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SCHEDULING JOBS WITH STOCHASTIC PROCESSING REQUIREMENTS 
ON PARALLEL MACHINES TO MINIMIZE MAKESPAN OR FLOWTIME 

RICHARD R. WEBER,* University of Cambridge 

Abstract 

A number of identical machines operating in parallel are to be used to 
complete the processing of a collection of jobs so as to minimize either the jobs' 
makespan or flowtime. The total processing required to complete each job has 
the same probability distribution, but some jobs may have received differing 
amounts of processing prior to the start. When the distribution has a monotone 
hazard rate the expected value of the makespan (flowtime) is minimized by a 
strategy which always processes those jobs with the least (greatest) hazard rates. 
When the distribution has a density whose logarithm is concave or convex these 
strategies minimize the makespan and flowtime in distribution. These results are 
also true when the processing requirements are distributed as exponential 
random variables with different parameters. 
DYNAMIC PROGRAMMING; FLOWTIME; MAKESPAN; MONOTONE HAZARD RATE; OPTI- 

MAL CONTROL; SIGN-CONSISTENT FREQUENCY; STOCHASTIC SCHEDULING 

1. Scheduling to minimize makespan or flowtime 

1.1. Stochastic processing requirements. A number of identical machines 
operating in parallel are available for processing a collection of jobs. The total 
processing required to complete each job has the same probability distribution, 
but some jobs may have received differing amounts of processing prior to the 
start. The objective is to complete the jobs so as to minimize either their 
makespan or flowtime. Let Ci be the time at which job i is completed. The 
makespan is the time of the last job completion, max{C }, and the flowtime is the 
sum of the job completion times, I C. Both are random variables which depend 
on the strategy used to order the processing of the jobs on the machines. 
Preemptive scheduling is permitted, and thus any job may instantaneously be 
removed from a machine and another job processed instead. A single machine 
may process several jobs simultaneously, provided its rates of processing those 
jobs sum to no more than 1, the maximum rate at which a single machine can 
work. 
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Although scheduling must proceed without knowing exactly how much more 
processing each unfinished job requires, it may take account of how much 
processing each job has already received. When job i has already received an 
amount of processing xi the probability that the further processing required to 
complete it is less than s is {F(xi + s) - F(x,)}/{1 - F(xi)}. F(s) is a known 
distribution function with density f(s). The hazard rate of job i is defined as 
p(xi) = f(x)/I{1 - F(x,)}, and thus the probability that 8 further processing will 
be sufficient to complete job i is Sp(xi)+ o(8). 

1.2. Results for monotone hazard rates. Theorem 1 states that when p(s) is a 
monotone function of s (increasing or decreasing) then the LHR and HHR 

scheduling strategies minimize the expected values of the makespan and 
flowtime respectively. The LHR strategy begins by assigning machines to the 
job(s) of lowest hazard rate, any remaining machines to the job(s) of second- 
lowest hazard rate, and continues in this manner until all machines are assigned 
or all jobs are allocated to machines. If at any stage in this procedure the number 
of unassigned machines is less than the number of jobs of lowest hazard rate 
amongst those still unallocated to machines, then LHR shares the effort of those 
machines equally amongst such jobs if p(s) is increasing, and assigns them one 
by one to the jobs of smallest indices amongst such jobs if p(s) is decreasing. In 
the latter case, the choice of jobs of smallest indices is an arbitrary convention 
ensuring that LHR is uniquely defined. Strategy HHR is the reverse procedure, 
which begins by allocating machines to the job(s) of highest hazard rate. If the 
number of unassigned machines is ever less than the number of jobs of highest 
hazard rate amongst those still unallocated to machines, then HHR shares the 
effort of those machines equally amongst such jobs if p(s) is decreasing, and 
assigns them one by one to the jobs of smallest indices amongst such jobs if p(s) 
is increasing. The LHR and HHR strategies are optimal even if the number of 
available machines is not constant, but an arbitrary non-decreasing function of 
time. It is worth observing that when p(s) is decreasing LHR is non-preemptive, 
as is HHR when p(s) is increasing. When p(s) is a monotone hazard rate we say it 
is MHR. 

Remark. Although we shall find it convenient to require p(s) to be strictly 
monotone, all our theorems are still true for non-increasing or non-decreasing 
hazard rates. In such cases LHR becomes the strategy of processing those jobs 
with the longest expected processing times (LEPT), and HHR becomes the strategy 
of processing those jobs with the shortest expected processing times (SEPT) 

(where the processing time is the time needed to finish a job if it is processed 
continuously by a single machine). 

1.3. Results for sign-consistent densities. Stronger results can be proved for a 
second class of distributions. Theorem 2 states that when log(f(s)} is a concave 
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or convex function of s then the LHR and HHR scheduling strategies minimize in 
distribution the makespan and flowtime respectively. For any y they minimize 
the probabilities that the makespan and flowtime are greater than '. Moreover, 
LHR minimizes the distribution of the makespan even when the number of 
available machines is an arbitrary function of time, and when some of the jobs 
are not available for further processing until random times after the start. 

