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Abstract 

We investigate the optimal allocation of effort to a collection of n projects. The 
projects are 'restless' in that the state of a project evolves in time, whether or not 
it is allocated effort. The evolution of the state of each project follows a Markov rule, 
but transitions and rewards depend on whether or not the project receives effort. 
The objective is to maximize the expected time-average reward under a constraint 
that exactly m of the n projects receive effort at any one time. We show that as m and 
n tend to oo with m/n fixed, the per-project reward of the optimal policy is 
asymptotically the same as that achieved by a policy which operates under the 
relaxed constraint that an average of m projects be active. The relaxed constraint was 
considered by Whittle (1988) who described how to use a Lagrangian multiplier 
approach to assign indices to the projects. He conjectured that the policy of 
allocating effort to the m projects of greatest index is asymptotically optimal as m 
and n tend to oo. We show that the conjecture is true if the differential equation 
describing the fluid approximation to the index policy has a globally stable equili- 
brium point. This need not be the case, and we present an example for which the 
index policy is not asymptotically optimal. However, numerical work suggests that 
such counterexamples are extremely rare and that the size of the suboptimality 
which one might expect is minuscule. 

FLUID APPROXIMATIONS; GITTINS INDEX; LARGE DEVIATION THEORY; MULTI-ARMED 
BANDIT PROBLEM; STOCHASTIC SCHEDULING 

1. Restless bandits 

Whittle (1988) has recently studied an interesting generalization of the classical 
multi-armed bandit problem. The classical problem concerns n projects, the state of 
project i at time t being denoted xi(t). At each time tjust one project is to be operated. If 
project i is operated then a reward gi(xi(t)) is received and the transition xi(t) - xi(t + 1) 
follows a Markov rule specific to project i. The n - 1 projects which are not operated 
produce no reward, and their states do not change. One thinks of a gambler who at each 
turn can pull exactly one of the n arms of a multi-armed bandit, or slot-machine, and 
who desires to maximize his time-average reward by an optimal sequence of pulls. 
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Gittins (1970) (see Gittins and Jones (1974)) showed that an index policy is optimal 
for this problem. The Gittins index, denoted by vi(xi), can be calculated for each project 
as a function of the label i and state xi alone; the optimal policy is simply to operate the 
project of greatest index. 

Whittle has studied a variation in which two generalizations are introduced. Firstly, at 
each moment exactly m of the projects are to be operated. Secondly, those n - m which 
are not operated may nevertheless contribute reward and change their state. A project is 
said to be active or passive depending upon whether or not it is operated. It is because 
passive projects may change state that they are called restless bandits (since we are now 
thinking of a multi-armed bandit machine for which even those arms which are not 
pulled change state). Whittle gave several examples of problems which are nicely 
modelled as restless bandits, for example the exhaustion and recuperation modes of n 
workers, where m must always be active. Here a change of state corresponds to a change 
of a worker's physical condition. A change of state may also correspond to a change of 
information. One might gain different information when making a project active than 
when making it passive. For example, projects might deteriorate in an unobserved 
manner when not made active. We might think of m helicopters trying to keep track of 
the positions of n submarines. 

For simplicity of exposition we suppose that all projects are of the same type: they 
have the same finite state space, with states labelled { 1, * , k}, and change their state 
according to an identical Markov rule. It is convenient to formulate the model in 
continuous time. We suppose that following entry to state i the next potential change of 
state occurs at a time which is exponentially distributed with mean 1. At that time the 
project moves to state j with probability P,j(a), where action a = 1 or 2 denote 
respectively that the active or passive action was being applied to the project just prior to 
its potential change of state. Note that the diagonal entries of P(a) are not necessarily 0, 
so the project may not actually change state. This uniformization device is a standard 
idea in the study of Markov processes and simplifies the analysis. We shall also suppose 
that the transition matrices are such that the states form a single closed class regardless of 
the policy employed. Reward is earned at a rate g(i, a) whenever the project is in state i 
and action a is taken. 

