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Abstract 

We prove a monotonicity result for the problem of optimal service rate 
control in certain queueing networks. Consider, as an illustrative example, a 
number of -/M/1 queues which are arranged in a cycle with some number of 
customers moving around the cycle. A holding cost hi(xi) is charged for each 
unit of time that queue i contains xi customers, with hi being convex. As a 
function of the queue lengths the service rate at each queue i is to be chosen 
in the interval [0, P], where cost ci(p) is charged for each unit of time that the 
service rate y is in effect at queue i. It is shown that the policy which 
minimizes the expected total discounted cost has a monotone structure: 
namely, that by moving one customer from queue i to the following queue, 
the optimal service rate in queue i is not increased and the optimal service 
rates elsewhere are not decreased. We prove a similar result for problems of 
optimal arrival rate and service rate control in general queueing networks. 
The results are extended to an average-cost measure, and an example is 
included to show that in general the assumption of convex holding costs may 
not be relaxed. A further example shows that the optimal policy may not be 
monotone unless the choice of possible service rates at each queue includes 0. 

CONTROL OF QUEUES; CYCLES OF QUEUES; DYNAMIC PROGRAMMING; 

MONOTONE POLICIES; SERIES OF QUEUES 

1. Control of queues 

The control of arrival and service rates in a single queue is well studied in 
the literature of queueing and communications theory (see Sobel (1974), 
Stidham and Prabhu (1974), Crabill et al. (1977), Johansen and Stidham 

(1980), Serfozo (1981) and Stidham (1985) for surveys and examples). Studies 
have described various circumstances under which an optimal control policy 
has monotone structure. It is usually assumed that a holding cost is charged 
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according to the number of customers in the queue, rewards are gained when 
customers enter the queue and costs are paid while customers are served. 
Expected total-discounted or time-average cost is to be minimized by 
controlling the arrival and/or service rate. In many circumstances, it turns out 
that the optimal arrival rate and service rate are respectively non-increasing 
and non-decreasing in the number of customers (or amount of work) in the 
queue. 

Recent research has considered the optimal control of systems of more than 
one queue. Winston (1977) and Weber (1978) showed that for a system of 
identical servers in parallel, where an arriving customer can be directed to any 
queue, sending the customer to the shortest queue minimizes the expected 
average waiting time. Ephremides et al. (1980) considered this problem for 
two parallel servers, as did Davis (1977) with the additional possibility that 
arrivals may be rejected. In these papers and most others the models 
considered are memoryless. Throughout the rest of this paper we are 
concerned only with models of this type. That is, all arrival processes are 
Poisson and all service times are exponentially distributed (though possibly 
with controllable parameters). A consequence of the memoryless assumption is 
that the service and arrival rates chosen by an optimal policy need only change 
at times of customer arrivals or service completions. 

A number of authors have considered the control of the series system 

MIM/1--•IM/1 
in which there are Poisson arrivals at rate A and two 

memoryless servers, serving at rates ,1 and P2 in the first and second queues 
respectively. Ghoneim (1980) showed that, for fixed ,l and 12, and controll- 
able A, the optimal A is non-increasing in the number of customers in either 
queue. Moreover, he showed that the same is true for a controllable process of 
arrivals at the second queue. Rosberg et al. (1982) considered a model in 
which A and P2 are fixed, and ,1 is controllable: Pl E {0, a}, and in which no 
cost is charged for use of the positive rate a. They showed that the optimal L1 
is non-decreasing in the number of customers in the first queue and 
non-increasing in the number of customers in the second queue. Their proof 
makes use of a linear programming formulation and is therefore only 
applicable to a model with linear holding costs. A more general model for two 
queues has been considered by Hajek (1984). In this model queues 1 and 2 
receive Poisson arrivals at rates A• and A2 respectively. A third stream of 
arrivals at rate A can be directed to either queue. The stations have servers of 
rates L1 and P2 and a third server of rate Cy which can be assigned to either 
queue; customers whose service is completed by these servers leave the 
system. Finally, there are two servers, of rates Y12 and y21, the first of which 
serves queue 1 and sends customers to queue 2, the second of which serves 
queue 2 and sends customers to queue 1. Hajek restricts attention to linear 
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holding costs. The rates Y12 and y21 are to be controlled between 0 and fixed 
levels, the customers arriving at rate A are to be routed to one or the other of 
the queues, and the server of rate M is to be allocated to a queue; all these 
decisions are to be made dynamically, as a function of the number of 
customers in the queues. Hajek shows that all these controls have a monotone 
structure by demonstrating that the benefit obtained by removing a customer 
from queue 1 or queue 2 is an increasing function of the number of customers 
in either queue, and the benefit obtained by moving a customer from queue 1 
to queue 2 is a increasing function of the number of customers in queue 1, and 
a decreasing function of the number of customers in the queue 2. 