When f(s) has a concave or convex logarithm it is called a sign-consistent 
density of order two (sc2). The name comes from the fact that the determinant of 
the 2 x 2 matrix with elements f(s, + ti) has the same sign for all sl < s2 and 
tl < t2. It is simple to show that a distribution with an sc2 density also has a MHR 

hazard rate, and that p(s) is increasing or decreasing as log{f(s)} is concave or 
convex. Karlin (1968) has made a detailed study of sign-consistent densities. He 
and other authors have described their importance in areas of statistical theory, 
reliability, game theory and mathematical economics (P61ya densities, the 
concave case, are especially important). The uniform, exponential, hyperex- 
ponential, gamma, and folded-normal distributions all have sc2 densities. 

Other processing-time distributions can be represented as the limit of se- 
1,quences of distributions with sc2 densities, and we can thereby establish the 

results of this subsection for these distributions as well. Suppose n jobs have 
processing requirements distributed as exponential random variables with 
different parameters, say A1 

_5 
A2 

_ 
A 

(A, 
is the constant hazard rate of job 

i when processed by a single machine). We consider a distribution having an sc2 
density and non-decreasing, continuous hazard rate, such that the hazard rate 
has n plateaus over which it is successively constant at A1, A2, - - -, and A,, joined 
by increasing sections. By imagining that the n jobs have received amounts of 
processing prior to the start such that their hazard rates at the start are just at the 
beginnings of the relevant plateaus, and then letting the lengths of the plateaus 
become very large, we can approximate exponentially distributed processing 
requirements arbitrarily closely. A deterministic distribution, for which F(s) = 0, 
(0 5 s < a) and F(a) = 1, can also be approximated arbitrarily closely by a 
distribution with an sc2 density and increasing hazard rate. This gives the 
well-known result that SEPT minimizes the flowtime when jobs have differing 
deterministic processing requirements (see Conway, Maxwell and Miller (1967) 
and Schrage (1968)). 

1.4. Results for special cases. The above results generalize previous work on 
scheduling jobs whose processing requirements are distributed as exponential 
random variables with different means. Glazebrook (1976), (1979) proved the 
earliest result, showing that -HHR minimizes the expected value of the flowtime. 
Bruno (1976) proved this for just two machines. Weiss and Pinedo (1979) and 
Bruno, Downey and Frederickson (1981) proved it for any number of machines. 
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Bruno and Downey (1977) showed that LHR minimizes the expected value of 
makespan for two machines, and then with Frederickson extended it to any 
number. Van der Heyden (1981) also proved this result. Pinedo and Weiss (1979) 
proved a result for non-exponentially distributed processing requirements, 
showing that LHR and HHR are expected value optimal when F(s) is a mixture of 
two exponential distributions (hyperexponential). This distribution has an sc2 
density and a decreasing hazard rate. 

2. The proof of LHR and HHR optimality 

2.1. Theorem statements and preliminaries. In previous articles on parallel 
machine stochastic scheduling problems we have formulated results in discrete 
time (Weber (1978), (1980a,b); Weber and Nash (1979)). Here we present them 
in continuous time, adopting the style of optimal control theory. Nash (1973), 
(1979), Glazebrook (1976) and Nash and Gittins (1977) have used optimal 
control formulations in proving results for single-machine stochastic scheduling 
problems, and special cases of parallel-machine problems in which none of the 
jobs has received any processing prior to the start and the hazard rate is 
monotone. 

Suppose that at the start, time 0, there are n jobs to be processed. The state of 
the jobs at time t is defined as the vector of the amounts of processing they have 
so far received and is denoted by x(t) = (xl(t), 

- - -, x,, (t)). Writing x'(t) denotes 
that the jobs I = {i, - - - i1} have already been completed. An admissible schedul- 
ing strategy, is a measurable function v(x', t) such that for all t 

_0, 

V 
(X 1, t)EC l',(t) 

to]E [=,il I 
( wt E[0,1. i 

•= 
m(t), and w =0 o ifieiJ 

Between job completions the state is controlled by i' = v(x', t). At any instant 
the processing effort applied to a single job can be no more than 1. If job i 
receives effort at a rate v, throughout the interval [t, t + 8) the probability that it 
is completed within the interval is 8vip(x) + o (8), and if it is completed the state 
changes to x ". The total effort available at time t is m (t). The function m (t) is 
continuous on the right and it is restricted to the integers to be consistent with 
the idea of discrete machines (without this restriction the results are still true but 
the proofs require more complicated notation). 

Remark. It has already been noted that when the hazard rate is increasing 
LHR may share the effort of a single machine amongst several jobs. For example, 
if the hazard rate is increasing and three jobs, which have had identical amounts 
of previous processing, are to be completed on two machines, then LHR processes 
each job at rate 

- 
until one job is completed. In practice sharing is approximated 

by very frequently changing the set of jobs being processed, so that the amounts 
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of processing the three jobs have received remain nearly equal. Similarly, when 
the hazard rate is decreasing HHR may share machine effort. For this reason the 
definition of an admissible strategy is framed to permit fractional allocations of 
effort. The allocation (2, 2, 2) is admissible. LHR and HHR are admissible strategies. 