If one were attempting to maximize average reward over the infinite horizon for a 
single project, the solution would be found from the optimality equation 

Y + f(i) = max {g(i, a) + z Pj(a)f(j)}, 
a-.1,2 i-i J 

and y would be the time-average optimal reward. Consider now the optimality equation 
obtained if the reward received when taking the passive action is subsidised by an 
amount v: 

(1) y(v) + f(i) = max g(i, 1) + S P,j(l)f(j), v + g(i, 2) + E P,(2)f(j)} 
j-l j-1 

One thinks of v as a subsidy which is paid for taking the passive action. It is intuitive that 
as v increases from - oo to + oo the proportion of time for which it is optimal to take the 
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passive action increases. One can interpret v as the Lagrangian multiplier associated 
with a constraint that the passive action be taken for a proportion of the time 1 - a, 
0 _ a 1. This leads us to consider a problem in which the constraint is relaxed to 
demanding only that the number of projects to be made active satisfies Em(t) = an in 
time average. It is clear that the policy which maximizes the average reward subject to 
this constraint satisfies (1) when v is pitched at the right level. A subsidy policy is defined 
by Whittle as a policy induced by (1) for some value of v and which resolves any tie 
between the terms within the maximization operator by choosing the passive action. 
However, except for a finite number of values of a, for which the non-randomizing v- 
subsidy policies are optimal, the appropriate subsidy v will be such that the active and 
passive actions are equally attractive for some state i. By appropriately randomizing the 
choice of action in this state a stationary policy is obtained for which the constraint is 
satisfied. Denote by r(a) the maximum average reward that can be achieved under the 
relaxed constraint; this can be expressed as (Whittle (1988), Proposition 1) 

(2) r(a) = inf (y(v)-v(l -a)). 
v 

Clearly nr(a) is an upper bound for R(p) (a), the maximal average reward to be obtained 
from n projects subject to the more demanding constraint that exactly m = an are to be 
made active at all times. The policy which achieves the value nr(a) simply applies the 
same policy to each project independently, making each project active, passive, or 
perhaps randomizing between active and passive actions, on the basis of the state of the 
project alone. We call this policy, which is optimal under the relaxed constraint, the 
relaxed-constraint optimal policy, or more briefly the relaxed policy, and denote it crei. 

Remark. If a and n are such that an is not an integer, then we interpret the constraint 
m = an as demanding that Lan] projects be made active, n - an] projects be made 
passive, and the remaining project be made active with probability an - Lan . This is 
consistent with the idea that the resource available for applying active actions is 
continuously divisible. This interpretation also avoids technical issues that are not 
central to our discussion. 

Whittle defines the index v(i) for a project in state i as the least value of the subsidy v 
for which it could be optimal in (1) to make the project passive in state i. It turns out that 
this index reduces to the usual Gittins index in the case that the passive projects do not 
change state and yield no rewards. If indexing is to be meaningful it should induce a 
consistent ordering, meaning that if it is optimal to make a project passive when the 
subsidy is v then it is also optimal to make it passive for all v'> v. The concept is 
formalized in Whittle's definition of indexability. 

Definition. Let D(v) be the set of states for which a project would be made passive 
under a v-subsidy policy. The project is indexable if D(v) increases monotonically from 0 
to {1, * * , k} as v increases from - oo to + co. 

Whittle's index policy, denoted aind, is the one which at all times makes active the m 
(= an) projects of greatest index (where this is interpreted according to the remark 
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above). For this policy we denote the time-average reward for a problem with n projects 
by Ri, (a). Clearly 

(3) Ri(n (a) < R (n)(a) < nr(a). 

One expects that under the index policy the reward per project will be close to r(a) and 
the policy will be nearly optimal. This is Whittle's conjecture, which can be stated as 
follows. 

Conjecture (Whittle (1988)). 

(4) Ri(j(a)l/n - r(a) as n, m - oo, m = an. 