2. Optimal control of a network of queues 

To illustrate the type of general queueing network with which this paper is 
concerned and to fix ideas, we begin by considering a cycle of m queues in 
which a customer who completes service in queue i joins queue i + 1 (where 
we identify queue m + 1 as queue 1). At queue i customers arrive from outside 
the cycle in a Poisson stream of rate A,. Customers in queue i are served by a 
memoryless server. The rate Mi of this server is subject to control and may be 
varied continuously within the interval [0, f], where F is finite. A cost is 
charged at the rate of ci(yi) per unit time while the service rate Mi is in effect at 
queue i. We assume that each function ci is continuous and convex. If there is 
a reward rather than a cost associated with serving queue i at a rate P then 

ci(i) is negative. The number of customers in queue i will be denoted by x, and 
a state of the system by the vector x = (x1, .... x,), with x >? 0, i = 1, - - - , m. 
The holding cost per unit time is given by h(x) = E hi(xi), where each function 
hi is non-negative, convex (but not necessarily monotone) in its argument. 

Remark. In fact, the restriction of the service rates to an interval [0, f] and 
the requirement that each c, be convex is without loss of generality. For 
suppose that the set of feasible service rates for queue i is closed and contains 0 
and a maximal element P, but is otherwise arbitrary, and that the service cost 
function ci is continuous, but otherwise arbitrary. Then it can be shown (see 
Crabill (1972), Jo and Stidham (1983)) that an equivalent optimization 
problem results if the set of feasible service rates is extended to its convex hull, 
[0, ft], and ci is replaced by its lower convex envelope on [0, fl]. 

With simultaneous control of all the service rates and with continuous 
discounting at rate a > 0, our aim is to minimize the expected total discounted 
cost. (Notice that although we allow the service rates to be varied at any time, 
the memoryless assumptions imply that an optimal policy need only do so at 
times of customer arrivals or service completions.) We begin by considering 
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the minimization of expected discounted costs over a horizon of n random 
stages (or observation points), in which we observe the system at every 
customer arrival or 'potential' service completion. In doing this, we adopt the 
convention that the server at queue i is always running, producing potential 
service completions at the maximum rate ft. When a potential service 
completion occurs, it is 'accepted' with probability Mi/IF and 'rejected' with 
probability 1 - (Mi//). This 'uniformization' procedure has the desirable 
property that the time between observation points is rendered independent of 
the state of the control variables (being exponentially distributed with 
parameter A = mF + E Ai). Change of service rates need only be considered at 
observation points and therefore the dynamic programming equation takes a 
simple form in (1) below. The procedure is fairly standard in the literature on 
stochastic dynamic optimization (see Lippman (1975) and Serfozo (1979) and 
can be shown to result in a decision problem over the infinite horizon that is 
equivalent to the problem in which the system is observed continuously in time 
or at each arrival and actual service completion. 

With this convention the expected one-stage total discounted cost when 

starting from state x and employing service rates Mi, i = 1, - - - , m, is in effect 

[h(x) + E ci(i)]/l(a + A) and the expected one-stage discount factor is A/ 
(a + A). Let ei denote the m-component vector which has a 1 in component i 
and 0 in other components; let di = (ei+1 - ei). With probability AI/A the next 
observation point is an arrival to queue i and the system moves to state x + ei. 
If the service rate in effect at queue i is i, then with probability Mi/A the next 
observation point is an actual service completion at queue i and the system 
moves to state x + di. With probability (mt - C i)/A the next observation 

point is a 'null event', corresponding to the rejection of a potential service 

completion; in this case the system remains in state x. 
Define V,(x) as the minimal n-state expected discounted cost starting from 

state x, with Vo(x) = 0 for all x. Since a >0 and the one-stage costs are 

uniformly bounded below (by - ~ max,, Ici (i)l/(at + A)) it follows by standard 
results (Schal (1977), Bertsekas (1976), Whittle (1983)) that Vn is well defined 
for each n and satisfies the dynamic programming equation 

V+1(x) = > min [hi(xi) + ci(wi) + AAiV,(x + ei) 
i=1 +Mi 

+ ,iVn(x + di) + (ft - 1i)Vn(x)]/(a + A) 

where the minimization is over ii in [0, f], i = 1, 
. 

, m, and it is understood 
that wi = 0 is selected if x, = 0. Without loss of generality suppose a + A = 1. 
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Then we can rewrite these equations in the equivalent form 
m 

Vn+,(x) = [hi(xi) 
+ AiVn(x + ei) + ftVn(x)] 

(1) i=1 
m 

+ > min {c,(,) 
- 

M, [V(x)- Vn(x + d,)]}. i=1 Ii 

A decision rule for selecting the service rates can be described by a function 
MW=(x)= (i, 

" 
r n, Mm), in which Mi(x) is the service rate chosen for queue i 

when the state is x. An optimal policy for the finite-horizon problem at stage 
n + 1 is specified by a decision rule M(x) such that, for each i = 1, ... , m, the 

expression in ( )} on the right-hand side of (1) is minimized by Mi = yi(x). We 
shall resolve ties by selecting the smallest minimizer. 