Unless otherwise stated, we assume throughout this section that the number of 
available machines is non-decreasing in time and that all the jobs are available 
for processing from the start onwards. With this model defined we state our main 
results. 

Theorem 1. If p(s) is MHR then the expected values of the makespan and 
flowtime are minimized by LHR and HHR respectively. 

Theorem 2. If f(s) is sc2 then for any y the probabilities that the 
makespan and flowtime are greater than y are minimized by LHR and HHR 
respectively. Moreover, the makespan is minimized in distribution even when 
m (t) is arbitrary and some of the jobs only become available for further 
processing at random times after the start. 

The proofs of Theorems 1 and 2 will be completed at the end of this section 
where they will be obtained from Lemma 1 and Theorems 3 and 4. All the 
theorems are proved by induction on the number of jobs not yet complete. 
Assuming that Theorems 1 and 2 are true when there are less than n jobs 
unfinished we will show that they are true when the number of unfinished jobs is 
n. Rather than give eight separate proofs for each of the possible cases that arise 
from considering whether the distribution has MHR or SC2 properties, whether 
p(s) is increasing or decreasing, and whether we are seeking to minimize the 
makespan or flowtime, we shall as far as possible explain the proofs in a way that 
will hold for all cases, and comment on variations where necessary. To this end, 
observe that the probability that a random variable is greater than y is equal to 
the expected value of an indicator function which is equal to 1 if the variable is 
greater than y and equal to 0 otherwise. Let G be one of the following four 
functions: the makespan, the flowtime, or one of the two indicator functions for 
the makespan or flowtime being greater than y. Henceforth a strategy which is 
LHR or HHR will be denoted by u = u(x, t), and u should be interpreted as 
denoting LHR or HHR as we are considering a problem of minimizing makespan or 
flowtime respectively. We shall find it convenient to let (LHR) denote the 
assumption that G is a function of makespan and u is LHR, and let (HHR) denote 
the assumption that G is a function of flowtime and u is HHR. 

Let V'(x', t, c v) represent the expected value of G, given that starting in 
state x at time t we employ a scheduling strategy which is identical to v until the 
time of the next job completion and identical to u thereafter, where for (HHR) 

the flowtime is to be computed as c plus the completion times of the remaining 
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jobs (we may think of c as the sum of the times at which jobs in I were 

completed). Assume that when there are just n - 1 jobs to finish Theorems 1 and 
2 are true and u is optimal. To show u is optimal when there are n jobs to finish, 
we shall show that v = u minimizes V(x, t, c I v) for all (x, t, c). V(x, t, c ju) will 
be abbreviated to V(x, t, c). Writing pi (x) for p (x,), we find that for all (x, t, c), 

(1) x(s)= x(t)+ u(x(z),z)dz, 

and 

V(x, t, c)OQ(x(t)) 

(2)f- 

=• ? u(x(s),s)p; (x(s)) V'(x'(s), s, c +s)O(x(s))dx, 
where we define 

Q(x(s)) = i {I - 
F(x, 

(s))}, (s > t). 

Equation (2) comes from observing that Q(x(s))Q/O(x(t)) is the probability that 
no job completion has occurred before time s and that, conditional on no prior 
job completion, ui (x (s), s)p, (x (s))ds is the probability that job i is completed in 
the interval [s, s + ds). 

2.2. A sufficient condition for u optimality. We shall show that u is optimal 
starting from any state x at any time t by considering the effect of giving a small 
amount of processing to a single job. Assume that f(s) is twice differentiable. 
From its definition and the nature of u it should be clear that V(x, t, c) has 

partial derivatives up to the second order in components of x (we shall justify 
this further during the proof of Lemma 2(b)). Hence for all (x, t, c) it is possible 
to define 

Vi (x,t,c)Q(x)= pi (x)V'(x, t,c + t)Q(x)+- V(x, t, c)Q(x). axi 

Starting from x at time t, 8V, (x, t, c) is to first order in 8 the amount by which the 

expected value of G would change from V(x, t, c) if we were to give job i an 

extra 8 of processing just before continuing with u over [t, oc). We may define V! 
similarly. 

The following lemma states a condition which is sufficient to ensure that u is 

the optimal strategy. It is a particular case of a result in the 

Hamilton-Jacobi-Bellman theory of continuous dynamic programming, and is 

equivalent to the result in discrete time that if a strategy and its value function 

satisfy a dynamic programming equation then it is optimal (for a general 
formulation of this result within a description of continuous dynamic program- 
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ming see Varaiya (1972), p. 192, Theorem 1). The proof will be left to the 

appendix. 

Lemma 1. Suppose that for every (x, t, c) and w EC (t), 

i 
u,(x, 

t)V(X, ,t 

c)- 

V(, 
(x, 

t, c). 
i=1 i=1 

Then v = u minimizes V(x, t, c v) for every (x, t, c). 

The remaining proofs are simplified by making an assumption about the 

starting state. We say that the t property holds for a state if the hazard rates of the 

uncompleted jobs are monotone in the job indices: such that if (LHR) then 

P• Pp, n, and if (HHR) then Pi- 
" P., amongst uncompleted jobs. 