Because it is possible to compute the v(i)'s, the index policy is easy to implement. The 
truth of the conjecture would make the index policy an attractive policy for the 
constrained problem, since we could be sure that for large n it nearly achieves a reward of 
nr(a); this is also a quantity that can be computed. 

The conjecture is plausible since, as n increases, one expects a weaker coupling 
between the states of distinct projects. If the relaxed policy is applied to n projects then 
the equilibrium number in state i will be binomially distributed as B(nni, n7i(l - tr)), 
where zit is the proportion of time a single project spends in state i. If the initial 
distribution is the relaxed policy's equilibrium distribution and one starts to apply the 
index policy then, at least initially, the relaxed and index policies will differ in the actions 
they take on a number of states whose expected value is only 0( /n), and the expected 
difference in reward per project between the policies will be 0(1/ n/). Since actions do 
not differ very much, the equilibrium distribution of the index policy will also have 
about n7r ? O(/n) projects in state i. 

However, we have discovered that conjecture (4) is false and we show this in Section 4 

using ideas from the theory of large deviations and a specific counterexample. The 
counterexample was by no means easy to find. We still believe the conjecture to be true 
in most circumstances. Section 3 describes an analysis of the index policy using the 

theory of large deviations. In it we give a sufficient condition for the truth of (4). Section 
2 begins the paper with a proof of a positive result: that the second inequality in (3) is an 

equality to within O(/In). Thus for large n imposition of the more demanding constraint 
does not lead to substantial reduction of reward per project. 

2. The asymptotic reward of the optimal policy 

We begin by showing that asymptotically nothing is gained by the relaxation of the 
constraint. Asymptotically the optimal reward per project is the same for the constrained 
and relaxed problems. 

Theorem 1. 

R(n) (a)/n - r(a) as n, m - oo, m = an. 

640 

(5) 



On an index policy for restless bandits 

Proof. Let r be the equilibrium distribution for the state of a single project when the 
relaxed policy is employed. Consider the expected-average-cost optimality equation for 
the constrained problem: 

R(n)(a)/n + f(x) = max {(l/n) g(xi, a) + Eaf(X)}. 
a il 

Here x, denotes the state of project i, a, denotes the action taken for that project, and Xi 
denotes the state of project i subsequent to the next potential transition (which occurs 
after time exponentially distributed with mean l/n), x, XE {1, - , k}", a E { 1, 2}. 
Assume data in the problem is such that t is rational and n is such that nr is a vector of 

integers. Let ni(x) denote the number of projects in state i. Suppose the state x is such 
that the number of projects in state i is exactly ni(x) = n7r. Then, application of the 
relaxed policy satisfies the constraint that exactly m projects will be made active. 

Suppose now that the relaxed policy is applied to every project; denote by a* the action 

applied to project i. Moreover, suppose that for a time 6 the constant action a* is applied 
to project i even if that project changes state. The expected number of potential state 

changes which occur during this interval of length 6 is n6. The expected reward obtained 

during the interval is bounded below by 3r(a)n - n62G, where G = 2 max, a Ig(i, a) . 

Clearly the policy is suboptimal, so 

(6) 8R() (a) + f(x) > 
(6r(a)n - n62G + Ea.f(X6)}. 

Here Xi is the state of the project i after time S. Define, for any two states x and y, the 
distance d(x, y) as the minimal number of components in which x and y can be made to 
differ by permuting the components of y: this is d(x, y) = (1/2)2, I ni(x) - ni(y) I. Note 
that we can write n(X6) = Y1 + - * + Yk where Y1, *, Yk are independent random 
variables, Yj has a binomial distribution B(nj(x),Pji(aj, )) and Pji(aj, )= 
e- (,j + jPji(aj) + 2Pj(aj)/2! + * ) denotes the probability with which a project in 
state j is in state i after time 6 given that the fixed action aj is applied. From this, and the 
fact that ni(x) = nri, it follows that the expected value and variance of ni(X6) are 

ni(x) + no(6) and 26ni(x){ 1 - Pi(a,)} + no(S). By the central limit theorem and the fact 
that d(.) satisfies a triangle inequality, it follows that Ed(x, XI) < no(6) + A + n for 
some A. 

