs to complete, and this hypothesis for (3) implies 

that both 0i3 .2 0 and D~3 .2 0 are true when there are n jobs to 

The inductive hypothesis states that (3) and (4) are true when there 

complete. The hypothesis for (4) similarly implies that 

By integrating this with respect to Al we have Di3 .2 D~3 

Z
dUll/dA l > O. 

= _Dl 
< 0 

)Z ' 

and thus remembering that Al is less than A
Z 

we can check that (5) is 

nonpositive. The inductive hypothesis also implies that D~i and ]);i 

are nonpositive, and thus (6) is nonpositive. Since (5) and (6) have 

been shown to be nonpositive this establishes the inductive step for 

(3). The inductive step for (4) is established by differentiating the 

right hand side of (5) with respect to Al and then using the inductive 

333 

hypothesis to check that every term is nonnegative. 

Theorem Za. SEPT minimizes the expected value of the flowtime. 

Proof. The proof is similar to that of theorem la. We suppose 

that Ai>"'>A , and redefine U and V in terms of the expected value oE 
n 

the flowtime. Equation (Z) becomes 

o min{n + A. (Vi_V) + A.(Vj-V) + (A.+A.)(V-U)}.
ifj 1 J 1 J 

Th" proof is completed using theorem Zb along the same lines as theorem 

la. 

Theorem Zb. Suppose A.>A A >"'>A . Then
i

,----- J 1 n 

-1 < 0ij .2 0, (7) 

and 

d])lZ/dA l .2 O. (8) 

Proof. The proof is by induction and similar to that of theorem 

lb. When n = Z, ])lZ = 0 and the theorem is true trivially. Instead of 

(4) and (5) we get 

\ 1 AZ Z 
°lZ = -A-A- (03Z- l ) + ~ (U13+l), (9) 

1+ Z 1+ Z 

and 

All AZ Z 
°Zi = ~ ])Zi + ~ (D 3i-l), i = 3, ... ,no (10) 

1+ Z 1+ Z 

Using (9) and (10) and the inductive hypotheses it is now easy to check 

the inductive steps for (7) and (8). 

3. Generalizations 

There are a number of directions in wl,ich the results of the 

previous section may be generalized by using proofs similar to those of 

theorem la and lb. We shall not give the details of the proofs here, 
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but refer the reader to Weber (1980 and 1982), where they are proved 

within a framework of optimal control theory and continuous dynamic 

'programming. 

(a) By redefining U and V it can be shown that LEPT and SEPT 

minimize the makespan and flowtime in distribution. TIlis means that, 

for any y, the probabilities that the makespan and flowtime are greater 

than yare minimized by LEPT and SEPT respectively. It is no longer 

obvious tl~t the optimal strategy is non-preemptive, but this can be 

established in the proof. 

(b) As Weiss and Pinedo (1979), we may consider non-identical 

machines which process jobs at rates sl?.·· ',::,sm' If job i is processed 

on machine j its instantaneous hazard rate is A.S,. The expected value 
~ J 

of the makespan is now minimized by a version of LEPT which always 

processes tbe job of least A on machine I, the job of second least A on 

machine 2, and so on. The expected valued of the flowtime is minimized 

by a version of SEPT which always processes the job of greatest A on 

machine 1, the job of second greatest A on machine 2, and so on. The 

proof is along the lines of the previous section. 

(c) For processing requirements that are not distributed as 

exponential random variables, LEPT and SEPT are still optimal in the 

following circumstance. Assume the jobs have identical total processing 

requirements, but have received different amounts of processing prior 

to the start. A job that has received an amount of processing x has an 

instantaneous hazard rate of r(x). Suppose that r(x) is a monoto~ 

hazard rate that is increasing or decreasing in x. In these 

circumstances LEPT and SEPT are still optimal. TIle proof is along the 

lines of the previous section. For example, (4) is reformulated in 

terms of dD /dx , where Xl is the amount of processing job 1 has so far
12 l 

received. [Note that if several jobs have received equal amounts of 

processing, LEPT or SEPT may require a 'sharing' of machine effort. For 

example, if the hazard rate is increasing and exactly three jobs, which 

have had equal amounts of processing, are to be completed on 2 machines, 

then LEPT is realized by processing each job at 2/3 the full rate of one 

machine until one job is completed. In practice, sharing is 

approximated by frequently changing the set of jobs tl~t are being 

processed, so that the amounts of processing the jobs have received 

remain nearly equaL] 

This result includes the result of Pinedo and Weiss (1979) who 

proved that LEPT and SEI'T are expected value optimal when the processing 

requirements are distributed as different mixtures of two exponential 

distributions. Their model corresponds to a decreasing hazard rate 

model of the above form. The result also extends the work of Nash 

(1973) who proved the optimality of SEPT for the case in which all jobs 

have received identical amounts of processing at the start and the 

distribution of total processing requirement has an increasing hazard 

rate. 

