LETTERS TO THE EDITOR

ADDENDUM TO 'ON AN INDEX POLICY FOR RESTLESS BANDITS'

RICHARD R. WEBER,* University of Cambridge GIDEON WEISS,** Georgia Institute of Technology

Abstract

We show that the fluid approximation to Whittle's index policy for restless bandits has a globally asymptotically stable equilibrium point when the bandits move on just three states. It follows that in this case the index policy is asymptotic optimal.

In [2] we investigated properties of an index policy for restless bandits that had been the subject of an interesting paper by Whittle [3]. We showed that if the fluid approximation to his index policy has a globally asymptotically stable equilibrium point then it is asymptotically optimal, for the problem of choosing which m out of n bandits to make active, as $m, n \rightarrow \infty$, with $m/n = \alpha$. We observed that the existence of such a point is guaranteed when the bandits move on just k = 2 states. However, a counterexample with k = 4 states showed that this is not the case in general (though with very small suboptimality). The conjecture that the index policy might be asymptotically optimal when the bandits move on k = 3 states was left unanswered. The present note confirms that conjecture. In this note we use the notation of [2] and refer to formula and theorem numbers in that paper.

The state of the *n* arms (or bandits) under application of the index policy is expressed by a probability vector $z_n(t) = (z_{n1}(t), z_{n2}(t), z_{n3}(t))$. The fluid approximation to $z_n(t)$ is given by the solution to $\dot{z} = Q(z)z$ (10), where the $q_{ii}(z)$ are given by (9).

Lemma 1. Assume the problem is indexable with index order 1, 2, 3. Then the fluid approximation for $z_n(t)$ is globally asymptotically stable.

Proof. Imposing the condition that $z_1(t) + z_2(t) + z_3(t) = 1$ we eliminate $z_2(t)$ and the equation for $\dot{z}_2(t)$, and we partition the region $C = \{z_1(t), z_3(t) \ge 0, z_1(t) + z_3(t) \le 1\}$ into regions $C_1 = \{z_1(t) \ge 1 - \alpha\}$, $C_2 = \{z_1(t) \le 1 - \alpha, z_3(t) \le \alpha\}$, $C_3 = \{z_3(t) \ge \alpha\}$. Here C_i is the region in which arms of index greater or less than *i* are made active or passive respectively, and a proportion of the arms of index *i* are made active. As in [2], let q_{ji}^1 and q_{jii}^2 be the transition rates from state *i* to *j* under the active and passive actions respectively. The equations (10) in region C_i are of the form

(1)
$${\binom{z_1}{z_3}} = b_i + A_i {\binom{z_1}{z_3}}, \quad i = 1, 2, 3$$

Received 27 November 1990; revision received 6 February 1991.

^{*} Postal address: Management Studies Group, Department of Engineering, Mill Lane, Cambridge CB2 1RX, UK.

^{**} Postal address: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA.

Research supported by NSF grant DDM-8914863.

where

$$A_{i} = \begin{pmatrix} -q_{21}^{k} - q_{31}^{k} - q_{12}^{k} & q_{13}^{l} - q_{12}^{l} \\ q_{31}^{k} - q_{32}^{k} & -q_{13}^{l} - q_{23}^{l} - q_{32}^{l} \end{pmatrix}$$

and (k, l) = (1, 1) for i = 1, (k, l) = (2, 1) for i = 2, (k, l) = (2, 2) for i = 3. The main thing to note is that A_i has negative diagonal elements for i = 1, 2, 3. Let us write

$$\dot{z}_1 = Z_1(z_1, z_3), \qquad \dot{z}_3 = Z_3(z_1, z_3).$$

Then Z_1 , Z_3 are continuous throughout C, and are continuously differentiable within each region C_i , i = 1, 2, 3. Also,

$$\frac{\partial Z_1}{\partial z_1} + \frac{\partial Z_3}{\partial z_3}$$

is the sum of the diagonal elements of A_i for $z \in C_i$ and so is negative in each of C_1 , C_2 , C_3 . Under these conditions, Bendixson's negative criterion [1] states that no solution to (1) in C can have limit cycles.

It is easy to verify that no solution can leave C. It follows from Theorem 2 that the stationary distribution of the relaxed policy is also the unique equilibrium point of (1) in C. Hence, by the Poincaré-Bendixson theorem [1], every solution of (1) in C converges to that equilibrium point. This proves the lemma.

Applying Theorem 2 also gives the following.

Corollary 2. For k = 3, Whittle's index policy [3] is asymptotically optimal as $m, n \rightarrow \infty$, with $m/n = \alpha$.

References

[1] JORDAN, D. W. AND SMITH, P. (1987) Nonlinear Ordinary Differential Equations, 2nd edn. Clarendon Press, Oxford.

[2] WEBER, R. R. AND WEISS, G. (1990) On an index policy for restless bandits. J. Appl. Prob. 27, 637-648.

[3] WHITTLE, P. (1988) Restless bandits: activity allocation in a changing world. In A Celebration of Applied Probability, ed. J. Gani, J. Appl. Prob. 25A, 287–298.

430