Recalling that u prefers jobs of smaller indices when making a choice amongst 
identical jobs, it is clear that by employing u starting from in a state for which t 
holds, the hazard rates of the uncompleted jobs remain in the same order, t 
continues to hold, and i < j implies u? 

- 
uj (i, j uncompleted) for all subsequent 

time. 

2.3. Proof of Theorems 1 and 2. Define the difference D, (x, t,c)= 
Vi (x, t, c) - Vi (x, t, c). Since indexing is arbitrary it is only necessary to consider 

starting states for which t holds. It is a consequence of Lemma 1 and the 
inductive hypothesis that to prove u is optimal it is sufficient to demonstrate that 

Wi = u (x, t) minimizes I wtoV, (x, t, c) for all (x, t, c). This is the same as showing 
that t and i < j implies D,; = (V, - Vj) is non-positive. Statements (6) and (15) of 
Theorems 3 and 4 assert this is the case, so assuming their truth, Theorems 1 and 
2 are proved. It only remains to prove Theorems 3 and 4 by an inductive 

argument. 

3. Two theorems for LHR and HHR scheduling 

3.1. The basis of an inductive proof. For all of this section, u is the only 
scheduling strategy considered. The following lemma gives an expression for 

Vi (x, t, c) that is the key to the inductive proofs of Theorems 3 and 4. Let 

k(t) = (m(t)+ 1) and observe that job k(t) is a job which would receive 
additional processing effort if one of the jobs of smaller index than k (t) were 

already complete, rather than still uncompleted. When m (t) is n or more then 
k (t) is undefined, but all the expressions that follow are still correct if we simply 
delete terms like V' and replace terms like D l by (0 - Vj). Throughout what 

follows, x(s) is given by (1), and if t holds for x(t) it also holds for x (s). Let -(t) 
be an n-component vector in which the first m(t) components are 1 and the 
remaining components 0. 

Lemma 2. For all (x, t, c), t 
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V(x, t, c)Q(x(t)) 
(a) ,, 

()= 
6,2 "(s)ph 

(X 

(S))Vh(Xh(S)'sc 

+ 
s)Q(x(s))ds, 

-p ((x) (Sc {V(x'(s), s, c +s)(x(s)) ds. 

Remark. The derivative of V' with respect to c is computed on the right. We 
can show this derivative exists for all (x, t, c) by differentiating through (2) with 

respect to c and using an inductive argument. In proving Theorems 3 and 4 we 
shall calculate the right-hand a V/c when n = 1 and show that it exists. The 
restriction to the right-hand derivative is necessary since when G is an indicator 
function the left-hand derivative may not exist for some value of c. It will be 
convenient and somewhat clearer if we display the identities of the lemma 
without arguments as 

(3) VQ = 
lhph VQOds, 

h=1 

(4) VO = hp,V + SpV k- p kPi} 
Ods. 

Proof of Lemma 2(a). Identity (3) is a simple consequence of t and it is 
obtained by noting that in (2) we can replace every uh (x(s), s) by 1 provided we 
then compute the sum over only 1 

_ 
h 

_ 
m = mr(s). For if Uh >0 and h > m, or 

Uh < 1 and h < m (machines are shared), then xh = x,r, and uh and u,, multiply 
equal equantities. 

We shall give an intuitive interpretation of (b), while leaving the formal proof 
to the appendix. If we consider the portion of the integral over [t, t + 8) and the 

interpretation given to V, above, the lemma states that to first order in 8 the 

following procedures result in the same expected value of G: (a) giving job i an 
extra 8 of processing just before time t, increasing the value recorded for its 

completion time by 8 if it is completed, and then proceeding with u over [t, o0), 
and (b) processing the 

mr(t) jobs of lowest index over [t, t + 8), giving job i an 

extra 8 of processing once t + 8 is reached, and then continuing with u over 

[t + 8, m) - unless job i has been completed in [t, t + 8), in which case the extra 8 

of processing is given to job k. 
Let H(t) denote the set of indices less than or equal to m(t) but excluding i 

and j. Using the lemma we also obtain for D, (x, t, c)O(x), 
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DAIQ 
= 

phD 
h+ 

pi 
D'-av- + 

i 
pL iak 

Jtlh0E1 
h ZE H ii kj ac /dac I 

(5) V' a V' 
+((1- )p c--- -(1- iP' c OQds. 

3.2. Theorems 3 and 4. We now prove that D5i is non-positive for t and 
i < j. Let fi,(x), p, (x), f'(x) and p'(x) denote f(x,), p(xi) and their derivatives 
with respect to x,. 

Theorem 3. Suppose p(s) is MHR and G is either the makespan or the 
flowtime. Then for all (x, t, c), f and i < j, 

(6) 
D,, 

(x, t, c) 5 0. 

If (LHR) and j 
- 

m(t) then 

(7) 
p,(x) x D, (x, t, 

c)>-O. 
If (HHR) and j 

<-m 
(t) then 

(8) Do,(x,t,c)+ 1i>0, 

(9) p:(x) aDi (x, t, c) 0, 
axi 

and 

(10) p'(x){(D,(x, t, c)- 1 - D, (x, t, c)} 0. 