It does not seem possible to prove a general result concerning the way in 
which the optimal service rates might change as a single customer is added to 
queue i. However, we can say what happens as a customer moves from queue i 
to queue i + 1. We call decision rule M(x) transition-monotone if we have 

ji(x) 5 pij(x + d,), for each i =Aj. 

Our main theorem states that there is an optimal policy with a transition- 
monotone decision rule. In other words, when a customer moves from queue i 
to queue i + 1, the service rate at each queues j, j 0 i, does not decrease. An 
immediate corollary of this is that the service rate at queue i does not increase. 
To prove the corollary, one imagines taking a customer around the cycle: from 
queue i + 1 to queue i +2 to queue i + 3 to... to queue i. The theorem 
implies that at each movement from queue to queue, the optimal service rate 
at queue i does not decrease. The state reached after the final movement is just 
that which would have been obtained if the customer had been moved directly 
from queue i + 1 to queue i (that is, -di = di+1 + - - - + di-1). Therefore, when 
a customer moves from queue i to queue i + 1, the service rate at queue i does 
not increase. The following theorem gives the main result of this paper. 

Theorem. There exist transition-monotone optimal policies for both the 
n-stage and the infinite-horizon problems. 

Proof. An examination of the expression { } in (1) shows that it suffices to 
prove 

(2) Vn(x) - Vn(x + di) - Vn(x + dj) + V,(x + d, + dj) 
5 0, 

for all j ii and x such that x, x+di, x+d, and x+d 
+d,_-0. 

We use 
induction on n with (1) to show that if (2) holds, then it also holds when n is 
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replaced by n + 1. The induction begins trivially, with Vo= 0. Notice that if we 
write the left side of (2) with n + 1 replacing n, and then substitute for Vn+ 
from (1), letting the summation be over index k, then the terms multiplied by 
Ak give 

A~k[Vn(x + ek) - V(x + ek + di) - V(x + ek + d) + V,(x + ek +di + d). 

This is non-positive trivially by the inductive hypothesis for n. Similarly, the 
inductive step is easy for the terms multiplied by t. By the convexity of hk the 
sum of terms in hk also results in a non-negative quantity. To check the 
inductive step for the terms coming from { } in (1) we shall prove a lemma 
whose corollary is the following proposition (for this cycle-of-queues problem). 
The application of this result with g = V, establishes the inductive step for the 
terms in { } and completes the proof of the theorem for the cycle-of-queues 
problem. 

Proposition. Suppose g is a function such that 

(3) g(x) - g(x + di) - g(x + dj) + g(x + di + dj) 5O, 
for all i = j and x such x, x + di, x + dj, x + di + dj >- O. Define for some k, 

fk(X) = min {Ck(L) 
+ Lg(x + dk) + (ft --•)g(X), 

where the minimization is over M in the interval [0, p] and it is understood that 
M = 0 is selected if xk = 0. Then (3) also holds when g is replaced by fk. 

Rather than prove the proposition as it stands, we shall reformulate these 
ideas in a more general setting. The reader may find it helpful to hold in mind 
the example of the cycle-of-queues model as we proceed. Suppose for the 
moment that all states x e Zm are permissible. Let the q vectors dl, ' 

- -, dq E 
ZZm represent possible transformations di :Zm 

' -Zm defined by x -> x + d. Here 
d, can be any vector in ZZm: the action of x -> x + di is to add customers to some 
queues and subtract them from others. If in state x the rate of server i is 
chosen to be Li E [0, F], then a cost ci(pi) is incurred per unit time and the 
system moves to state x + di at rate Mi. (Note the difference between the 
general model and the cycle-of-queues model: in the general model, server i is 
associated with a transformation of the system x -> x + di, which may be much 
more complex than just the movement of one customer from queue i to i + 1. 
We have also allowed the count of customers xi to be negative.) Let D be the 
set of all subsets of {di, ---, dq} (including the empty set). Consider the 
partial order on D given by Di 5 D, if and only if Di c Di. For this partial 
order, D is a lattice. The greatest lower bound and least upper bound of Di 
and D, are denoted Di A D, and Di v D,. These are in fact Di 

f D, and Di, U D, 
respectively. The function f :D -> R is said to be submodular on D if for all Di, 
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Dj ED we have 

f(Di n Dl) - f(DO) - f(DO) + f(DOi U D) < 0. 