Suppose we could show that there exists a B > 0 such that f(y) - f(x) - - Bd(x, y), 
for any x and y. Then from (6) we would have 

(7) r(a) > R p)(ao)/n > r(a) - 6G - B o(6)/6 + A//nS3}. 

By taking 3 sufficiently small and then letting n - oo (through a subsequence for which 
nr E Zk) the right-hand side of (7) has a limit greater than r(a) - e, for any e > O. This 
would prove the theorem. 

Since d(.) obeys a triangle inequality, it suffices to prove the claim of the above 
paragraph to consider x, y such that d(x, y) = 1. Suppose this is the case and that x and y 
differ on project i. We use a coupling argument: suppose that in state y we apply to each 
project exactly the same action which aopt applies to that project in state x. We continue 
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to do this until there is a potential change of state for project i. This occurs after a time 
which is exponentially distributed with mean 1 and we deduce from the optimality 
equation 

(8) f(x) - f(y) > - G + Ea{f(X) - f(Y)}, 

where X and Y denote the states of the projects at the time of the first potential change of 
state for project i. Now d(X, Y) < 1. Moreover, there is always some probability, say at 
least co > 0, that Xi = Yi and therefore that d(X, Y) = 0. Thus from (8), we have 

min {f(x) - f(y)) - - G + (1 - o) min {f(x) - f(y)}, 
x,y: d(x,y)- 1 x,y: d(x,y)- 1 

which implies f(x) - f(y) - - G/c, completing the proof of the theorem. 

3. A sufficient condition for asymptotic optimality of the index policy 

In this section we consider the index policy, amd, applied to a collection of n projects. 
Let Zn(t) = (zn,(t), * * *, znk(t)) be a state for the system, where z,n(t) denotes the propor- 
tion of projects in state i. Possible transitions of the process are of the form z, - n + 
(l/n)e,., where ei is a vector with - 1 in the ith component, + 1 in thejth component 
and O's in all other components. Consider a policy in which the m = an projects of 
greatest index are made active. We extend the definition of the index policy by stating 
that when an is not an integer then [an] projects of greatest index are made active and 
then one further project, with a greatest index amongst those remaining, is made active 
with probability an - [anJ. Let qj and q,i denote the transition rates from state i to j 
under the active and passive actions respectively. For convenience, we have chosen to 
write the transition rate matrices so that (qji), and (qji) have columns summing to 0 
(which is contrary to the usual convention for Markov processes, but convenient in this 
exposition). The remainder of the paper does not employ the uniformization, but works 
directly with the transition rates. Define for any numbers a' and a2, and 1 - i - k, 

ui(z)= min zi, max 0, a- I Zh } zi 

1- u(z) = min zi, max , 1 - a - Zh}} Zi 
h-I 

0i(z, al, a2) = ui(z)al + (1 - ui(z))a2. 

Here ui(z) and 1 - ui(z) are the probabilities that a project which is selected at random 
from amongst those which are presently in state i will be made active or passive. Under 
the index policy the transition rate associated with eij is nqji(zn)zn,, where 

(9) qji(z)= ,(z, qi, q)= {ui(z)q1 +(1 -u(Z)) . 

Define the path z(t) starting at z(0), Z zi(0) = 1, by the differential equation 

dz/dt = E qji(z)z,e,i = Q(z)z, 
ij 
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or equivalently, dz,/dt = j ,, qj (z)z; - ,, i qj (z)zi. This is the fluid approximation for 

z0(t). 
A sufficient condition for the asymptotic optimality of the index policy can be stated as 

follows. 