(d) If in addition to the conditions of (c) the distributlon of 

total processing requirement has a density whose logarithm is concave 

or convex, then LEPT and SEPT minimize the makespan and flowtime in 

distribution. A density whose logarithm is concave or convex is said 

to be ~ign-~_nsisteTl..t:.._Cl.!.-orde_r..._t:..~(Se ). Karlin (1968) has made a
2 

detailed study of sign-consistent densities. He and other authours have 

described their importance in areas of statistical theory, reliability, 

game theory and mathematical economics. The uniform, gamma, 

hyperexponential, folded-normal and I-Ieibull distributions all have SC 

densities. The proof is along the same lines as above, with, for 

example, (4) reformulated in terms of d{Dl/p(xl)}/dx . 
l 

(e) When the processing requirements are distributed according 

2 
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to any of the models of this paper, the results are still true even if 

the number of available machines is a non-decreasing function of time. 

This follows from the fact that in order to carry out the induction in 

theorem Ib we only needed to be sure that in (5) job 3 could take the 

role of jobs 1 or 2 in an application of the inductive hypothesis for 

(4). This will be the case if the number of machines is non-decreasing 

in time. A stronger result can be proved if the distribution of total 

processing requirement has a SC density. In this case LEPT minimizes
2 

the makespan in distribution even if the number of available machines 

is an arbitrary function of time and some jobs are not present at the 

start, but only arrive later according to a stochastic process. 

(f) For any of the models of this paper, LEPT also maximizes in 

distribution the time at which the number of machines first exceeds the 

number of uncompleted jobs. TIl us , if a system requires m components to 

operate, the length of time for which it can be kept running by using 

a stock of n > m components is maximized in distribution by LEPT. When 

m = 2 this is the 'lady's nylon stocking problem' 0 f Cox (1959), for 

which he hypothesised LEPT optimality in the case of monotone hazard 

rates. Weber and Nash (1979) give further details. 

It does not appear possible to find simple strategies minimizing 

the expected values of the makespan or flowtime if the processing 

requirements are not distributed according to one of the above models. 

When the distribution of total processing requirement has a non-

monotone hazard rate LEPT and SEPT are generally not optimal. 
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Discussant's Report on
Cambridge University, Engineering Department, Control and 

"Scheduling Stochastic Jobs on Parallel Hachines,"
Hanagement Systems Division, Hill Lane, Cambridge CB2 lRX, ENGLAND. 

by Richard Weber 

TIle problem of optimally sequencing a collection of independent 

jobs with known processing times on parallel machines has a long history 

in the deterministic scheduling literature [3]. The simplest of these 

results, regarding the "shortest job first" policy for flOl"time [4] and 

the "longest remnant first" policy for preemptive makespan [10], are so 

well known that they have become pedagogical "standards", used to 

convince students that there is something to all this business of 

scheduli.ng after all. 

A few years ago, investigators began to consider whether similar 

optimal policies exist for jobs whose runtime is described by a random·1 

i
I 

I 
1
 

variable. Perhaps forgivably, they first attacked that noble distribu

tion that seems to occur exponentially in the literature [6, 12, 14, 1], 

allowing for differing mean times for different jobs. The deterministic 

results carried over (with the adjective "expected" appropriately 

I
I
I
I 
!
 

inserted), but was this merely a trick of our (noble but furgetful) 

distribution? Pinedo and Weiss [12] were able tu push the result to the 

case of two machines where each job's time is chosen as a different 

hyperexponential "mix" of the same two fixed exponentials. Nash [11] 

showed that if jobs shared a COllmlon distribution with increasing faIlure 

rate function then "shortest expected processing time first" minimized 

the expected flowtime. 

I 

t

i
I

I 

Enter Richard Weber. He has shown that these classic scheduling 

policies are optimal for fWldamental reasons having little to do with 

the detailed structure of the service time distribution of jobs. 

Suppose that the service time of each job is chosen independently from 

the sallie underlying distributlon, hut different jobs have "aeed" 

different amoWlts at the start of scheduling (so that they beeln at 
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different points in the failure rate curve for the underlying distribu

tion). All the above problems can be reinterpreted from this new point 

of view. Weber's discovery is that, assuming scheduling is preemptive, 

that processor-sharing is allowed, and that the failure rate curve is 

monotone increasing or decreasing throughout, then "shortest expected 

processing time first" (SEPT) minimizes expected flowtime and "longest 

expected processing time first" (LEPT) minimizes expected makespan [13]. 