For D = {di,, 
- , dk) ED, let x + D denote x + d, +. - + di,,k. We now 

suppose that not all x E Zm are actually permissible states, but that only those 
x E X are actually permissible, where X is a subset of ZZm. We say that D is 
compatible with X if for all x E Zm and Di, Dj ED such that x + Di and x + Dj 
are in X, then x + Di n Dj and x + Di U Dj are also in X. For each x E X let 
D(x) = { D D:x + D E X}. It is easy to check that if D is compatible with X 
then D(x) is a partially ordered subset of D which is closed under operations 
of intersection and union of its members. Note that it is X and the set 
{di, 

" 
, dq} that define the geometry of the queueing network. We now state 

the key lemma which generalizes the proposition above. 

Lemma. Suppose that we are given x E X, dk E 
{dl, 

* *, dq } and a function 
g:X-> R. Suppose D is compatible with X. Define g(x, .) on D by 

g(x, D)= (x +) as x+D 
EX 

Suppose that for all x E X the function g(x, 
.) 

is submodular on D(x). Define 
fk(X, 

") 
on D by 

fk(x, D) = min {Ck(M) + Yg(x + dk, D) + (ft - )g(x, D)}, 

where the minimization is over P E [0, f]. Then fk(x, D) is also submodular on 
D(x). 

Note the importance of the assumption that Mi can be controlled to 0. It 
ensures that if x + dk + D is not in X then we can take P = 0, thereby avoiding 
fk(x, D) = oo. Thus f(x, 

") 
is finite on D(x). The above lemma puts our work in 

the context of the theory of submodular functions on a lattice which has been 
developed by Topkis (1978) and others. For example, in another paper dealing 
with general models, Serfozo (1981) uses submodularity to prove monotonicity 
results for simple random walk models. However, our lemma does not appear 
to be implied by previously known results; it differs in the essential prominence 
given to the condition that controllable service rates be controllable to 0. 
Before proving the lemma, we remark that for the cycle-of-queues problem, 
X={(x1,... ,Xm):x•O, i= 1,**,m}. It is easy to check that taking 
di = (ei+1 - e,), i = 1, 9 

? ., 
m - 1, and dm = (ei - em), results in a D which is 

compatible with X. With only a few other alterations, the reader will obtain a 
proof of the specialized proposition for the cycle-of-queues problem by reading 
the following proof for the general setting and everywhere mentally removing 
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{ }'s, replacing 'D' with 'd' and 'E D' with '=d', and within all g(., .)'s 
replacing ',' with '+'. 

Proof. Consider Di, Dj E D(x). It is required to prove 

A =fk(x, Oi f Dj) -fk(x, Di) - fk(x, Dj) + fk(x, Di U Dj) 5 0. 

Without loss of generality, we can assume that Di f DO = 0. For if not, we can 
let x' =x + Di f D,, D' = Di - Dif Dj and D' = Dj - Di n Dj, and note that A 
is unchanged if x, Di and Dj are replaced by x', D' and D'. So assuming 
Di , OD = 0 we write Di U D, = Di + D,. 

Suppose that for i $j, the minimizing controls are 0 5i : Ofl 0 , - p, 
such that 

fk(X + Di) = Ck(Mi)+ 
" 

ig(x + dk, DO) + (f - Mi)g(x, Di), 

fk(x + Dj) = Ck(j) + Pjg(x + dk, Dj) + (A - Pj)g(x, Dj). 
Assume pi 

!- 
i.j (the case pi 5 pi being symmetric). We consider two cases, 

the first being dk f Dj. Then 

A 5 ck(MI) + ,ig(x + dk) + (f - ~j)g(x) 
- ck(ji) - ig(x + dk, Di) - (F - pi)g(x, Di) 

-Ck(pj) - pjg(x + dk, Dj) - (pj - )g(x, Dj) 
+ Ck(pi) + pig(x + dk + Di + 

Dj) + (A - Mi)g(x, DA + Dj) 
= (ft - ~pi)[g(x) - g(x, Di) - g(x, Dj) + g(x, Di + Dj)] 

+ (pi - pj)[g(x, Di) - g(x + dk, Di) - g(x, 
D, 

+ Dj) + g(x + dk, Di + Dj)] 
+ ,j[g(x + dk) - g(x + dk, Di) - g(x + dk, Dj) + g(x + dk, Di + Dj)]. 

On the right-hand side of the above, the first term is non-positive by the 
submodularity of g(x, .). If i, > 0, then this implies x + dk + Di E X. Also, 
since D is compatible with X, we can take the union of {dk} and Dj, which are 
both in D(x + Di), to deduce x + dk + Di + Dj E X. Thus the second term is 
equal to 

(pi - pi)[g(x + Di, 0) - g(x + Di, {dk}) - g(x + Di, Dj) + g(x + Di, {dk} + 
D)], 

which is non-positive because g(x + Di, ") 
is submodular and {dk} n Dj = 0. If 

also pj > 0, then this implies x + dk + Dj, and by taking the intersection and 
union of {dk} + Di and Di, which are both in D(x), we can deduce x + dk, 
x + dk + Di + Dj E X. Thus the third term is non-positive by the submodularity 
of g(x + dk, 