Theorem 2. Let n be the equilibrium distribution of a single project operated under 
the relaxed-constraint optimal policy. Suppose that the differential equation (10) has no 
limit cycles, nor do its solutions behave chaotically. Then if the projects are indexable, 
(10) has the unique fixed point t and z(t) - 7r for all z(0). Furthermore conjecture (4) is 
true: Rin (a)/n - r(a), as n and m increase to infinity with m = an. 

Firstly, we prove a lemma which shows that indexability implies that ir is a unique 
fixed point. Consider a single project. Suppose it is indexable and that, without loss of 
generality, v(l) < ? * < v(k). Let a(i, 0) be the policy which takes the passive action in 
states 1,. * *, i - 1, the active action in states i + 1,. * *, k, and which takes the passive 
and active actions in state i with probabilities 0 and 1 - 0 respectively, 0 _ 0 _ 1. Let 
a(i, 0) denote the time-average proportion of time that the active action is taken using 
policy a(i, 0). 

Lemma 1. Suppose the project is strictly indexable, such that v(1) < ... <v(k). 
Then a(i, 0) is a strictly decreasing function of 6. 

Proof. y(v) is a convex, piecewise-linear, increasing function of v. This follows from 
the fact that in the set S of stationary non-randomizing policies, a policy a ES has a 
reward function, say y,(v), which is linear in v and y(v) = maxE,,{y}(v)}. Also, y(v) is 
strictly increasing for v > v(1). By indexability and the definitions of v(i - 1) and v(i) we 
have that 

Ya(i,o)(V) = y(v(i - 1)) + (v - v(i - 1))(1 - a(i, 0)) 
and 

Y,(i,1(V) = y(v(i)) + (v - v(i))(l - a(i, 1)) 

are both subgradients to y(v) at v = v(i). Hence 

(11) y(v(i)) = y(v(i - 1)) + (v(i) - v(i - 1))(1 - a(i, 0)). 

Now since v(i - 1) < v(i), 

(12) Y,)(v(i - 1)) = y(v(i)) + (v(i - 1) - v(i))(1 - (i, 1)) < y(v(i - 1)). 

So (11) and (12) imply a(i, O) > a(i, 1). Now suppose that n7r and n 1 are the equilibrium 
distributions of policies a(i, 0) and a(i, 1). The equilibrium distribution induced by 
a(i, 0) is a linear combination of z? and itl, namely nt =(1 -p)zt? +pnt1, where 
p = 6ir?/{0i? + (1 - 0)n }. Note that i7r = ri?'zt/{(0nt + (1 - 0)n }. Thus a(i, 0) = 
1 - (i+? + . * + 7ti- + 07i) is the ratio of two linear functions of 0 and is therefore 
monotone as 0 goes from 0 to 1. Since a(i, 0) > a(i, 1) it must be strictly decreasing. This 
proves the lemma. 

We shall also make use of the following result which states that on average Zn does not 
much differ from a fixed distribution C. In the context of diffusion processes this result 
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was proved by Freidlin and Ventsel (1984). It has been reformulated by Mitra and Weiss 
(1988) in a form which is appropriate to a Markov jump process. In fact, their statement 
of the proposition also allows state-dependent, exogenous, Lipschitz-continuous arrival 
and departure rates. 

Proposition (see Mitra and Weiss (1988), Theorem 2). Suppose there exists a 
probability distribution C such that for every initial probability distribution z(0) thefluid 
approximation dzldt = Q(z)z has z(t) - C, and the transition rates qi(z) are bounded 
andLipschitz-continuous. Then for every e > 0 there exist positive constants cl and c2 such 
that for any initial state z,(0) 

1 rt 
(13) lim - P( 11 Zn(u) - C 112 > E)du _ c, exp( - nc2). 