Proof. The proofs of (6)-(10) are by induction on the number of uncompleted 
jobs. Assuming that they are true when rewritten to apply to starting states with 
just n - 1 unfinished jobs, we show they are true as written above for n 
unfinished jobs. This follows from the identities (11)-(14) that follow below. The 
identities are all produced by straightforward manipulation of (3)-(5) using the 
fact that when we wish we can differentiate these with respect to x, simply by 
taking the derivative inside the integral. This is justified within the proof of 
Lemma 2(b). Taking a right-hand derivative of (3) with respect to c we get 

0V 
f={ caVh ._ V' . V' l 

s 
(11) 

c 
= 1C ph + p + P O ds. I 'cc +e I 

pj 

We can simplify (5) as follows. Let z be the first time greater than or equal to t 
for which & is 1. The following identities can then be produced from (5) and (11) 
for D,; (x, t, c)O(x). 



176 RICHARD R. WEBER 

DQO = phD h+ piD J- 
p-c 

+pV OQds 
(12) 

pE h 
( 
, 
D Q d 

+ (D + O ds. 

For z = t, j < m (t), 

O 
ax, (D,,)= 

hH 
h 

id(D)++ p'. D 
•; -- 

D 

(13) a ( V' 
+ 

Pjax 
DIk 

+-ac O)ds, d v 

c 

i 
O = 

d 
V 

O DI 

h d 

V 
D( D - = DDij + pD k'- D ' - 

\i dc Q 
hEHfI h dck)+ D D 

i k Vdc) 
(14) 

+p (D'k 
aV'k) 

+PkD ---c- Ods. 

In (14) we denote (k(s)+ 1) by k'. Identities (11)-(14) are now sufficient to 
establish (6)-(10) by induction. Assume n 

_ 
2 and that the theorem is true for 

n - 1. It is trivially true that terms in a/ac are 0 for (LHR) and 1 for (HHR). 
By the inductive hypothesis for (6) we deduce that within the first integral on 

the right-hand side of (12) Dh, is non-positive, as is D , (since k j), and also the 
term (pg - pi) if (HHR). So the value of this integral is non-positive. The second 

integral on the right-hand side of (12) is more complicated. The term Di is again 
non-positive. Since we have assumed m (s) is non-decreasing and that all jobs are 
available from the start the inductive hypotheses for (7)-(10) can be applied 
within the integral as well as within the integrals on the right-hand sides of (13) 
and (14). If (LHR) then p i p,, and by the inductive hypotheses for (6)-(7) we can 
deduce Djk - 

D'k;0 by letting x, tend to x in Djk (re-indexing if necessary as 
the limit is taken). This gives pD •j + pjDjk < 0, and hence every term within the 

integral is non-positive. Similarly, if (HHR) then pi -- p, and by the inductive 

hypotheses for (6) and (9) we deduce Dk, = - D; 0. This gives 0 (Djk + 1) < 
(-D + 1)by (8). Hence p(D';- 1) + p 

(D, 
+ 

1)_0, 
and every term within the 

integral is non-positive. The two integrals in (12) have been shown to be 

non-positive and this completes the inductive step for (6). 
If (LHR) (7) follows from (13) using the inductive hypotheses for (6) and (7). If 

(HHR) (8) follows from adding (11) to (12), (10) follows from (14), and (9) follows 

from (13) using (10) in the second term of the (13) integral after the inductive 

step for (10) has already been established. 
It only remains to check the theorem when n = 1. Suppose only job i is to be 

completed and mr(s) 
- 

1 for s > t. Then setting c = 0 if (LHR) we can calculate 
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V(x, t, c)= c + t + f {1- F(s)ds{1- F(x 

and 

V, (x, t,c)= - 1. 

Substituting these in (6)-(10) checks that the theorem is true for n = 1 (terms in j 
and k are deleted; for example, D, becomes V1). 

Theorem 4. Suppose f(x) is sc2 and G is an indicator function for either the 
makespan or the flowtime being greater than y. Then for all (x, t, c), $ and i < j, 

(15) D; (x, t, c ) -5 0 . 

(16) p i(x) ,x) cv(x, t, c)50. 

If (LHR) then 

(17) p(x)j I (x) D,(x, t, c) 0. 

If (HHR) and j - m (t) then 

(18) D, (x, t, c)+ 
0 

V(x, t, c)2-0, 

and 

(19) pi(x)[ Di (x, t, c)+ V(x,t, c)}10. 

Proof. The proof is similar to the proof of Theorem 3. From (11) and (4) we 
get the following: 

8 1 f)V 

xi +PiAc A x, 

+D(20) 8 (4) . (1dV p Ods. 

pAssume n 2 and that the theorem is true for n- 1. If (LHR) we put /c 

terms equal to 0 in all equations. The inductive step for (16) comes from (20), 
using the fact that for an sc2 density, 
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(22) has the opposite sign to p . 

For (LHR) the inductive step for (17) follows from (21)-(22) and the inductive 
hypotheses. The step for (15) follows from (17) by observing that Dj /p, increases 
as x, tends to xi and is 0 when xi equals xi. We have not had to consider whether 
or not j is less than m (t). If some jobs only become available for processing after 
the start the notation must be changed, but all that will happen is that H may 
shrink, and Sj may decrease at some points in time. But the sign of (21) does not 
depend on the value of 

sj. 
Similarly no difficulty is caused if m (s) decreases. 