") 
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Now suppose dk E Dj, dk f Di. Then 

A j c.(wi) + Mig(x + dk) + (A i - i)g(x) 
- cj(pi) - fig(x + dk, Di) 

- (f - i0)g(x, Di) 
- cj(j) - -jg(x + dk, Dj) - (At - ij)g(x, Dj) 
+ cj(ij) + ijg(x + dk, D, + Dj) + (ft - pi)g(x, Di + Dj) 

= (ft - i)[g(x) - g(x, 
Di) 

- g(x, Dj) + g(x, Di + Dj)] 
+ (i - +j)[g(x + dk) - g(x + dk, Di) - g(x, Dj) +g(x, Di 

+ 
Dj)] 

+ ij[g(x + dk) - g(x + dk, Di) - g(x + dk, Dj) + g(x + dk, Di + Dj)]. 

On the right-hand side of the above, the first term is non-positive by the 

submodularity of g(x, 
.). 

If i, > 0, then this implies x + dk + Di E X. By 
applying the compatibility condition to the intersection of Dj and {dk} + Di, 
which are both in D(x), we can deduce x + dk E X. So noting that dk f Di, we 
write the second term as 

(Mi 
- 

yj)[g(x 
+ dk) - g(x + dk, Di) - g(x + dk, D;) + g(x + dk, Di + D;)], 

where D' = Di - {dk}. This is non-positive by the submodularity of g(x + 
dk, .). If also ,j > 0, the third term is non-positive as in the first case. This 

completes the proof of the lemma. 

By a similar induction to that used for the cycle-of-queues result, and 

application of the lemma with Di = (di} and Di = {di}, j = i, we conclude that 
the theorem of this section is true for the general model. We need only the 
additional assumption that h(x, D) is submodular on D(x) for all x X. The 
theorem is that when the state moves from x to x + di the optimal service rates 

lij, j = i, do not decrease. 
Recall that, for the cycle-of-queues model, there were uncontrolled arrivals 

at rate Ak to queue k. In the general model, the inductive proof also goes 
through when the model includes some uncontrolled transformations. Suppose 
ak E Zm represents a transformation of the state, x -> x + ak E X. This occurs at 
rate Ak whenever x + ak EX and at rate 0 otherwise. We say that this 
uncontrolled transformation ak is D-independent if x + ak E X implies x + ak + 
DEX for all D eD. The inductive proof of the theorem uses a similar 
argument to that which we used in the proof of the theorem for the 
cycle-of-queues model when we considered the terms multiplied by Ak. Thus 
the theorem is true for a general queueing network if all the conditions 
described thus far hold, and any uncontrolled transformations are D- 
independent. The arrival transformation, e1, is always D-independent if 
X = {x :x > 0}, but there can be other interesting D-independent transforma- 
tions. Note that the theorem makes a statement about how the optimal 

ii(x) 
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changes, as x -> x + dj, j 0 i. It does not say anything about how Mi(x) changes 
after some uncontrolled transformation, x ->x + ak. For example, in the 

cycle-of-queues model, it is an open problem as to how the Mi(x)'s change as 
x--> X + ei. 

We shall now give some applications of the theorem to other systems. For 
example, a model of a series of queues can be constructed from the model for 
a cycle of queues by redefining dm = -em and adding a new transformation 
do= el with a corresponding co. (Alternatively, a series of m queues can be 
constructed from a cycle of m + 1 queues, 0, 1,... , m, by starting queue 0 
with an infinite number of customers and taking ho = 0.) The theorem implies 
that upon the movement of a customer from queue i to i + 1 the service rate at 
queue i is not increased and the service rates elsewhere are not decreased. A 
second result describes the effect of adding a customer to some queue: that 
upon the addition of a customer to queue i the service rate at queue i and the 
service rates downstream of queue i are not decreased and the arrival rate to 
queue 1 and service rates upstream of queue i are not increased. This 
conclusion comes from noting that as x ->x + d-->x + do + d ->- ** - -> x + 
do + d+---+di-1= x + e the service rate at queue j, 

j>-i, 
does not 

decrease, and as x- x + di -> x + di + di+ ->• ?-> x + d + di + 
1 
j + + dm= 

x - ei the service rate at queue j, j < i, does not decrease. 
In another example, suppose queue m + 1 is a queue with no holding costs, 

which is fed by a parallel system of queues: 1,... , m. Define di = (em+, - e-), 
for i = 1, 2, ... , m. When a customer leaves queue i, i = 1, - - -, m, it enters 
queue m + 1. For this model D is compatible with X = {x :x O}. Take 
h(x) = E hij(Ix, - xjl) + hi(xi), the sum running over i <j, i, j = 1, - - , m, and 

hij, hi increasing and convex. Then it is easy to check that h(x, D) = h(x + D) 
is submodular on D(x), and the problem which is posed is one of minimizing 
the sum of service costs, ordinary holding costs and holding costs which 
penalise imbalances amongst the sizes of the queues. The theorem gives the 
intuitive plausible result that upon completion of a service in queue i the 
optimal service rate should not decrease at any other queue. 