t-- t Jo 

Proof of Theorem 2. Note that our q,i(z) are indeed Lipschitz-continuous. Observe 
also that in state Zn(t) the index policy has instantaneous reward per project of 
Ei Oi(zn(t), g(i, 1), g(i, 2)), where we use the function 0i that was defined at the start of 
this section to evaluate the reward obtained by the mixing of active and passive actions. 
Similarly, if I is the equilibrium distribution of the state of a single project under the 
relaxed policy then r(a) = ,i Oi(r, g(i, 1), g(i, 2)). Clearly Mi(zn(t), g(i, 1), g(i, 2)) is a 
continuous function of z over a compact region. Suppose for the moment that (10) has 
the unique equilibrium iT. Since we assume (10) has no limit cycles or chaotic behaviour 
it must be that for any initial distributions z(0), z(t) -z as t - oo. Taking C = r, the 

proposition above implies that the difference between r(a) and Ri(, (a)/n can bounded by 

2 max Ig(i, a) I cl exp( - nc2) 
i,a 

+ sup I i(z, g(i, 1), g(i, 2)) - oi(7, g(i, 1), g(i, 2)). 
: IIz-n II <e i 

This may be made smaller than any arbitrary q, by first choosing e such that the 
second term is less than rt/2 and then taking n large enough that the first term is also less 
than rl/2. 

The proof of the theorem is completed by showing that Q(z)z has the unique zero 
Q(ir)n = 0. Note first that Q(n)7r = 0, since (from (10) and the following line) this is 
simply a statement of the balance equations for the equilibrium distribution of the 
relaxed policy. Similarly, if 4C # n were a second probability vector such that Q(C)C = 0, 
then C would have to be the stationary distribution of some other policy of the form 
a(i, 0), such that a(i, 0) = a. But this would contradict Lemma 1. Hence Q(z)z = 0 has 
the unique root z = t. This completes the proof of Theorem 2. 

4. Suboptimality of the index policy 

It has been established that Whittle's conjecture is true if the differential equation for 
the fluid approximation has an equilibrium point which is globally asymptotically stable 
within the (k - 1)-dimensional space of probability vectors. Indexability was used as 
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sufficient condition to guarantee uniqueness of the equilibrium point. In this section we 
begin by showing that even if it were known by some other argument that the 
equilibrium point is unique, indexability is a necessary condition for the stability of that 
point. Although Lemma 2 is interesting in itself, the main reason for its presentation is in 
order to explain how the question of the stability of the equilibrium point of (10), which 
is apparently a non-linear differential equation, reduces to a question of the stability of a 
linear system. In the second part of this section we use these ideas to explain a 
counterexample to the conjecture that occurs because the equilibrium point is unstable. 

Lemma 2. Suppose that for a given a the stable point of (10) is the equilibrium 
distribution I7, and i is a state such that, 0 < ui(n) < 1; uj(7r) = , j < i; uj(n) = 1,j > i. 
Suppose that 7r? and 7rn are the equilibrium distributions of policies a(i, 0) and a(i, 1). 
Recall that a(i, O) is the non-randomizing policy which takes the active action in states 
i,..*, k, and the passive action in states 1,. * , i - 1. a(i, 1) is the non-randomizing 
policy which takes the active action in states i + 1, * *, k, and the passive action in states 
1, * .., i. Then in order that z(t)-- 7 for all z(0) it is necessary that a(i, 1)< a(i, 0). 
Equivalently this is 

(14) a(i, 1) 7r +, + .. + 7lr < z? + . + k = (i, 0). 

Note that (4) might be true for some values of a and untrue for others. Condition (14) 
must hold if (4) is true for any a between a(i, 1) and a(i, 0). If (4) is true for all a then 
indexability is required. 