For (HHR) we must consider the two integrals on the right hand side of (12) 
separately. The 0/dc terms are clearly non-negative. Using (22) and the 
inductive hypothesis for (16) in (20) we establish (16). The first integral in (12) is 
non-positive using the inductive hypotheses for (15) and (16). The second 
integral is non-positive from the inductive hypotheses for (15) and (19). We 
establish (18) by adding (11) to (12) and checking that the sign of the integrand is 
non-negative. Similarly (19) is established by adding (20) to (21). 

To check the theorem when n = 1, suppose only job i is to be completed and 
its remaining processing requirement is given by the random variable X. Assume 
m(s) > 1 for s > t (if (LHR) then m(s) may perhaps decrease to 0 at some points; 
the expressions below require minor adjustments, but these do not affect the 
conclusions). Setting c = 0 if (LHR) let a = (y - c - t). Then V(x,t, c)= 
Pr(X > a) and we can calculate 

V,(x,t,c)=O, a<0 

S(x, t, c) _ f(x, + ) 
p (x,) f(x,) ' 

and 

a IV(x, tc) f(x, + a) _ 

c p (x,) f(x,) 
' 

O(HHR). 

Note that the derivative 3V/Ic exists on the right for all c, but not on the left for 

c = y - t (a = 0). This is why we stated that derivatives with respect to c (and t) 
are calculated on the right. It is easy to check that f(s + a)/f(s) is monotone in 
the opposite direction to p(s) for a > 0. Thus as pi increases, we find that Vi / pi 
increases and (8V/8c)/pi decreases. These facts and the above expressions are 
used in (15)-(19) to show that the theorem is true for n = 1. 

4. Concluding remarks 

The proofs in this paper are necessarily intricate. They become shorter and 
easier to follow when specialized to the case of exponentially distributed 

processing times. The reader is refered to Weber (1982) where this has been 
done. 
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The conditions under which we have shown the optimality of LHR and HHR for 
the makespan and flowtime problems are the most general for which the results 
can be obtained. It should be clear from the proofs that these strategies are not 
necessarily optimal for hazard rates that are not monotone, and that the 
assumptions that m (t) is non-decreasing and that all jobs are available for 

processing from the start can only be relaxed in the sc2 (LHR) case (see Weber 
(1980a) for appropriate counterexamples). 

By similar methods it can also be shown that for any y, LHR minimizes the 
probability that the time to first idleness is less than y, where the time to first 
idleness is defined as the first time that m (t) is greater than the number of jobs 
still to be completed. This is true for any distribution with a MHR hazard rate, and 
as before m (t) must be non-decreasing and all jobs must be available for 
processing at the start unless the density is sc2 . The proof is almost identical to 
that for LHR minimizing makespan if we simply redefine V as the probability that 
when using an LHR strategy the time to first idleness is less than y (Weber and 
Nash (1979) and Weber (1980a) give further details). The result shows that an 
LHR strategy maximizes in distribution the length of time for which a machine 
that needs m components to operate can be kept in operation using a stock of n 
(n > m) components. For m = 2 this is the 'lady's nylon stocking problem' for 
which Cox (1959) hypothesised LHR optimality. 

Weiss and Pinedo (1979) consider m non-identical machines which process 
jobs at different rates, si _ 

-i sn. The jobs have exponentially distributed 

processing times with parameters A1, 
" 

', A,, and when job i is processed on 
machine j its instantaneous hazard rate is sA,. They show that the expected value 
of the flowtime is minimized by following a version of HHR which always assigns 
the job of greatest A to machine 1, the job of second greatest A to machine 2, 
and so on. A version of LHR that assigns the job of lowest A to machine 1, and so 
on, minimizes the expected value of the makespan. These results can be 
generalized to the models of this paper, although the equivalent of Lemma 2 
requires a more complicated notation. 

5. Appendix 

5.1. Proof of Lemma 1. Suppose v is an admissible strategy. We get the 
following series of relationships: 

(23) 0 = d IV(xsc)O(x)}+ u(x,s)p(x)V'(x,sc+ s)O(x) 
ds i=1 

=-{ V(xsc)Q(x)} + u (x,s)- {V(x, s, c)Q(x)} 

(24) 
+ 

u,(x,s)p, 
(x)V'(x,s,c +s)Q(x) 
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(25) = --s {V(x,s,c)O(x)} + u,(x,s)V,(x,s,c)O(x) 
i=1 

(26) {V(x,s, c)Q(x)}+ v(x,s)V(x,s, c)Q(x) 

I {V(x,s,C)O(x)} + vE,(x,s)- {IV(x,s,c)O(x)} 

+ vi(x, s)p(x)V'(x, s, c + s)Q(x) 
i=1 

(27) =d- V(x,s,c)O(x)}+ v (x,s)p(x)V'(x, s, c + s)Q(x). ds i= 

Equation (23) is obtained by differentiating (2), and (24) by observing that 

d/ds = alas + uid/lx,. The derivative aV/as is taken on the right and can be 
shown to exist by an inductive proof based on differentiating through (2) and 

noting that u(x, t) is piecewise constant and continuous on the right. The 
existence of the derivative a V/ax, will be justified in the proof of Lemma 2(b). 
The definition of V, gives (25), and (26) follows from the hypothesis of the 
lemma. Note that the time derivative in (23) is along the trajectory i = u(x, s), 
whereas it is along the trajectory i = v(x, s) in (27). Integrating (27) along the 

trajectory i = v(x, s) we find 

0-5 
- 

V(x,t,c)O(x)+ + 
v,(x,s)p, (x)V'(x,s,c + 

s)O(x)ds t i=1 

- V(x, t,c J u)Q(x)+ V(x, t,c Iv)O(x). 