Notice finally, that if deficits of customers are allowed, so that x, may be 
negative and Z = Zm, then any D is compatible with X. We only require that 
h(x, D) be submodular on D for each x. If this is the case transition- 
monotonicity holds for all possible transitions. 

3. Transition-monotonicity for average-cost optimal policies 

For the cycle of queues in Section 2 the time-average cost is finite only if all 
A, = 0. If this is the case, the system is closed and a finite number of customers 
unendingly move around the cycle. Since the state space is finite we can use 
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well-known arguments to let a tend to 0 and deduce the transition-monotone 
structure of the control policy for a time-average-cost criterion (see Ross 
(1970)). 

When the state space is infinite, results concerning average-cost optimal 
policies are more difficult to establish since a direct argument based on letting 
a tend to 0 is no longer valid (depending as it does upon costs being uniformly 
bounded). Rosberg et al. (1982) have commented that the discount optimal 
policy (for two queues in series) may induce a transient Markov chain, in 
which the number of customers in first queue tends to oo, even though an 
average-cost optimal policy induces an ergodic chain. However, this behaviour 
does not occur in the limit as a tends to 0, and we shall see that average-cost 
versions of the theorem can be deduced via those for discounted cost as ac 
tends to 0. Rosberg et al., and also Hajek (1984), have analysed the 
average-cost problem via a limit of finite-horizon problems, but we have been 
unable to adapt their methods to the more general models of this paper. Other 
authors have dealt with the average-cost problem through the discounted-cost 
problem. Serfozo (1981) and Lu and Serfozo (1984) show that the limit of the 
discount optimal policies can be taken as a--- 0 if the total number of possible 
policies is finite. This happens, for example, if each ci is linear (in which case 
Mi(x) is just 0 or t) and one can argue by some means that Mi(x) = F if xi lies 
outside a finite set where hi(xi) is relatively low. However, this condition, like 
others given in the literature, can be difficult to verify. 

Our treatment of the average-cost problem proceeds via a new argument for 
taking the limit of discounted-cost problems, when the state space is countably 
infinite and one-stage costs are unbounded. The conditions under which the 
validity of our limiting scheme applies are easy to check for the models of ?2. 
For a general Markov decision problem they are as follows: 

(a) The state space X is countable. 
(b) The set of actions A(x) which is available in state x is a compact metric 

space. 
(c) The probability Pa(x, y), of transition to state y when action a is taken in 

state x, is continuous in a E A(x), 
(d) The one-stage cost Ca(x), of taking action a in state x, is non-negative 

and continuous in a E A(x). 
(e) It is possible to go from any state x to any other state y with finite 

expected cost. 
(f) For each x there are only finitely many y for which Pa(x, y) > 0 for some 

a eA(x). 
(g) If there is some policy which achieves a finite average cost, say y*, then 

the number of states in which the one-stage cost can be no more than y* 
is finite. 
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A similar result to ours, showing that an average-cost optimal policy can be 
found by taking the limit of discounted-cost optimal policies, has been proved 
by Schal (1977) under assumptions (a)-(d) and an additional assumption (h): 
that for each policy .r, which takes action xr(x) in state x, the transition 
probability matrix P, induces an irreducible and positive recurrent Markov 
chain whose stationary probabilities are continuous in .r. Hordijk and Van Der 
Duyn Schouten (1983) have also proved this result under a condition similar to 
(h), but by using Abelian limit theorems, rather than the optimality equation. 
We are grateful to the last-named author for drawing attention to the relation 
between our work and that in these papers. For our models, (e)-(g) appear 
easier to verify than (h). Conditions (a)-(c) and (e)-(f) are obviously valid. 
Since each ci(Q) is bounded below on yt [0, f] we can simply increase each ci 
by some constant amount to make ci(4) ? O. If we also assume that h(x) is 
bounded below, we can without loss of generality assume h(x) 

- 
0, and so (d) 

holds. In order that (g) hold, we assume each hi(xi) is convex increasing in Ixil 
for Ixil large enough (which is necessary anyway if the problem is to be 
interesting). 

We describe the limiting scheme which applies under assumptions (a)-(g). 
Let V,(x) denote the minimum expected total discounted cost over the infinite 
horizon when starting in state x and discounting at rate a > 0. Suppose x, is a 
most favourable starting state: that is, V,(x,) - V,(x) for all x. Then for all x 

V,(x,) V, (x) M(x, x,) + V,(x,), 
giving 

(4) 0 5 V,(x) - V (x ) M (x, x ), 

where M(x, x,) is the expected undiscounted cost of first passage from x to x, 
under some policy which makes this cost finite (here using assumption (e)). We 
can write 

Va (x) - V,(x,) 

(5)& (5) = 
-aV,(xa,)+ inf [ca(x) + (1- a) X Pa(x, y){Vy) V-(x,). 