Proof. Let qk be the jth column of the matrix (qk). In a region Ci, defined as the 
closure of the set {z: 0 < ui(z) < 1, 2 zi = 1), Equation (10) can be written 

dz(t)/dt = A,z(t) + b, 
where 

b =(1 - a)q + aq(, 

(15) Ai 
= (q2-q21.. q I - q2i q+ l * * * iIq -q 

and Ai is a matrix partitioned by columns. Interestingly, (10) is just a linear differential 
equation in region Ci. Indeed dz/dt is linear in z in each of k regions, Cl, ?* * , Ck. We can 
eliminate zi from the right-hand side of (10). (This is a consequence of the fact that z is 
constrained to the (k - 1)-dimensional subspace of probability vectors.) Let Ai be the 
(k - 1) X (k - 1) matrix formed from Ai by deleting the ith row and column and let q , 
qj, z and ii be (k - 1)-dimensional vectors formed from q', q2 , z and 7 respectively by 
deleting the ith component. From d(z - ii)/dt = Ai(2 - ) we see that ifz(t) - n for all 

z(0) then Ai must be a stability matrix. Thus the eigenvalues ofAi must have negative real 
parts. Using the fact that 

_k 2 ( 2k-1 + E k- / 1 , 2, 
j<i j>i 

we can eliminate q} and q2 from (15), to get A, = QBi,, where 

Qi = (q, ... * l l 'i+, I . . I l), 
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B, = Ik - + (1'/Xr' I . I 1'/It 1 I ?/7r? I n?/0t). 

Here Bi is the sum of the identity matrix and a rank-2 matrix having all its first i - 1 and 
last k - i columns identical. Qi is a Metzler matrix (of negative diagonal and non- 
negative off-diagonal entries) and has non-positive column sums. Therefore its Perron- 
Frobenius eigenvalue is non-positive. In fact, this eigenvalue cannot be 0, for if > > 0 
were the corresponding eigenvector we would have 

eQ(t)(*,,.. , Xi-_,, 0+, ,*_ * .., k) = 0, 

which contradicts the irreducibility of Q(O). Hence the real parts of the eigenvalues of Q 
must be negative and Qi is a stability matrix. A necessary condition for a d X d matrix to 
be a stability matrix is that its determinant have the same sign as ( - )d (since this has 
the sign of the product of the real eigenvalues when all are negative). Therefore det(B,) is 
necessarily positive. It is not hard to show that 

det(B,)= (l - -1 - 7 ? - -lt+1 - .. *. -t)/t l, 

which is positive if and only if (14) holds. This completes the proof of the lemma. 

Consider now the problem described by the following data in which k = 4. All the 
following matrix calculations were carried out using the software PC-MATLAB 3.10. 

- 2.5 0.0025 0 1.0 0 
0.5 -0.2825 0 0 10 
q1.0 0.28 -2.0 1.0 g( )- 10 
1.0 0 2.0 -2.0 _ 10 

- 2.5 0.5 0 1.0 10 
0.5 - 56.5 0 0 10 

(qj)- 1.0 56.0 -2.0 1.0 g(, 2) 1 
1.0 0 2.0 -2.0_ 0 

In states 1, 3 and 4 the transition rates are the same for both passive and active actions. 
In state 2 the passive rates q2i are chosen to be 200 times the active ones qi. The reader 
can check that projects are indexable and that as the subsidy for passivity increases from 
- oo through the values - 10, 0, 9 and 10, the set of states which ought to be made 
passive, D(v), increases monotonically by the addition of states 1, 2, 3 and 4 in that 
order. Suppose a is chosen so that the relaxed-constraint optimal policy makes state 1 
passive, states 3 and 4 active, and state 2 passive or active with some probabilities 0 and 
1 - 0. Then 

-3.0 - 0.0025 0.9975 

A2= -55.0 -2.28 0.72 

L 1.0 2.0 -2.0 

646 



On an index policy for restless bandits 

A2 is not a stability matrix since its eigenvalues are - 7.4037 and 0.0618 + 3.9670i. 
This leads to a counterexample to conjecture (4). Suppose we take a = 0.835. For this 
value of a the relaxed policy is passive on state 1, active on states 3 and 4, and on state 2 
it is active and passive with probabilities 0.9938 and 0.0062 respectively. The equili- 
brium is n = (0.1644, 0.0973, 0.3281, 0.4102). 