The lemma is therefore proved. 

5.2. Proof of Lemma 2(b). For convenience we omit arguments from the 

expressions below. By the definition of Vi, t and Lemma 2(a) 

(28) VO = ,v'Q +- 4phV dOds. 

The integral on the right of (28) is equal to VQ, and for the following reason the 
derivative of this integral can be found by taking the derivative with respect to x, 
inside. Suppose the starting state x is perturbed to y by changing xi to xi + 8. 
Without loss of generality we suppose that amongst indices j such that x, = xi, i 
is chosen as the one for which $ will hold for y as well as for x. When 8 is positive 
(negative) this can been done by letting i be the smallest (largest) such j. Assume 
all components of x not equal to x, are further from x, then 8. Starting from y, let 
y (s) be the perturbed state reached at time s by employing u. By considering the 
nature of the LHR and HHR strategies it is not hard to check that y(s)= 
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x(s)+ 8(s) where I5 8j(s) = 8 and 8j (s) > 0 only if I xi (s)- xj (s) < 8. Hence the 
first-order change from VQ when the integral is evaluated along y (s) can be 
shown to be just 8 times the value obtained by differentiating inside the integral, 
as claimed above. Differentiating the integral once more gives a proof by 
induction that V is twice differentiable with respect to all components of x, by 
assuming this for Vh and remembering that p(s) is twice differentiable. In 
particular this shows that Vi is once differentiable, as was assumed in the proofs 
of Theorems 3 and 4. We carry out the differentiation in (28) to obtain 

(29) VQ = pV'Q +f ,ph (VhQ) 
+ i 

a 
(pV'QO)) ds. 

The total time derivative of p V'Q satisfies 
d 

d- (p, VQ) 

(30) 
= 

x(pi 
V') + h (piV'OiQ)+ (piV'iQ)+ (p V'O). 

The V' terms in (30) are evaluated at (x, s, c + s), but the partial derivative 

aV'I/s is calculated with respect to the second argument only (the derivatives 
a V'/c and a V'/as are taken on the right). Using (30) to substitute for the last 
term of (29) and integrating the d(pV'Q)/ds term we get 

(31) 
- Pi d, (V'O) - p as (V O) ds. 

Adding and subtracting piph VihQ within the summation of (31) makes this sum 
become 

, 
4h {ph V - p V} hQ. Let u' denote u when job i has been completed. 

Let 4i(s) be the n vector in which the first mr(s) components amongst the set not 
including the ith component are 1, and all the other components 0. For the same 
reasons as (25) in Lemma 1, and Lemma 2(a), u' and 4' must satisfy the 
following equation: 

(32) 
0h= 

W(V')+ u ()+ t i at h#i 

Multiplying (32) by piQ and substituting for the final term of (31) we obtain 

(33) a[V Qs C(33) VO 
= 

h, 
(Ah V+ ( [- )p, 

V 
a,} - p IOds. 

Observe that ((,'- -h) is 1 for i 
-- 

m and h = k, and 0 otherwise. Thus the middle 
term of (33) becomes just 

,pV, 
and this completes the proof of the lemma by 

giving identity (4). 



182 RICHARD R. WEBER 

References 

BRUNO, J. (1976) Sequencing tasks with exponential service times on parallel machines. 
Technical report, Department of Computer Science, Pennsylvania State University. 

BRUNO, J. AND DOWNEY, P. (1977) Sequencing tasks with exponential service times on parallel 
machines. Technical report, Department of Computer Sciences, University of California at Santa 
Barbara. 

BRUNO, J., DOWNEY, P. AND FREDERICKSON, G. N. (1981) Sequencing tasks with exponential 
service times to minimize the expected flowtime or makespan. J. Assoc. Comput. Mach. 28, 100-113. 

CONWAY, R. W., MAXWELL, W. L. AND MILLER, L. W. (1967) The Theory of Scheduling. 
Addison-Wesley, Reading, Ma. 

Cox, D. R. (1959) A renewal problem with bulk ordering of components. J.R. Statist. Soc. B 21, 
180-189. 

GLAZEBROOK, K. D. (1976) Stochastic Scheduling. Ph.D. Thesis, University of Cambridge. 
GLAZEBROOK, K. D. (1979) Scheduling tasks with exponential service times on parallel 

processors. J. Appl. Prob. 16, 685-689. 
KARLIN, S. (1968) Total Positivity, Vol. I. Stanford University Press, Stanford. 
NASH, P. (1973) Optimal Allocation of Resources to Research Projects. Ph.D. Thesis, University 

of Cambridge. 
NASH, P. (1979) Controlled jump process models for stochastic scheduling problems. Internat. J. 