We shall shortly let a tend to 0 in (5) after establishing that V,(x)- V,(x,) 
converges to a limit as a tends to 0 in some sequence of discount rates. The 
convergence of V,(x) - V,(x,) in a sequence of discount rates which tend to 0 
is assured if the upper bound, M(x, x,), in (4) can be bounded above 
uniformly in a. We shall see that this is possible because x, can take only 
finitely many values, 0 < a < o. Invoke assumption (f): suppose that there is 
some stationary policy Jr* such that the average cost is finite. (For example, in 
the series of queues, xr* could be the full service policy which sets the 
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controllable arrival rate at queue 1 to 0 and all service rates at queues to the 
maximum possible value, f. Note that finite average cost under some .r* 

places certain restrictions on the parameters of the problem.) Let x* be a most 
favourable starting state when the discount rate is a! and policy Jr* is to be 
followed over the infinite horizon. Suppose that the undiscounted time average 
cost under policy Jr* has the finite value y*. Then 

(6) V*(x) = c*(x) + (1 - Ca) P*(x, y)V*(y), 
y 

where starting in state x and using policy 7r*, V*(x), c*(x) and P*(x, y) are 
respectively the expected total discounted cost, one-stage cost and transition 
matrix. Observe that V*(x*) is no more than y*/a. This follows from the fact 
that aV*(x4) can be interpreted as the minimal average cost in an undis- 
counted setting when opportunities to restart the system occur randomly 
according to a Poisson process with rate ar. It is not hard to see that if 
opportunities to restart the system are so introduced than an optimal 
average-cost policy will avail itself of these opportunities and on each occasion 
restart the system in state x4. The resulting average cost is then, by a 
renewal-reward calculation, aV*(x*); moreover, it is clear that aV*(x*) is 
non-decreasing as a tends to 0 and that it is no more than the average cost y* 
achieved by the policy Jr* which does not take advantage of opportunities to 
restart. So we find 

V,(x,) = inf 
{Ca(xo,) 

+ (1 - a) Pa(x, y)V,P(y) 
a t 

y 
.1 

Smin {Ca(x,()} + (1 - a)-V, (x,). a 

(7) y*/I>V*(x*) -V ,(x*)V,(x 
)min {Ca(X,)}a. 

a 

From (7) we have min {Ca(X,)} < y* for all a and thus x, must be a member of 
the finite set of states, S, in which one-stage costs can be no more than y* 
(invoking assumption (f)). This implies that M(x, x,) can be bounded above 
uniformly in a by the maximum of M(x, y) over y eS. This is sufficient for 
V,(x) - V,(x,) to have a limit 4(x) in some sequence of discount rates which 
tend to 0. By a diagonalization argument we can ensure that V,(x) - V,(x,) 
tends to a limit for all x in a sequence of discount rates which tend to 0. Notice 
that for each a > 0, V,(x, D) - V,(x,, D) inherits submodularity from 
V,(x, D) and will therefore in the limit be submodular on D(x). Also (4) 
implies 4(x) 

!-0 
for all x. Taking limits in (5) we have 

(8) 4(x) = -y + inf {ca(x)+ Pa(x, y)>(y)(, at y 
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where y is the limit of aV,(x,) in the sequence of discount rates tending to 0. 
In deriving the right-hand side of (8), we must bring the limiting operation 
inside the infimum. It is easy to check that conditions (c), (d) and (g) are 
sufficient for this step to be valid. The infimum is achieved by a policy ft for 
which fr(x) is an action achieving the infimum in (8). In our models, the rate 

/; is chosen by ft to minimise ci(p) + 
p"•(x 

+ di) + (At - M)q(x). 
It remains to show that y is the minimum average cost. Observe first that 

aV,(x,) is not greater than the minimal average cost. This follows by the same 
argument used above: aV,(x,) can be interpreted as the minimal average cost 
in an undiscounted setting when opportunities to restart the system occur 
randomly according to a Poisson process with rate a. Moreover, aV,(x,) tends 
monotonically to y as a tends to 0, and therefore y is no greater than the 
minimal average cost. 

Let X,, t = 1, 2, 3, *, denote the state of the Markov chain induced by ft 
after t stages when starting from state x. From (8) we can deduce 

t-n-1 (x) = E,4E c(X,)] - ny + E,[O(Xn)]. 

So 

E[ c~,(X)] n = + 4(x)/n - E,[O(X)]I/n -.t=O 

7 y + 4(x)/n. 
The last inequality above follows from the fact that 

q(x)- 
0 for all x. Thus 

taking the lim sup in the above as n tends to oo we deduce that policy ft has 
average cost no more than y and it is therefore an average-cost-optimal policy. 
For the models of Section 2, the submodularity of 4(x) implies that ft has 
transition-monotone structure. 