For this value of a the solution to (10) does not tend to n as t - oo. Numerical 
integration of (10) shows that the fluid flow approximation for the index policy actually 
tends to a limit cycle of period 1.6384498 in which the state for which 0 < ui(z) < 1 
alternates between state 1 and state 2. So, in contrast to the relaxed policy, projects in 
state 1 are sometimes made active. The proof which Weiss gives for the proposition in 
Section 3 can be adapted in an obvious way to a version in which the assumption that 
z(t) tends to a unique equilibrium, Q(C)C = 0, is replaced by the assumption that z(t) 
tends to a unique limit cycle for all initial probability vectors z(0). It can then be 
shown using arguments similar to those in Section 3 that the asymptotic average reward 
per project of the index policy is the reward obtained by averaging the reward func- 
tion around the path of the limit cycle. For our data this integral comes to 
10 - 1.26577 X 10-4. Clearly the relaxed policy achieves an average reward of 10. Thus 
the index policy is asymptotically suboptimal by the tiny amount of 0.00126577%. 

5. Conclusions 

For the data of the counterexample in Section 4 there is a heuristic policy which is 
asymptotically optimal. Suppose that m/n = a and the relaxed policy takes the active 
and passive actions in state 2 with probabilities 1- and 0. Suppose there are n2 
projects in state 2. Consider the policy which makes min{(1 - O)n2, m } of these projects 
active, and then makes enough of the remaining projects in states 1 and 3 active, to bring 
the total number of active projects to exactly m = an. (Which projects in states 1 and 3 
are made active does not matter since the transition rates do not depend on the action 
taken in these states). The resulting Markov process is a migration process and satisfies 
detailed balance equations. So one can find expressions for the equilbrium distribution 
and show that it has asymptotically the same proportions of projects in each state as the 
relaxed policy. 

Conjecture (4) is always true when k = 2. In this case the regions Cl and C2 have a 
single point as their boundary. The trajectories of dz/dt must enter one or the other of 
these regions and never leave it. The only behaviour consistent with this is z(t)-, t, so 
the conditions of Theorem 2 are met. In fact, for the case k = 2 we have derived 
expressions for the equilibrium distribution of the index policy. One can give a direct 
proof of the truth of conjecture (4). It turns out that the asymptotic difference between 
Ri( (a)/n and r(a) is even less than O(1/J/n). 

Our counterexample had k = 4 and it is not clear whether there might be a counter- 
example with k = 3. Certainly it will be harder to discover such an example, since we can 
show that when k = 3 indexability always implies the stability of Ai. Thus the equili- 
brium point of (10) is at least locally asymptotically stable. 
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By randomly generating values for the active and passive matrices, Q' and Q2, we have 
found a number of counterexamples for k = 4 and k = 5. In our earliest experiments we 

generated the off-diagonal entries in these matrices as uniform random variables in 

[0, 10] and then multiplied the columns by random factors. Roughly 90% of the test 

problems were indexable, but in a sample of over 20000 test problems no counter- 

example to the conjecture was found. Counterexamples were finally discovered by 
restricting attention to test matrices for which Q' and Q2 differed in just one column, as 
in the example of Section 4. Our thinking was that for this very specialised case a proof of 
the conjecture or a counterexample might more easily be discovered. The experiments 
were rewarded with counterexamples. While we did not try to accurately estimate their 

frequency, our impression is that counterexamples were produced for less than 1 in 1000 
test problems. The size of the asymptotic suboptimality of the index policy was no more 
than 0.002% in any example. Of course one should not place too much emphasis on 
results which depend on the way test problems are generated. We may be missing a class 
of examples for which the degree of suboptimality is greater. A better understanding 
might lead to more dramatic counterexamples, but the reasoning that led to the 

counterexample in Section 4 does not seem to help. Nonetheless, the evidence so far is 
that counterexamples to the conjecture are rare and that the degree of suboptimality is 

very small. It appears that in most cases the index policy is a very good heuristic. 
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