Control 30, 1011-1026. 
NASH, P. AND GITrrINS, J. C. (1977) A Hamiltonian approach to optimal stochastic resource 

allocation. Adv. Appl. Prob. 9, 55-68. 
PINEDO, M. AND WEISS, G. (1979) Scheduling stochastic tasks on two parallel processors. Naval 

Res. Logist. Quart. 27, 528-536. 
SCHRAGE, L. E. (1968) A proof of the shortest remaining process time discipline. Operat. Res. 

16, 687-689. 
VAN DER HEYDEN, J. (1981) Scheduling jobs with exponential processing and arrival times on 

identical processors so as to minimize expected makespan. Math. Operat. Res. 6, 305-312. 

VARAIYA, P. P. (1972) Notes on Optimization. Van Nostrand Reinhold, New York. 
WEBER, R. R. (1978) On the optimal assignment of customers to parallel servers. J. Appl. Prob. 

15, 406-413. 
WEBER, R. R. AND NASH, P. (1979) An optimal strategy in multi-server stochastic scheduling. J. 

R. Statist. Soc. B 40, 323-328. 
WEBER, R. R. (1980a) Optimal Organization of Multi-server Systems. Ph.D. Thesis, University 

of Cambridge. 
WEBER, R. R. (1980b) On the marginal benefit of adding servers to GIGI/m queues. 

Management Sci. 26, 946-951. 
WEBER, R. R. (1982) Scheduling stochastic jobs on parallel machines to minimize makespan or 

flowtime. Proceedings of the ORSA-TIMS Special Interest Meeting: Applied Probability - 

Computer Science, the Interface. To appear. 
WEISS, G. AND PINEDO, M. (1979) Scheduling tasks with exponential service times on 

non-identical processors to minimize various cost functions. J. Appl. Prob. 17, 187-202. 


	Article Contents
	p. 167
	p. 168
	p. 169
	p. 170
	p. 171
	p. 172
	p. 173
	p. 174
	p. 175
	p. 176
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182

	Issue Table of Contents
	Journal of Applied Probability, Vol. 19, No. 1 (Mar., 1982), pp. 1-251
	Front Matter
	The Exact and Symptotic Formulas for the State Probabilities in Simple Epidemics with m Kinds of Susceptibles [pp. 1-9]
	Bounded Recurrence Times and Lead Time in the Design of a Repetitive Screening Program [pp. 10-19]
	The Saddlepoint Approximation for a General Birth Process [pp. 20-28]
	Sums of I.I.D. Random Variables and an Application to the Explosion Criterion for Markov Branching Processes [pp. 29-38]
	On the Characterization of Point Processes with the Order Statistic Property without the Moment Condition [pp. 39-51]
	On Starr and Vardi's Estimates of the Number of Transmission Sources [pp. 52-63]
	Filtering Counts of Cars Entering and Leaving a Parking Place [pp. 64-71]
	Optimal Stopping in a Partially Observable Binary-Valued Markov Chain with Costly Perfect Information [pp. 72-81]
	On Coupling of Continuous-Time Renewal Processes [pp. 82-89]
	Some Duality Results for a Class of Multivariate Semi-Markov Processes [pp. 90-98]
	On a Sufficient Condition for Superprocesses Due to Whittle [pp. 99-110]
	Asymptotic Properties of Stereological Estimators of Volume Fraction for Stationary Random Sets [pp. 111-126]
	Characterizations of Exponential Distributions by Independent Non-Stationary Record Increments [pp. 127-135]
	On the Mean Number of Random Digits until a Given Sequence Occurs [pp. 136-143]
	A Batch-Ballot Problem and Applications [pp. 144-157]
	Shock Models Leading to Increasing Failure Rate and Decreasing Mean Residual Life Survival [pp. 158-166]
	Scheduling Jobs with Stochastic Processing Requirements on Parallel Machines to Minimize Makespan or Flowtime [pp. 167-182]
	Simple Derivations of the Invariance Relations and Their Applications [pp. 183-194]
	On the Equivalence of Flows in Networks of Queues [pp. 195-203]
	Short Communications
	Mutations, Perturbations and Evolutionarily Stable Strategies [pp. 204-209]
	Point Process Limits of Lattice Processes [pp. 210-216]
	On a Theorem of Bingham and Doney [pp. 217-220]
	Limit Theorems for Uniform Distributions on Spheres in High-Dimensional Euclidean Spaces [pp. 221-228]
	A Note on the Measurement of Randomness [pp. 229-232]
	Record Values and Extreme Value Distributions [pp. 233-239]
	On the Distribution and Covariance Structure of the Present Value of a Random Income Stream [pp. 240-244]
	On Ross's Conjectures about Queues with Non-Stationary Poisson Arrivals [pp. 245-249]

	Letter to the Editor [p. 250]
	Retraction: Optimal Service Rates in the Multiserver Loss System with Heterogeneous Servers [pp. 250-251]
	Back Matter