The proof of the theorem required the assumption that holding cost in each 
queue be convex. In another paper, Stidham and Weber (1987), we consider 
control of the arrival and/or service rate at a single queue when the holding 
cost is a non-decreasing, but not necessarily convex, function of the number of 
customers in the queue. It turns out that the transition-monotone structure of 
the optimal policy is lost, in general, if the criterion is expected total 
discounted cost, but retained if the criterion is average cost. This raises the 
question as to whether the same might be true regarding the control of more 
complicated systems. 

The following example shows that in the average-cost case the assumption of 
convex holding costs may not in general be relaxed if we are to guarantee that 
the optimal policy be transition-monotone. The example concerns a series of 
two queues for which the non-zero parameters are )x 

=0.001, 
Pi e [0, 1], 
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P2 e [0, 0-1], c1(L) = y and c2(P) = 0. This means that the arrival rate is fixed at 
0.001. The service rate at queue 1 can lie within [0, 1] and the service rate at 

queue 2 will always be chosen to be 0.1. Let the non-decreasing, but 
non-convex holding costs be as follows: 

hl(xl)= 
xj, x1= 0, 1,2, , h2(X2) = , X =0, 1 

3, 2, 3, 4, - 
.. Computation shows that the minimal average cost is 0-0021 and it is optimal to 

serve queue 1 at rate 1 in states (1, 0), (1, 3), (1, 4), 
? 

but at rate 0 in state 

(1, 1) and (1, 2). Thus the optimal control of the service rate at queue 1 is not 
monotone in the number of customers in queue 2. 

4. Importance of the zero service rate option 

A particular feature of our model has been the ability to control all service 
rates to 0. If for either the expected discounted or time average-cost cases this 
option is not available then there may not be a transition-monotone optimal 
policy. This fact may seem surprising, but an example shows that it is the case. 
Consider the series system MIMI/1 -/M/1 and the average-cost criterion. The 
transformations are do = el, d, = e2- e and d2 = -e2. Suppose the service 
rate at queue 1 is not controllable to 0. The rate at queue 1 is fixed at 1 and 
the rate at queue 2 is controllable in [0, 2], but with c1(1) = c2() = 0. Suppose 
the arrival rate yo can be controlled between 0 and 0.01, and that the reward 
for admitting arrivals is reflected in a cost co(o) = -0-944o0. Let 

h1(x1i)=0 
x=, h2, 01 x 0, 1,2,3, 4 

=l(x )= 
) X1 

= 
1) 2 

h2(x2) 
= X2) 

= 00, 3, 4, 5, ? .'1 5,6,5 7, . 
The infinite holding costs are assumed to make calculations easy (since there 
can then be at most 12 recurrent states if the cost is to be finite when the 
system starts in state 0), but these could be replaced by any large values with 
the hi's convex increasing. With the linear reward 0.9440o for admitting 
arrivals, the optimal value of yo will be at endpoints of the interval [0, 0.01]. 
At queue 2 customers will always be served with P2 = 2. Computation shows 
that the minimal average cost is -0-00441470 and the uniquely optimal policy 
admits arrivals only in the states (0, 0), (1, 0), (0, 1), (1, 1) and (1, 2). Since the 
optimal arrival rate is set at 0 in state (0, 2) and at 0.01 in state (1, 2) the 
optimal arrival rate is not non-increasing in xl and the optimal policy is not 
transition-monotone. The reason for this surprising behaviour is that the 
service rate at queue 1 may not be set to 0. It turns out that f(x, D) is not 
submodular. We find 

p((2, 2)) - p((1, 2)) = 
0.8625 

< 0944 < 
0.9470 

= p((1, 2)) - p((0, 2)). 
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Whereas, taking x = (1, 2), Di = {do} and Dj = {dl, d2), submodularity would 
require the inequality in the opposite direction. Note, that if D is restricted to 
subsets of {do, d2}, then dl is a D-independent uncontrollable transformation. 
The theorem now does apply and we can deduce that Mo is non-increasing in 
x2, as the calculations confirm. 

Fixed rates can be consistent with a transition-monotone structured optimal 
policy provided the holding costs are sensibly arranged. For example, in the 
series-of-queues model, the rate in queue i can be fixed at MLi and monotone 
structure retained provided it is always advantageous to move a customer from 
queue i to i + 1. This is the case if, for example, hi(xi)= wixi, hi+1(xi+1) = 

wi+1xi+ with wi -wi+1. 
We just pretend that the service rate at queue i is 

controllable within [0, pi], with ci(C) = 0 for all P in this interval, and observe 
that it must be worthwhile to set the service rate to the highest rate Li since 
service completions move a customer to a less expensive position at no cost. 
Thus while the availability of 0 service rates is sufficient for there to be a 
transition-monotone optimal policy, it is not necessary. 
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