From these results, the SEPT policy is reinterpreted as that policy 

which schedules the job with largest instantaneous failure rate; LEPT 

schedules the job with smallest instantaneous failure rate; ties must 

share processors equally. 

More is true. LEPT and SEPT are policies with are optimal in 

distribution (not just in expectation) if the more stringent (but still 

mild) assumption is made that the processing time density is "sign

regular of order 2" [8]. Such an assumption implies that the failure 

rate curve is monotone [9]. 

Thus we have in Weber's work the pleasure of seeing several 

distinct results suddenly pieced together in a novel way, be shown to be 

"cases" of a fundamental result, and to obtain a vast generalization of 

the class of distributions to which the result is applicable. Frankly, 

results this satisfying are few and far between, and worth the wait 

when they arrive. 

The paper in the current proceedings provides a clear eXl'oHll1 ... 

of Weber's proof technique for a particular distribution (the 

exponential). Shorn of the details necessary to obtain the r('sult. </It 

greatest generality, this paper provides a useful introduc tion t,1 t ~ 

more elaborate proofs in [13]. 

Of course, the settling of a question merely causes the 

to suggest new questions, and so I will do what is required. 

some possible directions for investigation suggested by both the 

literature on this problem and by "discrete analogues" from determin

istic scheduling theory. 

One direction was pursued by Weiss and Pinedo [14] for the 

exponential distribution. They define a large class of cost functions 

for schedules (of which makespan and flowtime are but special cases) and 

show conditions under which LEPT and SEPT minimize expected cost. Does 

their theorem go through in the more general setting of aged jobs from 

a monotone failure rate distribution?j 
So far we have spoken only of scheduling with preemptlons. When 

the failure rate curve is decreasing, then LEPT is nonpreemptive; 

similarly for SEPT when the failure rate curve is increasing. In these 

two cases the results yield simple optimal policies for nonpreemptiveI 
t schedules. From deterministic scheduling results, we know that 

f 
sequencing a set of jobs with known processing times on two machines to 

minimize makespan is an NP-complete problem (for three machlnes it is 

"strong" NP-complete [5]). It is likely then that no optimal policy 

exists which is simple enough to be useful. 

In the terms of Weber's paper [13], a set of determinlstlc jobs 

.oith prc':cs5in~ t.i.=es t, < : .. < ... < t_ CL~ be t!:C:":~:l: c~ as "E~e::'l 

J"';.~:! '- :::: -:::-':=-,_::' - ---- . 

,
~.. • UtlJ t step at tn' Thus we are trying to minimize makespan when 

~i..1.'. rates are increasing while disallowing preemption and processor 
;'i':", 

nIls shows that the current results cannot be extended to the 

case for all monotone failure rate distributions. But is 

of distributions for which a "simple" 

is optimal? 

"""ther direction of generalization is to introduce precedence 

among the (still stC'chasticall\' independent) jobs. On the 
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deterministic side, llu [7] showed that unit processing time jobs 

constrained to be sequenced according to an "in-tree" form of partial 

order (Figure 1) can be finished in the shortest time on m processors 

if scheduled "highest level first" (RLF) among all those remaining (the 

levels of jobs are shown in Figure 1). Chandy and Reynolds [2] have 

shown that if job processing times are random variables with a common 

exponential or Erlang distribution, and jobs are constrainted according 

to an "in-tree", then HLF is still optimal to minimize expected makespan 

on two processors. The result does not extend to three processors: in 

Figure 1, HLF schedules jobs 1, 2 and 3 first while the optimal policy 

must pick 1, 2 and 4 first, assuming processing times are exponential 

[2] . 

The question in all this is: does the Chandy and Reynolds result 

carryover for a more general class of dis tribution? Why does the HLF 

policy break down for three processors? What, if any, is an optimal 

policy? 

In many scheduling applications (e. g., computer job scheduling), 

one has mixtures of some short jobs and some long ones with few of 

middling length. SUcll a distribution causes the failure rate curve to 

be "basin" shaped--at first decreasing and then increasing. Based on 

the insights gained from this paper, what can be said about the relative 

performance of SEPT against the optimal policy minimizing flowtime? In 

this context SEPT is a suboptimal "heuristic", but commonly employed 

with good results. 

level 

6 

5 

4 

4 )	 3 

2 

1 

o 

Figure 1. ''In- tree" procedence cons traint showing level s. 
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